Appendices

A Proof of lemma 2

Proof. For deterministic schedule,
E[J(6,)] = E {J(@)} .

Thus we can write
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Thus, we can bound the regret using

Ry =E[hi(z1) — hrg1(zr41)]
T

+ Y Bl (@is1) — he(@Fes1)]

t=1

T
<H+ Z]E (Pey1(zeg1) — he(Tegr)]
t=1
where the second inequality follows because hi(z1) < H and —hriq(z741) < 0. Let A; denote
the event that the algorithm has changed its policy at time t. We can write
T

Rr—HL Z]E (i1 (2ig1) — he(Tigr)]

,;1
= Z E[hit1(xi41) — he(Ti41)]
T
+ ZIE [he(2iq1) — he(Tygr)]
T
<H ZE 1{A:}]

+ ) Elh(we1) — ha(@iga)] -

t=1

B Proof of lemma 3

Proof. By Cauchy-Schwarz inequality and Lipschitz dynamics assumption,

A < HP(.\xhatﬁ*) — P( |z, a1, 0;) ) 12t o

<CH
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Recall that 6, = gn. Let T); be the length of episode j. Because we have m episodes, we can write

T T
S OA T A}
t=1 t=1

J

m T
—cH,|TY Y 0*—@‘2
j=1s5=1
=CH TiMj 9*75]«2,
j=1

where M is the number of steps in the jth episode. Thus

T m N 2-
E|S A <cHE| |TY M, 9*79]4’
t=1 Jj=1
m -2
<cH |TE |3 M; 6. 6|
j=1

C Proof of lemma 4

Proof. Let S = E {ZT_ L M; |0, — 6
episodes. So V; = N;_1 + M; and Ny = 1. We write

2
} . Let N; be one plus the number of steps in the first j

™ ~12 M.
S=E|> N 9*f9j] N
j=1
(a) n 2
< 2B |3 N, 9*—9j‘
j=1

(b)
< 2log TmaxE {Nj_l
J

2
0. — 0 ]

@ .,
< 2C"log” T,

where (a) follows from the fact that M; /N;_; < 2 for all j, (b) follows from

m 2 2
E > N |6 -5 gmmaxE[le 0.~ ) ]
; J
j=1
and m < log T, and (c) follows from Assumption A2. [ |
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D Proof of lemma 5

Proof. To simplify the expositions, we use p to denote P(s = a|X) in this proof. Notice that
2(0) = %. Based on the definition of || - ||1, we have

||P('|X7a7 0) - P('|X7a7 0’)”1

PR P(s|X)  P(s|X)
— |po — po’ _
p po +S§£a 2(0) 20
1 g 1_p1/6 1_p1/9’
= |po —po’ | + — P(s|X
P’ —p > > s%éa (s[X)
1 g 1_p1/0 1_p1/9’
= 0 —po’ | 4+ — 1 —
p? —p - > (1-p)
=2p? —p7r|. 6
We also define h(6, p) 2 p?. Based on calculus, we have
oh 1 1\ 1
— (0 EX XA ) =
59 0:p) =p? log (p) 02
0*h 1 1,1 1
= —pt | Zlog (-~ ) —1].
agap(&p) gzP {0 og (p) ] (7

The first equation implies that A is strictly increasing in 6, and the second equation implies that for all
6 >0, %(9, p) is maximized by setting p = exp(—6). This implies that for all > 0, we have

Oh Oh 1
_— < _— — = —.

Hence, for all § > 1, we have 0 < %(&p) < é < % Consequently, h(6, p) as a function of 4 is
globally (£)-Lipschitz continuous for § > 1. So we have

(&

1PCIX,a,6) ~ PUIX, 0,6 = 2[pd —pi| < 210 -0
|
E Posterior Concentration for POI Recommendation
Recall that the parameter space © = {01,...,0k} is a finite set, and 0, is the true parameter. Notice

that if P(s; = a4|X) is close to 0 or 1, then the DS-PSRL will not learn much about 6, at time
t, since in such cases P(s;| X, a, 6)’s are roughly the same for all § € ©. Hence, to derive the
concentration result, we make the following simplifying assumption:

Ap S P(S|X) S 1-— Ap V(X,S)
for some Ap € (0,0.5). Moreover, we assume that all the elements in © are distinct, and define

Ay 2  min |60 — 6.
0€0,0-40.,

as the minimum gap between 6, and another 6 # 6,. To simplify the exposition, we also define
A p1/9
B =2max { max max log | =——
0€0 pe[Ap,1—Ap] pl/0x
1— p1/0
o <1 —pt/t > ’}

A min {1n (A%;) Ap,In (i) (1- Ap)}

Co —

)

max max
0€0 pe[Ap,1-Ap]

(maxpee 0)?

2
A .
k= | maxfd —minf | .
(4SS [USC)

Then we have the following lemma about the concentrating posterior of this problem:
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Lemma 6 (Concentration) Assume that 0; is sampled from P, at time step t, then under the above
assumptions, for any t > 2, we have

3 17P0(9*)
ecdt  Po(0.)

exp{ CEA2t + /2Bt In (Kkt?) } 2

where B, cg, and k are constants defined above. Note that they only depend on Ap and ©

E[(6; —6.)%] <

Notice that Lemma 6 implies that

E [0, 0.)%] <O (exp { -3t + V2B (Kri2) } ) + Lo

t

for any ¢ > 2. This directly implies that max; E [Nj_l 0, —0,

2} = 0(1). QED.

E.1 Proof of lemma 6
Proof. We use Py to denote the prior over , and use P; to denote the posterior distribution over 6 at
the end of time ¢. Note that by Bayes rule, we have

t

) < Po(6 H (s-|X+,ar,0) VtandVl € O.

We also define the posterior log-likelihood of 6 at time ¢ as

_ P(6) L[ P(se|Xr,ar, 0)
A (9) _log{pt(e*)} { 1;[ P(s7|Xr,ar,04)
for all ¢t and all # € ©. Notice that P;(0) < exp [A+(0)] always holds, and A+(6,) = 0 by definition.
We also define p; 2 P(s¢ = at|X+) to simplify the exposition. Note that by definition, we have

1/6 i =

Dy 1fst at
P(s X7a,9 — P(s¢|X 1
(t\ ty Gt ) {gtl)tt)(l_pi/e) otherwise

Define the indicator z; = 1 {s; = a;}, then we have

P(Sithatve) pi/g
log { 020D L o,
Og{P(st|Xt7at,9*) %1108 pl/e*

t

1—p/°
+ (1 — z) log | —F5—

1—p/o
Since p; is F;_1-adaptive, we have

P(St|Xt,at,0)
E |l —_—
[Og{ P(st| Xt ar,0.)

ft—lye*:|

1/6 p/° 1/6 1-p/°
=p,’ " log | S| 4+ (1—p,/7")log | — -
P 1—p;

04 0 04 0
= —DxL (ptl/ |Ip1/) —2 (pi/ ptl/) :

where the last inequality follows from Pinsker’s inequality. Notice that function h(z) = p? is a
strictly convex function of z, and 2% (z) = p¥ In(p,), we have

1/604 (9 - 9*)

p" =" = pop " (1/0 — 1/6.) = n(1/pp " =

Similarly, we have pi /0 _ / > In(1/p:)p, 1/° (9 ) . Consequently, we have

. 0 — 0.
0|5 i {0} 0=
0—0.
> (1 /pop 20
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where the last inequality follows from the fact 6,6, € [1,00). Since function
In(1/z)x is concave on [0,1] and p, € [Ap,1 — Ap], we have In(l/p)p; >
min{ln(l/Ap)Ap,ln(l/(l—Ap))(l—Ap)}. Define

a min{In(1/Ap) Ap,In(1/(1 - Ap)) (1 - Ap)}

o (maxgeo 0)? ’ ®)
then we have ’pi/e - pi/e* > ¢o|0 — 6.|. Hence we have
—Dxr, (p}/a* ||p§/9) < —2¢3(0 — 0.)%.
Furthermore, we define
P(St|Xt Qg , 9)
0) £ log § s~ I8 T
0 % 0e { L
P(st‘Xtaatae)
—E |1 e —1,04] .
{"g{P(sqxt,at,eu T ®

Obviously, by definition, E [ (0)|F;—1,0.] = 0. We also define
1/6
p
log (pl/ O )
1_pl/e
s (=5 ) ) “0)

then |£;(0)| < B always holds. This allows us to use Azuma’s inequality. Specifically, for any

0 € ©,any t, and any d € (0,1), we have Ztr=1 &:(0) < v/2B2%t1n (K /§) with probability at least
1 — /K. Taking a union bound over 6 € O, we have

t
> &(0) < /2B*tIn(K/5) VO€© (11)
T=1

with probability at least 1 — §. Consequently, we have

Py(6
A(0) = log { POO((H*)) }
t p1/9 1_ p1/9
N I
=1 pr 1-— pr
t t
—tog { F L 3" Dt (5 197) + 320
=1 =1

< log { g)o((i)) } —2¢5(0 — 0.)%t + ; &:(0) (12)

A
B =2max { max max
€O pe[Ap,1—Ap]

I

max max
0€0 peE[Ap,1—-Ap]

Combining the above inequality with equation 11, we have

Ae(0) < log{ Do(0) } —2¢3(6 — 6.)* +/2B2tIn (K/5) Y0 €©
Po(6+)
with probability at least 1 — §. Hence, we have
P(0) < exp [A(0)] 13)

Po(9) 2 2 5
< Fo(0) exp{—200(9—9*) t++/2B tln(K/é)}

for all § € © with probability at least 1 — §. Thus, for any F;_; s.t. the above inequality holds, we
have

E [(6: — 0.)*| Fi1,0.] = Y Pu(6)(6 — 6.)°
0A0.4

< 9;6* Ppi)o(((gi)) exp {—263(0 _ 9*)2(1: B 1)

+ V2Bt —1)In (K/a)} (0 —0.)° (14)
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For t > 2, we have

exp {—=c3(0 = 0.)*(t = 2)} (6 — 0.)* < ﬁsit

where the last inequality follows from the fact that £ — 2 > £ =. Hence we have

[(ot—e 2|ft 1,04

ecgt > 7 po exp {~c}(6 — 0.)% + 2B Tn (K/5) )

040,
exp {—chzt +\/2B%tIn (K/d)}
ec ec3t P (
0% 940,
31— Po

? exp{ AL+ /2 2B?t1n ( K/&}

ecot

where the second inequality follows from (6 — 6,.)> > AZ2. For F;_ s.t. inequality 13 does not hold,

we use the naive bound

2
(0; —0,)* <k = (max9 - minG) .
9c© 0c©

Since inequality 13 holds with probability at least 1 — §, we have
E [(6: — 0.)%]6.]
31— Py(6.) 2Nt 4 /I (K6
S e el Po() exp { coAgt + \/2B?%t1In (K/(S)} + dk.

Finally, by choosing 6 = W and taking an expectation over 6, we have

E (6 — 6.)"]
3 1-P(9s)

< V2B? 2 =
et Po(0.) exp{ ARt + \/2B%t1n (Kkt?) }—i—
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