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Abstract

In real-world applications of education, an effective teacher adaptively chooses
the next example to teach based on the learner’s current state. However, most
existing work in algorithmic machine teaching focuses on the batch setting,
where adaptivity plays no role. In this paper, we study the case of teaching
consistent, version space learners in an interactive setting. At any time step, the
teacher provides an example, the learner performs an update, and the teacher
observes the learner’s new state. We highlight that adaptivity does not speed up
the teaching process when considering existing models of version space learners,
such as the “worst-case” model (the learner picks the next hypothesis randomly
from the version space) and the “preference-based” model (the learner picks
hypothesis according to some global preference). Inspired by human teaching, we
propose a new model where the learner picks hypotheses according to some local
preference defined by the current hypothesis. We show that our model exhibits
several desirable properties, e.g., adaptivity plays a key role, and the learner’s
transitions over hypotheses are smooth/interpretable. We develop adaptive teaching
algorithms, and demonstrate our results via simulation and user studies.

1 Introduction

Algorithmic machine teaching studies the interaction between a teacher and a student/learner where
the teacher’s objective is to find an optimal training sequence to steer the learner towards a desired
goal [36]. Recently, there has been a surge of interest in machine teaching as several different
communities have found connections to this problem setting: (i) machine teaching provides a rigorous
formalism for a number of real-world applications including personalized educational systems [35],
adversarial attacks [24], imitation learning [6, 14], and program synthesis [18]; (ii) the complexity of
teaching (“Teaching-dimension”) has strong connections with the information complexity of learning
(“VC-dimension”) [9]; and (iii) the optimal teaching sequence has properties captured by new models
of interactive machine learning, such as curriculum learning [4] and self-paced learning [25].

In the above-mentioned applications, adaptivity clearly plays an important role. For instance, in
automated tutoring, adaptivity enables personalization of the content based on the student’s current
knowledge [31, 33, 17]. In this paper, we explore the adaptivity gain in algorithmic machine teaching,
i.e., how much speedup a teacher can achieve via adaptively selecting the next example based on the
learner’s current state? While this question has been well-studied in the context of active learning
and sequential decision making [15], the role of adaptivity is much less understood in algorithmic
machine teaching. A deeper understanding would, in turn, enable us to develop better teaching
algorithms and more realistic learner models to exploit the adaptivity gain.
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We consider the well-studied case of teaching a consistent, version space learner. A learner in
this model class maintains a version space (i.e., a subset of hypotheses that are consistent with
the examples received from a teacher) and outputs a hypothesis from this version space. Here, a
hypothesis can be viewed as a function that assigns a label to any unlabeled example. Existing work
has studied this class of learner model to establish theoretical connections between the information
complexity of teaching vs. learning [13, 37, 11]. Our main objective is to understand, when and
by how much, a teacher can benefit by adapting the next example based on the learner’s current
hypothesis. We compare two types of teachers: (i) an adaptive teacher that observes the learner’s
hypothesis at every time step, and (ii) a non-adaptive teacher that only knows the initial hypothesis of
the learner and does not receive any feedback during teaching. The non-adaptive teacher operates in
a batch setting where the complete sequence of examples can be constructed before teaching begins.

Figure 1: Local update preference.
Users were asked to update the posi-
tion of the orange rectangle so that
green cells were inside and blue
ones outside. The heatmap on the
right displays the updated positions.

Inspired by real-world teaching scenarios and as a generaliza-
tion of the global “preference-based” model [11], we propose
a new model where the learner’s choice of next hypothesis h1
depends on some local preferences defined by the current hy-
pothesis h. For instance, the local preference could encode that
the learner prefers to make smooth transitions by picking a con-
sistent hypothesis h1 which is “close” to h. Local preferences,
as seen in Fig. 1, are an important aspect of many machine
learning algorithms (e.g., incremental or online learning algo-
rithms [27, 28]) in order to increase robustness and reliability.
We present results in the context of two different hypotheses
classes, and show through simulation and user studies that adap-
tivity can play a crucial role when teaching learners with local
preferences.

2 Related Work

Models of version space learners Within the model class of version space learners, there are
different variants of learner models depending upon their anticipated behavior, and these models lead
to different notions of teaching complexity. For instance, (i) the “worst-case” model [13] essentially
assumes nothing and the learner’s behavior is completely unpredictable, (ii) the “cooperative” model
[37] assumes a smart learner who anticipates that she is being taught, and (iii) the “preference-based”
model [11] assumes that she has a global preference over the hypotheses. Recently, some teaching
complexity results have been extended beyond version space learners, such as Bayesian learners [34],
probabilistic/randomized learners [30, 3], learners implementing an optimization algorithm [22], and
for iterative learning algorithms based on gradient updates [23]. Here, we focus on the case of version
space learners, leaving the extension to other types of learners for future work.

Batch vs. sequential teaching Most existing work on algorithmic machine teaching has focused
on the batch setting, where the teacher constructs a set of examples and provides it to the learner at
the beginning of teaching [13, 37, 11, 7]. There has been some work on sequential teaching models
that are more suitable for understanding the role of adaptivity. Recently, [23] studied the problem
of iteratively teaching a gradient learner by providing a sequence of carefully constructed examples.
However, since the learner’s update rule is completely deterministic, a non-adaptive teacher with
knowledge of the learner’s initial hypothesis h0 would behave exactly the same as an adaptive teacher
(i.e., the adaptivity gain is zero). [3] studied randomized version-space learners with limited memory,
and demonstrated the power of adaptivity for a specific class of hypotheses. Sequential teaching
has also been studied in the context of crowdsourcing applications by [19] and [29], empirically
demonstrating the improved performance of adaptive vs. non-adaptive teachers. However, these
approaches do not provide any theoretical understanding of the adaptivity gain as done in our work.

Incremental learning and teaching Our learner model with local preferences is quite natural in
real-world applications. A large class of iterative machine learning algorithms are based on the idea
of incremental updates which in turn is important for the robustness and generalization of learning
[27, 28]. From the perspective of a human learner, the notion of incremental learning aligns well
with the concept of the “Zone of Proximal Development (ZPD)” in the educational research and
psychology literature [32]. The ZPD suggests that teaching is most effective when focusing on a
task slightly beyond the current abilities of the student as the human learning process is inherently
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incremental. Different variants of learner model studied in the cognitive science literature [21, 5, 26]
have an aspect of incremental learning. For instance, the “win stay lose shift” model [5] is a special
case of the local preference model that we propose in our work. Based on the idea of incremental
learning, [2] studied the case of teaching a variant of the version space learner when restricted to
incremental learning and is closest to our model with local preferences. However, there are two key
differences in their model compared to ours: (i) they allow learners to select inconsistent hypotheses
(i.e., outside the version space), (ii) the restricted movement in their model is a hard constraint which
in turns means that teaching is not always feasible – given a problem instance it is NP-Hard to decide
if a given target hypothesis is teachable or not.

3 The Teaching Model

We now describe the teaching domain, present a generic model of the learner and the teacher, and
then state the teacher’s objective.

3.1 The Teaching Domain

Let X denote a ground set of unlabeled examples, and Y denote the set of possible labels that could
be assigned to elements of X . We denote by H a finite class of hypotheses, each element h P H is a
function h : X Ñ Y . In this paper, we will only consider boolean functions and hence Y “ t0, 1u.
In our model, X , H, and Y are known to both the teacher and the learner. There is a target hypothesis
h˚ P H that is known to the teacher, but not the learner. Let Z Ď X ˆ Y be the ground set of labeled
examples. Each element z “ pxz, yzq P Z represents a labeled example where the label is given
by the target hypothesis h˚, i.e., yz “ h˚pxzq. Here, we define the notion of version space needed
to formalize our model of the learner. Given a set of labeled examples Z Ď Z , the version space
induced by Z is the subset of hypotheses HpZq P H that are consistent with the labels of all the
examples, i.e., HpZq :“ th P H : @z “ pxz, yzq P Z, hpxzq “ yzu.

3.2 Model of the Learner

We now introduce a generic model of the learner by formalizing our assumptions about how she
adapts her hypothesis based on the labeled examples received from the teacher. A key ingredient
of this model is the preference function of the learner over the hypotheses as described below. As
we show in the next section, by providing specific instances of this preference function, our generic
model reduces to existing models of version space learners, such as the “worst-case” model [13] and
the global “preference-based" model [11].

Intuitively, the preference function encodes the learner’s transition preferences. Consider that the
learner’s current hypothesis is h, and there are two hypotheses h1, h2 that they could possibly pick as
the next hypothesis. We want to encode whether the learner has any preference in choosing h1 or
h2. Formally, we define the preference function as σ : H ˆHÑ R`. Given current hypothesis h
and any two hypothesis h1, h2, we say that h1 is preferred to h2 from h, iff σph1;hq ă σph2;hq. If
σph1;hq “ σph2;hq, then the learner could pick either one of these two.

The learner starts with an initial hypothesis h0 P H before receiving any labeled examples from the
teacher. Then, the interaction between the teacher and the learner proceeds in discrete time steps. At
any time step t, let us denote the labeled examples received by the learner up to (but not including)
time step t via a set Zt, the learner’s version space as Ht “ HpZtq, and the current hypothesis as ht.
At time step t, we model the learning dynamics as follows: (i) the learner receives a new example
zt; and (ii) the learner updates the version space Ht`1, and picks the next hypothesis based on the
current hypothesis ht, version space Ht`1, and the preference function σ:

ht`1 P th P Ht`1 : σph;htq “ min
h1PHt`1

σph1;htqu. (3.1)

3.3 Model of the Teacher and the Objective

The teacher’s goal is to steer the learner towards the target hypothesis h˚ by providing a sequence
of labeled examples. At time step t, the teacher selects a labeled example zt P Z and the learner
transitions from the current ht to the next hypothesis ht`1 as per the model described above. Teaching
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finishes at time step t if the learner’s hypothesis ht “ h˚. Our objective is to design teaching algo-
rithms that can achieve this goal in a minimal number of time steps. We study the worst-case number
of steps needed as is common when measuring the information complexity of teaching [13, 37, 11].

We assume that the teacher knows the learner’s initial hypothesis h0 as well as the preference function
σp¨; ¨q. In order to quantify the gain from adaptivity, we compare two types of teachers: (i) an adaptive
teacher who observes the learner’s hypothesis ht before providing the next labeled example zt at
any time step t; and (ii) a non-adaptive teacher who only knows the initial hypothesis of the learner
and does not receive any feedback from the learner during the teaching process. Given these two
types of teachers, we want to measure the adaptivity gain by quantifying the difference in teaching
complexity of the optimal adaptive teacher compared to the optimal non-adaptive teacher.

4 The Role of Adaptivity

In this section, we study different variants of the learner’s preference function, and formally state the
adaptivity gain with two concrete problem instances.

4.1 State-independent Preferences

We first consider a class of preference models where the learner’s preference about the next hypothesis
does not depend on her current hypothesis. The simplest state-independent preference is captured
by the “worst-case” model [13], where the learner’s preference over all hypotheses is uniform, i.e.,
@h, h1, σph1;hq “ c, where c is some constant.

A more generic state-independent preference model is captured by non-uniform, global preferences.
More concretely, for any h1 P H, we have σph1;hq “ ch1 @h P H, a constant dependent only on h1.
This is similar to the notion of the global “preference-based" version space learner introduced by [11].

Proposition 1 For the state-independent preference, adaptivity plays no role, i.e., the sample com-
plexities of the optimal adaptive teacher and the optimal non-adaptive teacher are the same.

In fact, for the uniform preference model, the teaching complexity of the adaptive teacher is the same
as the teaching dimension of the hypothesis class with respect to teaching h˚, given by

TDph˚,Hq :“ min
Z
|Z|, s.t. HpZq “ th˚u. (4.1)

For the global preference model, similar to the notion of preference-based teaching dimension [11],
the teaching complexity of the adaptive teacher is given by

min
Z
|Z|, s.t. @h P HpZqzth˚u, σph; ¨q ą σph˚; ¨q. (4.2)

4.2 State-dependent Preferences

In real-world teaching scenarios, human learners incrementally build up their knowledge of the
world, and their preference of the next hypothesis naturally depends on their current state. To
better understand the behavior of an adaptive teacher under a state-dependent preference model, we
investigate the following two concrete examples:

Example 1 (2-REC) H consists of up to two disjoint rectangles1 on a grid and X represents the
grid cells (cf. Fig. 1 and Fig. 3a). Consider an example z “ pxz, yzq P Z: yz “ 1 (positive) if the
grid cell xz lies inside the target hypothesis, and 0 (negative) elsewhere.

The 2-REC hypothesis class consists of two subclasses, namely H1: all hypotheses with one rectangle,
and H2: those with exactly two (disjoint) rectangles. The 2-REC class is inspired by teaching a
union of disjoint objects. Here, objects correspond to rectangles and any h P H represents one or two
rectangles. Furthermore, each hypothesis h is associated with a complexity measure given by the
number of objects in the hypothesis. [10] recently studied the problem of teaching a union of disjoint
geometric objects, and [1] studied the problem of teaching a union of monomials. Their results show

1For simplicity of discussion, we assume that for the 2-REC hypothesis that contains two rectangles, the
edges of the two rectangles do not overlap.
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that, in general, teaching a target hypothesis of lower complexity from higher complexity hypotheses
is the most challenging task.

For the 2-REC class, we assume the following local preferences: (i) in general, the learner prefers to
transition to a hypothesis with the same complexity as the current one (i.e., H1 Ñ H1 or H2 Ñ H2),
(ii) when transitioning within the same subclass, the learner prefers small edits, e.g., by moving
the smallest number of edges possible when changing their hypothesis, and (iii) the learner could
switch to a subclass of lower complexity (i.e., H2 Ñ H1) in specific cases. We provide a detailed
description of the preference function in the extended version of this paper [8].

Example 2 (LATTICE) H and X both correspond to nodes in a 2-dimensional integer lattice of
length n. For a node v in the grid, we have an associated hv P H and xv P X . Consider an example
zv “ pxzv , yzv q P Z: yzv “ 0 (negative) if the target hypothesis corresponds to the same node v,
and 1 (positive) elsewhere. We consider the problem of teaching with positive-only examples.

LATTICE class is inspired by teaching in a physical world from positive-only (or negative-only)
reinforcements, for instance, teaching a robot to navigate to a target state by signaling that the current
location is not the target. The problem of learning and teaching with positive-only examples is an
important question with applications to learning languages and reinforcement learning tasks [12, 20].
For the LATTICE class, we assume that the learner prefers to move to a close-by hypothesis measured
via L1 (Manhattan) distance, and when hypotheses have equal distances we assume that the learner
prefers hypotheses with larger coordinates.

Theorem 2 For teaching the 2-REC class, the ratio between the cost of the optimal non-adaptive
teacher and the optimal adaptive teacher is Ω p|h0|{ log |h0|q, where |h0| denotes the number of
positive examples induced by the learner’s initial hypothesis h0; for teaching the LATTICE class, the
difference between the cost of the optimal non-adaptive teacher and the optimal adaptive teacher is
Ω pnq.

In the above theorem, we show that for both problems, under natural behavior of an incremental
learner, adaptivity plays a key role. The proof of Theorem 2 is provided in the extended version of
this paper [8]. Specifically, we show the teaching sequences for an adaptive teacher which matches
the above bounds for the 2-REC and LATTICE classes. We also provide lower bounds for any
non-adaptive algorithms for these two classes. Here, we highlight two necessary conditions under
which adaptivity can possibly help: (i) preferences are local and (ii) there are ties among the learner’s
preference over hypotheses. The learner’s current hypothesis, combined with the local preference
structure, gives the teacher a handle to steer the learner in a controlled way.

5 Adaptive Teaching Algorithms

In this section, we first characterize the optimal teaching algorithm, and then propose a non-myopic
adaptive teaching framework.

5.1 The Optimality Condition

Assume that the learner’s current hypothesis is h, and the current version space is H Ď H. Let
D˚ph,H, h˚q denote the minimal number of examples required in the worst-case to teach h˚. We
identify the following optimality condition for an adaptive teacher:

Proposition 3 A teacher achieves the minimal teaching cost, if and only if for all states ph,Hq of
the learner, it picks an example such that

z˚ P arg min
z

ˆ

1` max
h1PCph,H,σ,zq

D˚
`

h1, H XHptzuq, h˚
˘

˙

where Cph,H, σ, zq denotes the set of candidate hypotheses in the next round as defined in (3.1), and
for all ph,Hq, it holds that

D˚ph,H, h˚q “ min
z

ˆ

1` max
h1PCph,H,σ,zq

D˚
`

h1, H XHptzuq, h˚
˘

˙
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Algorithm 1 Non-myopic adaptive teaching

input: H, σ, initial h0, target h˚.
Initialize tÐ 0, H0 Ð H
while ht ‰ h˚ do
h˚t Ð Oraclepht,Ht, h

˚q

zt`1 Ð Teacherpσ, ht,Ht, h
˚
t q

Learner makes an update
tÐ t` 1
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Figure 2: An illustrative example for 2-REC. ht, h˚, and
h˚t are represented by the orange rectangles, solid green
rectangle and dashed green rectangles, respectively. (Left)
The teaching task. (Middle) Sub-task 1. (Right) Sub-task 2.

In general, computing the optimal cost D˚ for non-trivial preference functions, including the uni-
form/global preference, requires solving a linear equation system of size |H| ¨ 2|H|.

State-independent preference When the learner’s preference is uniform, D˚uph,H, h
˚q “

TDph˚, Hq (Eq. 4.1) denotes the set cover number of the version space, which is NP-Hard to compute.
A myopic heuristic which gives best approximation guarantees for a polynomial time algorithm (with
cost that is within a logarithmic factor of the optimal cost [13]) is given by D̃uph,H, h

˚q “ |H|. For
the global preference, the optimal cost D˚g ph,H, h

˚q is given by Eq. (4.2). i.e., the set cover number
of all hypotheses in the version space that are more or equally preferred over h˚. Similarly, one can
also follow the greedy heuristic, i.e., D̃gph,H, h

˚q “ |th1 P H : σph1; ¨q ď σph˚; ¨qu| to achieve a
logarithmic factor approximation.

General preference Inspired by the two myopic heuristics above, we propose the following
heuristic for general preference models:

D̃ph,H, h˚q “ |th1 P H : σph1;hq ď σph˚;hqu| (5.1)

In words, D̃ denotes the index of the target hypothesis h˚ in the preference vector associated with h
in the version space H . Notice that for the uniform (resp. global) preference model, the function D̃
reduces to D̃u (resp. D̃g). In the following theorem, we provide a sufficient condition for the myopic
adaptive algorithm that greedily minimizes Eq. (5.1) to attain provable guarantees:

Theorem 4 Let h0 P H be the learner’s initial hypothesis, and h˚ P H be the target hypothesis.
For any H Ď H, let H̄ptzuq “ th1 P H : h1pxzq ‰ yzu be the set of hypotheses in H which are
inconsistent with the teaching example z P Z . If for all learner’s states ph,Hq, the preference and
the structure of the teaching examples satisfy:

1. @hi, hj P H , σphi;hq ď σphj ;hq ď σph˚;hq ùñ σphj ;hiq ď σph˚;hiq

2. @H 1 Ď H̄ptzuq, there exists z1 P Z , s.t., H̄ptz1uq “ H 1,

then, the cost of the myopic algorithm that greedily minimizes2 (5.1) is within a factor of
2plog D̃ph0,H, h˚q ` 1q approximation of the cost of the optimal adaptive algorithm.

We defer the proof of the theorem to the extended version of this paper [8]. Note that both the uniform
preference model and the global preference model satisfy Condition 1. Intuitively, the first condition
states that there does not exist any hypothesis between h and h˚ that provides a “short-cut” to the target.
Condition 2 implies that we can always find teaching examples that ensure smooth updates of the ver-
sion space. For instance, a feasible setting that fits Condition 2 is where we assume that the teacher can
synthesize an example to remove any subset of hypotheses of size at most k, where k is some constant.

5.2 Non-Myopic Teaching Algorithms

When the conditions provided in Theorem 4 do not hold, the myopic heuristic (5.1) could perform
poorly. An important observation from Theorem 4 is that, when D̃ph,H, h˚q is small, i.e., h˚ is close

2In the case of ties, we assume that the teacher prefers examples that make learner stay at the same hypothesis.
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to the learner’s current hypothesis in terms of preference ordering, we need less stringent constraints
on the preference function. This motivates adaptively devising intermediate target hypotheses to
ground the teaching task into multiple, separate sub-tasks. Such divide-and-conquer approaches
have proven useful for many practical problems, e.g., constructing a hierarchical decomposition
for reinforcement learning tasks [16]. In the context of machine teaching, we assume that there is
an oracle, Oracleph,H, h˚q that maps the learner’s state ph,Hq and the target hypothesis h˚ to an
intermediate target hypothesis, which defines the current sub-task.

We outline the non-myopic adaptive teaching framework in Algorithm 1. Here, the subroutine
Teacher aims to provide teaching examples that bring the learner closer to the intermediate target
hypothesis. As an example, let us consider the 2-REC hypothesis class. In particular, we consider
the challenging case where the target hypothesis h˚ P H1 represents a single rectangle r‹, and the
learner’s initial hypothesis h0 P H2 has two rectangles pr1, r2q. Imagine that the first rectangle r1
is overlapping with r‹, and the second rectangle r2 is disjoint from r‹. To teach the hypothesis h˚,
the first sub-task (as provided by the oracle) is to eliminate the rectangle r2 by providing negative
examples so that the learner’s hypothesis represents a single rectangle r1. Then, the next sub-task
(as provided by the oracle) is to teach h˚ from r1. We illustrate the sub-tasks in Fig. 2, and provide
the full details of the adaptive teaching algorithm (i.e., Ada-R as used in our experiments) in the
extended version of this paper [8].

6 Experiments

In this section, we empirically evaluate our teaching algorithms on the 2-REC hypothesis class via
simulated learners.

6.1 Experimental Setup

For the 2-REC hypothesis class (cf. Fig. 3a and Example 1), we consider a grid with size varying from
5ˆ 5 to 20ˆ 20. The ground set of unlabeled teaching examples X consists of all grid cells. In our
simulations, we consider all four possible teaching scenarios, H1Ñ1, H1Ñ2, H2Ñ1, H2Ñ2, where
i, j in HiÑj specify the subclasses of the learner’s initial hypothesis h0 and the target hypothesis
h˚. In each simulated teaching session, we sample a random pair of hypotheses ph0, h˚q from the
corresponding subclasses.

Teaching algorithms We consider three different teaching algorithms as described below. The first
algorithm, SC, is a greedy set cover algorithm, where the teacher greedily minimizes D̃u “ |H| (see
§5.1). In words, the teacher acts according to the uniform preference model, and greedily picks the
teaching example that eliminates the most inconsistent hypotheses in the version space. The second
algorithm, denoted by Non-R for the class 2-REC, represents the non-adaptive teaching algorithm
that matches the non-adaptive lower bounds provided in Theorem 2, with implementation details
provided in the extended version of this paper [8]. Note that both SC and Non-R are non-adaptive.
The third algorithm, Ada-R, represents the non-myopic adaptive teaching algorithm instantiated
from Algorithm 1. The details of the subroutines Oracle and Teacher for Ada-R are provided in
the extended version of this paper [8]. We note that all teaching algorithms have the same stopping
criterion: the teacher stops when the learner reaches the target hypothesis, that is, ht “ h˚.

6.2 Results

We measure the performance of the teaching algorithms by their teaching complexity, and all results
are averaged over 50 trials with random samples of ph0, h˚q.

Noise-free setting Here, we consider the “noise-free” setting, i.e., the learner acts according to
the state-dependent preference models as described in §4.2. In Fig. 3b, we show the results for
2-REC class with a fixed grid size 15 ˆ 15 for all four teaching scenarios. As we can see from
Fig. 3b, Ada-R has a consistent advantage over the non-adaptive baselines across all four scenarios.
As expected, teaching H1Ñ1,H1Ñ2, and H2Ñ2 is easier, and the non-adaptive algorithms (SC and
Non-R) perform well. In contrast, when teaching H2Ñ1, we see a significant gain from Ada-R over
the non-adaptive baselines. In the worst case, SC has to explore all the negative examples to teach
h˚, whereas Non-R needs to consider all negative examples within the learner’s initial hypothesis
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0.0 0.5 1.0
noise level

0

50

100

150

200

te
ac

hi
ng

 co
m

pl
ex

ity Ada-R
SC

(d) 2-REC, robustness

Figure 3: Illustration and simulation results for 2-REC. (a) illustrates the 2-REC hypothesis class.
The initial hypothesis h0 P H2 is represented by the orange rectangles, and the target hypothesis
h˚ P H1 is represented by the green rectangle. The green and blue cells represent a positive and
a negative teaching example, respectively. Simulation results are shown in (b)-(d).

h0 to make the learner jump from the subclass H2 to H1. In Fig. 3c, we observe that the adaptivity
gain increases drastically as we increase the grid size. This matches our analysis of the logarithmic
adaptivity gain in Theorem 2 for 2-REC.

Robustness in a noisy setting In real-world teaching tasks, the learner’s preference may deviate
from the preference σ of an “ideal” learner that the teacher is modeling. In this experiment, we
consider a more realistic scenario, where we simulate the noisy learners by randomly perturbing the
preference of the “ideal” learner at each time step. With probability 1´ ε the learner follows σ, and
with probability ε, the learner switches to a random hypothesis in the version space. In Fig. 3d, we
show the results for the 2-REC hypothesis class with different noise levels ε P r0, 1s. We observe that
even for highly noisy learners e.g., ε “ 0.9, our algorithm Ada-R performs much better than SC. 3,4

7 User Study

Here we describe experiments performed with human participants from Mechanical Turk using the 2-
REC hypothesis class. We created a web interface in order to (i) elicit the preference over hypotheses
of human participants, and to (ii) evaluate our adaptive algorithm when teaching human learners.

Eliciting human preferences We consider a two-step process for the elicitation experiments. At
the beginning of the session (first step), participants were shown a grid of green, blue, or white
cells and asked to draw a hypothesis from the 2-REC class represented by one or two rectangles.
Participants could only draw “valid” hypothesis which is consistent with the observed labels (i.e., the
hypothesis should contain all the green cells and exclude all the blue cells), cf. Fig. 3a. The color of
the revealed cells is defined by an underlying target hypothesis h˚. In the second step, the interface
updated the configuration of cells (either by adding or deleting green/blue cells) and participants were
asked to redraw their rectangle(s) (or move the edges of the previously drawn rectangle(s)) which
ensures that the updated hypothesis is consistent.

We consider 5 types of sessions, depending on the class of h˚ and configurations presented to a
participant in the first and the second step. These configurations are listed in Fig. 4a. For instance,
the session type in the third row pH2, p1{2q, 2q means the following: the labels were generated based
on a hypothesis h˚ P H2; in the first step, both subclasses H1 and H2 had consistent hypotheses; and
in the second step, only the subclass H2 had consistent hypotheses.

We tested 215 participants, where each individual performed 10 trials on a grid of size 12ˆ 12. For
each trial, we randomly selected one of the five types of sessions as discussed above. In Fig. 4a, we see

3 In general, the teaching sequence constructed by the non-adaptive algorithms Non-R (resp. Non-L) would
not be sufficient to reach the target under the noisy setting. Hence, we did not include the results of these
non-adaptive algorithms in the robustness plots. Note that one can tweak Non-R (resp. Non-L) by concatenating
the teaching sequence with teaching examples generated by SC; however, in general, in a worst-case sense, any
non-adaptive algorithm in the noisy setting will not perform better than SC.

4The performance of SC is non-monotone w.r.t. the noise-level. This is attributed to the stopping criteria of
the algorithm as the increase in the noise level increases the chance for the learner to randomly jump to h˚.
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Session Type User Transition
h˚ 1st 2nd H1 Ñ H1 H1 Ñ H2 H2 Ñ H1 H2 Ñ H2

H1 p1{2q p1{2q 0.54 0.13 0.06 0.27
H2 p1{2q p1{2q 0.30 0.31 0.01 0.38
H2 p1{2q 2 0.00 0.61 0.00 0.39
H2 2 2 0.00 0.00 0.00 1.00
H2 2 p1{2q 0.00 0.00 0.11 0.89

(a) Transitions across subclasses Hi
Ñ Hj
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(c) Teaching results

Figure 4: (a)-(b) represent results for eliciting human preferences for different session types as
explained in the text below and (c) shows results for teaching human learners. (a) Participants prefer
staying within the same hypothesis subclass when possible, displayed as the fraction of time they
switched subclasses for different session types. (b) Considering the transitions within subclass H1,
participants favor staying at their current hypothesis if it remains valid, along with preferring smaller
updates, computed as the L1 distance between the initial and updated rectangle. (c) Adaptive teaching
algorithm Ada-R is significantly better than SC and Rand.

that participants tend to favor staying in the same hypothesis subclass when possible. Within the same
subclass, they have a preference towards updates that are close to their initial hypothesis, cf. Fig. 4b.5

Teaching human learners Next we evaluate our teaching algorithms on human learners. As in the
simulations, we consider four teaching scenarios H1Ñ1, H1Ñ2, H2Ñ1, and H2Ñ2. At the beginning
of the teaching session, a participant was shown a blank 8 ˆ 8 grid with either one or two initial
rectangles, corresponding to h0. At every iteration, the participants were provided with a new teaching
example (i.e., a new green or blue cell is revealed), and were asked to update the current hypothesis.

We evaluate three algorithms, namely Ada-R, SC, and Rand, where Rand denotes a teaching
strategy that picks examples at random. The non-adaptive algorithm Non-R was not included in
the user study for the same reasons as explained in Footnote 3. We enlisted 200 participants to
evaluate teaching algorithms and this was repeated five times for each participant. For each trial, we
randomly selected one of the three teaching algorithms and one of the four teaching scenarios. Then,
we recorded the number of examples required to learn the target hypothesis. Teaching was terminated
when 60% of the cells were revealed. If the learner did not reach the target hypothesis by this time
we set the number of teaching examples to this upper limit. We illustrate a teaching session in the
extended version of this paper [8].

Fig. 4c illustrates the superiority of the adaptive teacher Ada-R, while Rand performs the worst.
In both cases where the target hypothesis is in H2, the SC teacher performs nearly as well as the
adaptive teacher, as at most 12 teaching examples are required to fully characterize the location of
both rectangles. However, we observe a large gain from the adaptive teacher for the scenario H2Ñ1.

8 Conclusions

We explored the role of adaptivity in algorithmic machine teaching and showed that the adaptivity
gain is zero when considering well-studied learner models (e.g., “worst-case” and “preference-based”)
for the case of version space learners. This is in stark contrast to real-life scenarios where adaptivity
is an important ingredient for effective teaching. We highlighted the importance of local preferences
(i.e., dependent on the current hypothesis) when the learner transitions to the next hypothesis. We
presented hypotheses classes where such local preferences arise naturally, given that machines and
humans have a tendency to learn incrementally. Furthermore, we characterized the structure of
optimal adaptive teaching algorithms, designed near-optimal general purpose and application-specific
adaptive algorithms, and validated these algorithms via simulation and user studies.

5Given that a participant is allowed to move edges when updating the hypothesis, our interface could bias the
participants’ choice of the next hypothesis towards a preference structure that favors local edits as assumed by
our algorithm. As future work, one could consider an alternative interface which enforces participants to draw
the rectangle(s) from scratch at every step.
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