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Abstract

The problem of learning-to-learn (LTL) or meta-learning is gaining increasing
attention due to recent empirical evidence of its effectiveness in applications. The
goal addressed in LTL is to select an algorithm that works well on tasks sampled
from a meta-distribution. In this work, we consider the family of algorithms given
by a variant of Ridge Regression, in which the regularizer is the square distance
to an unknown mean vector. We show that, in this setting, the LTL problem can
be reformulated as a Least Squares (LS) problem and we exploit a novel meta-
algorithm to efficiently solve it. At each iteration the meta-algorithm processes only
one dataset. Specifically, it firstly estimates the stochastic LS objective function,
by splitting this dataset into two subsets used to train and test the inner algorithm,
respectively. Secondly, it performs a stochastic gradient step with the estimated
value. Under specific assumptions, we present a bound for the generalization error
of our meta-algorithm, which suggests the right splitting parameter to choose.
When the hyper-parameters of the problem are fixed, this bound is consistent as
the number of tasks grows, even if the sample size is kept constant. Preliminary
experiments confirm our theoretical findings, highlighting the advantage of our
approach, with respect to independent task learning.

1 Introduction

Learning-to-learn (LTL) or meta-learning addresses the problem of learning an algorithm that “works
well” on a class of learning tasks, which are randomly observed via a corresponding finite set of
training examples, see [4, 19, 29] and references therein. The learning tasks are assumed to share
specific similarities, in that they are sampled from a common meta-distribution, often referred to
as environment in literature [4]. The LTL process aims at leveraging such similarities in order to
learn an algorithm which is well suited to learn new tasks sampled from the same environment.
This approach brings a substantial improvement over learning the tasks in isolation – known as
independent task learning (ITL) – especially when the sample size per task is small, a common
setting in many applications [6, 27, 30]. These ideas are strongly related to multitask learning (MTL)
[7, 8, 9, 10, 14, 18, 23]. The key difference is that in MTL the goal is to perform well on the observed
tasks while in LTL the aim is to perform well on “future” tasks.

In this work, we study a particular kind of environment, in which the randomly observed tasks are
linear regression problems and the underlying family of learning algorithms is Ridge Regression
around a common mean, that is, Ridge Regression in which we introduce in the regularizer a bias
term, playing the role of a common mean among the tasks. Starting from a stream of datasets sampled
from this environment, our goal is to learn the common mean by minimizing the transfer risk [4, 19],
which measures the average error of the underlying learning algorithm, trained on a random dataset
from the environment. Although previous theoretical investigations of LTL minimize a proxy for the
transfer risk, given by the average multitask empirical error [4, 19, 20, 22, 24] or the so-called future
empirical risk [12] of the algorithm, as a first contribution of this work, we show that the specific
family of algorithms considered here, naturally lends itself to directly minimize the transfer risk of
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the algorithm trained with less points. More precisely, we first observe that, in this setting, the LTL
problem can be reformulated as a Least Squares (LS) problem, the structure of which depends on
the environment. After this, in order to compute it, motivated by recent empirical studies on few
shot-learning and meta-learning [15, 16, 26], we split the datasets of the training tasks in a subset
used to train the algorithm and a subset used to estimate its risk.

LTL is particularly appealing when considered from an online or incremental perspective, in which
we receive in input a sequence of datasets and the goal is to efficiently update an underlying learning
algorithm, which will then be applied to the next yet-to-be-encountered task, without the need to keep
in memory previously encountered datasets. Our second contribution is to show that the specific LTL
problem studied in this paper can be naturally tackled incrementally by Stochastic Gradient Descent
(SGD) procedures and, when the environment satisfies certain assumptions given in the paper, we
provide a complete statistical analysis of this approach, which highlights the role of the splitting
parameter, namely, the number of points we use to train the inner algorithm. Moreover, in such a case,
when the hyper-parameters of the problem are fixed, a remarkable feature of our learning approach is
that it provides a consistent estimate of the transfer risk as the number of tasks grows, even if the
tasks’ sample size is kept constant, whereas classical approaches would need the sample size to grow
as well. Our proof technique leverages previous work on stochastic optimization for LS [13] with
tools from classical LTL theory [4, 19, 20, 22].

Paper organization. In Sec. 2 we introduce the LTL problem for the class of algorithms based
on Ridge Regression around a common mean and we show that this problem is equivalent to a LS
problem. In Sec. 3 we describe the online approach through which we directly attempt to minimize
the transfer risk for this family of learning algorithms. In Sec. 4 we provide the statistical analysis
for this approach, under specific assumptions on the environment. Sec. 5 presents preliminary
experiments confirming our theoretical observations and, finally, in Sec. 6, we draw our conclusion
and we highlight possible future directions. All the technical proofs are reported in the appendix.

Previous work. Although LTL is naturally suited for the incremental setting, we are only aware of
few theoretical investigations about it [1, 3, 12, 17, 25]. Most related to our work are [1], where the
authors consider a general PAC-Bayesian approach to LTL and [12], which considers the problem of
learning a linear representation shared by the tasks. However, both these papers address a different
class of learning algorithms. Furthermore, the approach presented here follows a different strategy
of directly minimizing the transfer risk. In literature, the LTL problem has been almost exclusively
considered in the setting in which the tasks are given in one batch [4, 19, 20, 21, 22, 24], as opposed
to sequentially. Perhaps most related to our work is the paper [24], where the authors consider the
same family of learning algorithms analyzed in this paper, but in a PAC-Bayesian setting.

2 Learning-to-Learn Problem

In this work we focus on the standard linear regression setting. Let Z = X ⇥ Y be the data space,
where X ✓ Rd is the input space and Y ✓ R the output space. We denote by x, y, z generic elements
of X ,Y,Z , respectively, where z = (x, y). The discrepancy between two outputs y, y

0 2 Y is
measured by the square loss `(y, y0) = 1

2

(y � y

0)2. The symbols k · k and h·, ·i denote the standard
norm and the standard scalar product in the Euclidean space and ·> represents the standard transpose
operation. We also let B

1

✓ Rd be the zero-centered unit ball in Rd. For a real matrix M , we denote
by kMk1 its spectral (operator) norm and by kMk its Frobenius norm. We let �

max

(M) = kMk1
and �

min

(M) be the largest and smallest eigenvalue of a symmetric positive semidefinite (PSD) real
matrix M , respectively. The symbols � and � denote the classical ordering among real symmetric
matrices and, for any positive integer k 2 N, we define the set of integer numbers [k] = {1, . . . , k}.
Finally, all the expectations must be intended accordingly to the context.

2.1 Environment and Transfer Risk

We consider the setting where we sequentially receive a stream of datasets Z

(1)

n

, . . . , Z

(T )

n

, . . . ,
sampled from a fixed environment ⇢, each of which is formed by n points1. Starting from these

1Specifically, ⇢ is a distribution on the set of probability distributions on Z and each dataset is observed by
first sampling a task µ ⇠ ⇢ and then sampling a dataset Zn ⇠ µn of n i.i.d. points. However, with some abuse
of notation, we refer to the environment both as the meta-distribution and the induced distribution on n-samples.
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datasets, we wish to learn a learning algorithm (hence the name LTL) that performs well on a
new random task sampled from the environment. Specifically, we wish to find an inner algorithm
A : [

n2N(X ⇥Y)n ! Rd, such that, when we train it with a new dataset composed by n points2 and
sampled from the environment, the corresponding error is low. This objective translates into requiring
that the transfer risk of the algorithm A trained with n points over the environment ⇢, defined as

E
n

(A) = E
µ⇠⇢

E
Zn⇠µ

nE
z⇠µ

1

2

h�
hx,A(Z

n

)i � y

�
2

i
(1)

is as small as possible. This quantity measures the expected error (risk) that the algorithm A, trained
on the dataset Z

n

, incurs on average with respect to the distribution of tasks µ induced by ⇢. That
is, to compute the transfer risk, we first draw a task µ ⇠ ⇢ and a corresponding n-sample Z

n

2 Zn

from µ

n, we then apply the learning algorithm to obtain the estimator A(Z
n

) and finally we measure
the risk of this estimator on the distribution µ by taking the expectation over a test point z.

Throughout the paper, we make the following assumption.
Assumption 1 (Linear regression tasks). The meta-distribution ⇢ samples linear regression tasks
parametrized as µ = (w, p, ⌘), where w 2 Rd is the regression vector, p is the input marginal and ⌘

is the noise distribution such that ⌘ | p has zero-mean, for almost every p. In particular, the sampling
of a datapoint from µ must be intended as

(x, y) ⇠ µ () x ⇠ p, ✏ ⇠ ⌘, y = hx,wi+ ✏. (2)
Moreover, denoting by ⌃

µ

= E
z⇠µ

xx

>, we assume that E
µ⇠⇢

�

min

(⌃
µ

) > 03.

In this work, each dataset Z
n

is given by an i.i.d. sample of n points (x
i

, y

i

)n
i=1

⇠ µ

n. In the
following, we will use the more compact notation Z

n

= (X
n

,y
n

), where X

n

2 Rn⇥d denotes
the matrix having the vectors x

i

as rows, y
n

= (y
i

)n
i=1

2 Rn is the vector of labels and ✏
n

=
(✏

i

)n
i=1

2 Rn is the vector containing the noise on the labels. Moreover, by Asm. 1 the model
equation y

n

= X

n

w + ✏
n

holds. We will denote by z = (x, y) ⇠ µ a test point which must be
always intended to be independent from the training set, and in an analogous way, we will have
y = hx,wi+ ✏. The above assumption on the environment is mainly made to simplify our exposition;
the general case may be pursued by considering the approximation error due to the choice of the class
of the linear functions and a possible dependency of the noise on the inputs (heteroscedastic noise).

2.2 The Family of Learning Algorithms

The subject of our study in this paper is the family of learning algorithms based on Ridge Regression,
where we introduce a further bias term in the regularizer. More precisely, for any training dataset
Z

n

= (X
n

,y
n

) ⇠ µ

n and for any h 2 Rd, we consider the following algorithm

Z

n

7! A(Z
n

) ⌘ w

h

(Z
n

) = argmin
w2Rd

1

n

��
X

n

w � y
n

��2 + �kw � hk2, (3)

where � > 0 is a hyper-parameter of the algorithm. A direct computation gives the closed form

w

h

(Z
n

) = C

�1

�,n

⇣
X

>
n

y
n

n

+ �h

⌘
, C

�,n

=
X

>
n

X

n

n

+ �I. (4)

Our goal is to leverage similarities between the tasks in the environment via the common mean h.
Intuitively, if the regression vectors w sampled from the environment have a large mean w̄ and a
small variance, then, applying Ridge Regression around w̄ should bring better estimation risk of these
regression vectors than solving each task independently, for instance, with standard Ridge Regression
(h = 0). In this work, we address the problem of choosing an algorithm in the above family that
performs well on tasks sampled from the environment according to the above LTL setting. This
translates into selecting a parameter h such that the associated algorithm in the family has a small
transfer risk. Hence, considering � as a hyper-parameter external to our LTL problem and using the
notation E

n

(h) ⌘ E
n

(w
h

) for the transfer risk in Eq. (1), our goal is to minimize E
n

with respect to
h. In the next section, we will see that, thanks to the fact that the algorithm is an affine transformation
of the parameter h (see Eq. (4)), not only this function is convex (an unusual property in the LTL
setting), but it presents also a particular LS structure.

2For simplicity we assume that every dataset is composed by the same number of points n.
3This is the meta-version of a frequent assumption in single-task LS literature, where usually the invertibility

of the covariance matrix is required, see e.g. [13] and references therein.
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2.3 Minimizing the Transfer Risk: a Least Squares Problem

The following proposition establishes that the problem of minimizing E
n

over the common mean h

can be reformulated as a LS problem with transformed inputs and outputs, sampled from a distribution
induced by sampling an n-dataset from the original environment. The proof is reported in App. B.
Proposition 1 (LS Problem Around a Common Mean for E

n

). For any � > 0 and h 2 Rd, the
transfer risk E

n

in Eq. (1) of the learning algorithm w

h

in Eqs. (3)-(4), can be rewritten as

E
n

(h) =
1

2
E
x̄n,ȳn

h�
hx̄

n

, hi � ȳ

n

�
2

i
(5)

where the meta-data are given by

x̄

n

= �C

�1

�,n

x, and ȳ

n

= y �
D
x̄

n

,

X

>
n

y
n

�n

E
.

Moreover, under Asm. 1, the meta-covariance matrix ⌃̄
n

= Ex̄
n

x̄

>
n

= �

2E
⇥
C

�1

�,n

⌃
µ

C

�1

�,n

⇤
is invert-

ible and h

⇤
n

= ⌃̄�1

n

E[ȳ
n

x̄

n

] is the unique minimizer of the LS function in Eq. (5). In such a case,

letting v = w � h

⇤
n

, we have that ȳ
n

= hx̄
n

, h

⇤
n

i+ ✏̄

n

, with ✏̄

n

= ✏+
D
x̄

n

, v � X

>
n ✏n
�n

E
.

Remark 1 (A Misspecified LS Problem with Heteroscedastic Noise for E
n

). From Prop. 1 we observe
that, even though the original tasks are well-specified linear models with homoscedastic (i.e. not
depending on the inputs) noise, without further assumptions on the environment, the linear model for
the meta-LS problem is usually not well-specified, that is, in general, it may hold that E[✏̄

n

|x̄
n

] 6= 0,
and, moreover, the noise is heteroscedastic.

As a consequence of the above proposition, we can exploit standard results about LS. For instance,
it is easy to show that, for a generic vector h 2 Rd, the excess transfer risk E

n

(h) � E
n

(h⇤
n

)

coincides with the weighted square norm 1

2

k⌃̄1/2

n

�
h � h

⇤
n

�
k2. In particular, the gap between the

performance of standard Ridge Regression (h = 0), corresponding to solving each task independently,
and the best algorithm in our class (i.e. the algorithm associated to the parameter h⇤

n

) is given by
E
n

(0)� E
n

(h⇤
n

) = 1

2

k⌃̄1/2

n

h

⇤
n

k2. Characterizing situations in which this gap is significant is not an
obvious point, in the folllowing we will see that, making further assumptions on the environment, we
will be able to answer this question (see Rem. 3 below).

2.4 Two Examples of Environments

So far we have described the basic requirements of the environment considered in this work, however,
making further assumptions about the data generation process will allow us to further analyze the
LTL problem. We now discuss two specific examples. Their proofs are reported in App. B.
Example 1. Let X ✓ B

1

and let the environment ⇢ satisfy Asm. 1. Furthermore, assume for
almost every p that: i) ⌘ | p has variance bounded by �

2

✏

, for �

✏

� 0, ii) E[w|p] = w̄, and iii)
E
⇥
(w � w̄)(w � w̄)>|p

⇤
� �

2

w

I , for �
w

� 0. Then, for any � > 0 and h 2 Rd, h⇤
n

= w̄ and, letting
A

n

= C

�1

�,n

xx

>
C

�1

�,n

, we have

E
n

(h)  1

2

��⌃̄1/2

n

�
h� w̄

���2 + �

2

w

2
tr
�
⌃̄

n

�
+

�

2

✏

2

⇣
1 + tr

⇣
E
h
X

>
n

X

n

A

n

n

2

i⌘⌘
. (6)

The fact that the minimizer of the transfer risk in Ex. 1 does not depend on n will be fundamental in
the subsequent analysis and we remark that the proof of this statement exploits only Asm. 1 and the
point ii). Moreover, the upper bound in Eq. (6) is tight. For a discussion on the link between our
LTL problem for the setting in Ex. 1 and the Mean Estimation problem (see e.g. [11]) we refer to
Rem. 9 in App. B. We now point out that Ex. 1 is an exception to what observed in Rem. 1.
Remark 2 (A Well-Specified LS Problem for Ex. 1). For the environment in Ex. 1, the linear model
for the LS problem described in Prop. 1 is well-specified. Indeed, we have that

E
⇥
✏̄

n

��
x̄

n

⇤
= E[✏|p] +

⌦
x̄

n

,E[v|p]� (n�)�1

X

>
n

E[✏
n

|p]
↵
= 0.

Specifically, to get the above statement, according to Asm. 1, we have exploited the independence of
the sampling of x,w, ✏, conditioned with respect to p, the fact that the linear model is well-specified
for the original tasks and the relation E[v|p] = E[w|p]� w̄ = 0, which holds in the setting of Ex. 1.
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In the setting of Ex. 1 we can give conditions under which the gap between the performance of ITL
and Ridge Regression with the best mean is significant. We state this in the following remark, the
proof of which is reported in App. B.
Remark 3 (Advantage of Learning Around the Best Mean over ITL in Ex. 1). Consider the setting
of Ex. 1. If the noise satisfies �2

✏

⌧
�
n

�1

�

�2 + 1
��1k⌃̄1/2

n

w̄k2 and the regression vectors are such

that �2

w

⌧ tr(⌃̄
n

)�1k⌃̄1/2

n

w̄k2, then E
n

(0)� E
n

(w̄) � E
n

(w̄).

A special case of Ex. 1 is when the input marginal is always the same. The next example generalizes
this to a mixture and provides a scenario in which the minimizer h⇤

n

of the transfer risk varies with n.
Example 2. Let X ✓ B

1

and consider the environment ⇢ formed by K 2 N\{0} clusters of tasks
parametrized by the triplet (w, p, ⌘) as in Asm. 1. Assume that each cluster k 2 [K] is associated to a
marginal distribution p

k

that is sampled with probability P(p = p

k

) = ⌫

k

> 0. For any k 2 [K] and
� > 0, let w̄

k

= E[w|p = p

k

], ⌃̄
n,k

= (n�)2E[A
n

|p = p

k

] with A

n

= C

�1

�,n

xx

>
C

�1

�,n

and assume
that i) ⌘ | p = p

k

has variance bounded by �2

✏,k

for �
✏,k

� 0, ii) E[(w � w̄

k

)(w � w̄

k

)>|p = p

k

] �
�

2

w,k

I for �
w,k

� 0. Then, for any � > 0 and h 2 Rd, h⇤
n

= (
P

K

k=1

⌫

k

⌃̄
n,k

)�1

P
K

k=1

⌫

k

⌃̄
n,k

w̄

k

and E
n

(h) =
P

K

k=1

⌫

k

E
n,k

(h), where

E
n,k

(h)  1

2

��⌃̄1/2

n,k

�
h� w̄

k

���2 +
�

2

w,k

2
tr
�
⌃̄

n,k

�
+

�

2

✏,k

2

⇣
1 + tr

⇣
E
h
X

>
n

X

n

A

n

n

2

��
p = p

k

i⌘⌘
.

In the subsequent analysis we will give theoretical guarantees for our LTL approach for Ex. 1 only.
However, it is natural to expect that, also in the setting described in Ex. 2, when both the variance
within each cluster and the variance between the clusters themselves are small, there should be an
advantage in applying our LTL method around a single mean, in comparison to solving each task
independently. The experiments in Sec. 5 will confirm this. In the next section, we describe the
online meta-algorithm that we propose in order to address the LTL problem outlined above.

3 The Splitting Stochastic Meta-Algorithm

We recall that our goal is, given a sequence of datasets Z

(1)

n

, . . . , Z

(T )

n

sampled from ⇢, to find a
parameter h so that the associated inner algorithm in Eqs. (3)-(4) works well on new datasets of n
points sampled from the same environment. This can be translated into minimizing the transfer risk
E
n

in Eqs. (1)-(5). However, in our setting, we cannot directly minimize this function, as we would
need a further test point to compute the risk of the inner algorithm. Hence, we proceed as follows.

3.1 The Splitting Step

Inspired by recent work on few shot-learning [15, 16, 26], we do not use all the n points in each dataset
to train the inner algorithm (i.e. we do not work on what in literature is called future empirical risk
[12, 20]), but we sacrifice a subset of them for testing. More precisely, we fix a value r 2 [n� 1] and,
when we receive a new dataset Z

n

, we split it into two parts, Z
n

= (Z
r

, Z

n�r

), where Z
r

= (X
r

,y
r

)
contains the first r points of Z

n

and Z

n�r

= (X
n�r

,y
n�r

) contains the remaining n � r points.
Note that the two datasets Z

r

and Z

n�r

are independent one of another, conditioned with respect
to the task. Once this splitting is performed, we use Z

r

to train the inner algorithm in Eqs. (3)-(4)
replacing in its functional form Z

n

by Z

r

, while the remaining part of data Z

n�r

is used to estimate
the transfer risk of the corresponding algorithm by the formula

E
r

(h) =
1

2
E
µ⇠⇢

E
Zr⇠µ

rE
Zn�r⇠µ

n�r

1

n� r

h��
X

n�r

w

h

(Z
r

)� y
n�r

��2
i
. (7)

Some remarks about the definition of the inner algorithm and Eq. (7) are in order.
Remark 4 (Normalization Factor). As described before, for any r 2 [n� 1], the inner algorithm in
Eq. (3) is applied to the dataset Z

r

, with the same normalization factor 1/n (and not 1/r), i.e

w

h

(Z
r

)= argmin
w2Rd

1

n

��
X

r

w � y
r

��2+�kw � hk2=argmin
w2Rd

1

r

��
X

r

w � y
r

��2+�n

r

kw � hk2. (8)
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According to this definition, we are using the biased Ridge Regression with the standard normalization
factor, in which we divide the regularization parameter � by the fraction of points used for training.
Note that the less the training points, the stronger the effect of the regularization. In such a case the
output of the algorithm will be encouraged to stay closer to the estimated mean h, thereby transferring
more knowledge among the tasks.
Remark 5 (Conditional Mini-Batch). Since the test points in Z

n�r

are conditional i.i.d. with respect
to the training points Z

r

, the definition of E
r

with more test points in Eq. (7) is equivalent to the
one with just one test point. However, from an algorithmic point of view, considering more than
one test point in the definition of E

r

, will be an important aspect. In fact, even if this technique
cannot be properly interpreted as a standard mini-batch – since the test points are not independent
with respect to the global distribution (they are just conditionally independent) – we will see that,
in the setting described in Ex. 1, working with more test points brings similar benefits as standard
mini-batches. More precisely, it will reduce the variance of the unbiased estimates of the gradient
used by our stochastic approach (see Lemma 19 in App. D). We stress that, in our analysis, the above
statement derives from both the specific characteristics of Ex. 1 and the normalization factor 1/n in
the algorithm.

In analogy with the case analyzed before for E
n

in Prop. 1, exploiting again the following closed
form of the algorithm in Eq. (8)

w

h

(Z
r

) = C

�1

�,r

⇣
X

>
r

y
r

n

+ �h

⌘
, C

�,r

=
X

>
r

X

r

n

+ �I, (9)

we can rewrite the transfer risk E
r

in Eq. (7) as a LS function, but, differently from the setting in
Prop. 1, the LS function in this case is vector-valued. The following proposition formalize this. Its
proof follows along the same lines of Prop. 1 and it is reported in App. B.
Proposition 2 (LS Problem Around a Common Mean for E

r

). For any � > 0, h 2 Rd and r 2 [n�1],
the transfer risk E

r

in Eq. (7) of the learning algorithm w

h

in Eqs. (8)-(9), can be rewritten as

E
r

(h) =
1

2
E

¯

Xr,¯yr

h��
X̄

r

h� ȳ
r

��2
i

(10)

where the meta-data are given by

X̄

r

=
�p
n� r

X

n�r

C

�1

�,r

, ȳ
r

=
1p
n� r

⇣
y
n�r

�
p
n� r

�

X̄

r

X

>
r

y
r

n

⌘
. (11)

Moreover, under Asm. 1, the meta-covariance matrix ⌃̄
r

= EX̄>
r

X̄

r

= �

2E
⇥
C

�1

�,r

⌃
µ

C

�1

�,r

⇤
is

invertible and h

⇤
r

= ⌃̄�1

r

E[X̄>
r

ȳ
r

] is the unique minimizer of the LS function in Eq. (10). In such a
case, letting v = w � h

⇤
r

, we have that ȳ
r

= X̄

r

h

⇤
r

+ ✏̄
r

, with

✏̄
r

=
1p
n� r

✏
n�r

+ X̄

r

⇣
v � X

>
r

✏
r

�n

⌘
. (12)

Notice that, in virtue of Rem. 4 and Rem. 5, all the statements in Ex. 1 and Ex. 2 can be extended to
E
r

by a rescaling of the parameter �. We now point out some observations regarding the LS problem
introduced in Prop. 2.
Remark 6 (A Misspecified Vector-Valued LS Problem with Heteroscedastic Noise for E

r

). Eq. (12)
implies that the transformed data points, i.e. the rows of X̄

r

and the components of ȳ
r

are not
independent. Indeed, due to the common training dataset Z

r

, there are dependencies between the
components of the meta-noise in Eq. (12). Similarly to what observed in Rem. 1 for E

n

, also the
noise on the LS problem associated to E

r

is heteroscedastic, moreover the linear model is usually not
well-specified, with the exception of the setting in Ex. 1 (as already observed for E

n

in Rem. 2 ).

We conclude this section by describing how the previous setting can be naturally extended to the case
in which we use all the points in each dataset to test the inner algorithm.
Remark 7 (The Case r = 0). Interpreting Z

0

= (X
0

,y
0

) as the empty set and the associated
Tikhonov matrix as C

�,0

= �I , all the results stated above can be extended to the case r = 0.
Specifically, we define the algorithm as w

h

(Z
0

) = argmin
w2Rd

��
w � h

��2 = h and its transfer risk

as E
0

(h) = 1

2

E
µ⇠⇢

E
Zn⇠µ

n

h
1

n

��
X

n

h� y
n

��2
i
. Again, the points in Z

n

are i.i.d., but we keep all of

them because of what observed in Rem. 5. Moreover, making the identifications X̄
r

= X

n

/

p
n and

ȳ
r

= y
n

/

p
n, the statements in Prop. 2 can be automatically extended to the case r = 0 as well.
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Algorithm 1 The Splitting Stochastic Meta-algorithm

Input � > 0, r 2 {0} [ [n� 1] (splitting parameter), 0 < �  1/2 (step size)
Initialization h

(0) 2 Rd

For t = 1 to T

Receive Z

(t)

n

=
�
X

(t)

n

,y(t)

n

�

Split Z

(t)

n

=
�
Z

(t)

r

, Z

(t)

n�r

�
with

(
Z

(t)

r

=
�
X

(t)

r

,y(t)

r

�

Z

(t)

n�r

=
�
X

(t)

n�r

,y(t)

n�r

� �! Splitting step

Build X̄

(t)

r

and ȳ(t)

r

by Eq. (11)

Compute rL
r

(h(t�1)

, X̄

(t)

r

, ȳ(t)

r

) = X̄

(t)

>

r

�
X̄

(t)

r

h

(t�1) � ȳ(t)

r

�

Update h

(t) = h

(t�1) � �rL
r

(h(t�1)

, X̄

(t)

r

, ȳ(t)

r

) �! Stochastic step
Return h̄

T,r,�

= 1

T+1

P
T

t=0

h

(t)

3.2 The Stochastic Step

Once we have received a dataset and we have splitted it in order to compute the transfer risk E
r

in Eq.
(10), we apply Stochastic Gradient Descent (SGD) [13, 28] to minimize the function E

r

, see Alg. 1.
We remark that, in our case, the application of the algorithm is slightly different to the classical
setting of LS regression, since, at each iteration, we process a data point of the form (X,y) with X

matrix and y vector, while, in the standard setting, usually we sample a vector x and a real number y.
More precisely, thanks to Prop. 2, introducing the function

L
r

(h, X̄
r

, ȳ
r

) =
1

2

��
X̄

r

h� ȳ
r

��2
,

we can rewrite the transfer risk E
r

in Eq. (10) as E
r

(h) = E
¯

Xr,¯yr
L
r

(h, X̄
r

, ȳ
r

). The estimator
h̄

T,r,�

returned by Alg. 1 is given by the average of the iterations. The next section is devoted to
the analysis of the statistical properties of this estimator, remembering that, since we are interested
in testing the performance of the algorithm using all the n data points, our final aim is to minimize
E
n

and not E
r

. Note, however, that the meta-algorithm allows us to minimize directly E
r

for every
r  n� 1, which may be useful when we observe future datasets of sample size smaller than n.

4 Statistical Analysis

In the proposition below, we give an upper bound on the expected excess transfer risk E
n

(h̄
T,r,�

)�
E
n

(h⇤
n

) for Ex. 1. The bound suggests also how to choose the splitting parameter r for that specific
environment. A complete statistical analysis for more general environments remains an interesting
open problem, which will be addressed in future work.
Proposition 3. Assume X ✓ B

1

and, for any r 2 {0} [ [n� 1] and � > 0, let h̄
T,r,�

be the output
of Alg. 1. Then, the expected excess transfer risk of the algorithm in Eqs. (8)-(9) with parameter
h̄

T,r,�

trained with n points over the environment in Ex. 1 is bounded by

E
⇥
E
n

(h̄
T,r,�

)� E
n

(h⇤
n

)
⇤
 (r/n+ �)2

�

2

4K
⇢

T + 1

⇣ 1

�

��
h

(0)� w̄

��2+
⇣
�

2

w

+
⇣ 1

n� r

+
r

(n�)2

⌘
�

2

✏

⌘
d

⌘
,

where the expectation is over the datasets Z(1)

n

, . . . , Z

(T )

n

and K

⇢

is condition number of the environ-
ment defined as

K

⇢

=
E
µ⇠⇢

��⌃
µ

��
1

E
µ⇠⇢

�

min

�
⌃

µ

�
. (13)

We now briefly describe the sketch of the proof of Prop. 3, all the details are reported in App. E.

Proof. We start observing that, since we are dealing with a LS problem (see Prop. 1), the excess
transfer risk coincides with E

n

(h̄
T,r,�

)�E
n

(h⇤
n

) = 1

2

��⌃̄1/2

n

�
h̄

T,r,�

�h

⇤
n

���2. Adding and subtracting
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⌃̄1/2

n

h

⇤
r

inside the norm, taking the expectation and using the inequality ka+ bk2  2kak2 + 2kbk2
for any two vectors a, b 2 Rd, we get that

E
⇥
E
n

(h̄
T,r,�

)� E
n

(h⇤
n

)
⇤
 E

h��⌃̄1/2

n

�
h̄

T,r,�

� h

⇤
r

���2
i

| {z }
A

+E
h��⌃̄1/2

n

�
h

⇤
r

� h

⇤
n

���2
i

| {z }
B

. (14)

Thanks to the structure of the environment we are considering, we have that h⇤
r

= w̄ for any r (see
Ex. 1), and consequently, the term B vanishes. Regarding the term A, it is possible to show that

A  2K
⇢

(r/n+ �)2

�

2

E
⇥
E
r

(h̄
T,r,�

)� E
r

(h⇤
r

)
⇤

where K

⇢

is defined in Eq. (13). Finally, the term E
⇥
E
r

(h̄
T,r,�

) � E
r

(h⇤
r

)
⇤

can be bounded via
standard convergence rates for SGD for LS problem (see Thm. 12 in App. C). The result follows by
estimating the quantities in this rate in the specific setting of Ex. 1 (see Thm. 20 in App. D).

The bound in Prop. 3 is increasing in r, consequently, it suggests that, in the specific case of Ex. 1,
the best choice of the optimal splitting parameter is r = 0, corresponding to using all the points
in each dataset to test the inner algorithm that outputs h, for any training set. Our analysis reveals
that this fact is due to both the specific characteristics of Ex. 1 and the normalization of the inner
algorithm. Moreover, as we will see in the next section, this optimal choice of r is confirmed also by
our experiments. Finally, we observe that, differently from standard bounds for LTL [12, 20, 22], the
bound in Prop. 3 is consistent as T ! 1, for any fixed values of sample size n and any fixed value
of the hyper-parameter �. We note that to get such strong guarantees for more general environments
is more challenging since in general h⇤

r

6= h

⇤
n

(see e.g. Ex. 2). Thus, as explained in the proof sketch
above, the decomposition of the excess transfer risk usually involves a further term measuring the
weighted distance between the solutions of the two different LS problems.

5 Experiments

We report the empirical evaluation of our LTL estimator on synthetic and real data4. In the experi-
ments, � and the splitting parameter r were tuned by cross-validation (see App. F for more details).
Specifically, we considered 20 candidate values of � in the range [10�6

, 102], logarithmic spacing.

Synthetic Datasets. We considered two different data generation protocols aimed at investigating
empirically our analysis in Ex. 1 and Ex. 2. In both settings we considered a LTL scenario with
100 training datasets (tasks) observed one at the time. We used 50 tasks to perform model selection
and 200 tasks for test. Each task corresponds to a dataset (x

i

, y

i

)n
i=1

, x
i

2 Rd with d = 30 and y

i

generated according to the specific setting (see below). For the training tasks we fixed n = 20.

• Ex. 1. We generated the datasets according to an environment satisfying the hypotheses of Ex. 1.
For each task we generated the inputs x uniformly on the sphere of radius 1, the task vector w from a
Gaussian distribution with mean w̄ = 4 2 Rd, the vector with entries all equal to 4, and standard
deviation �

w

= 1. The labels were generated as y = hx,wi+ ✏ with ✏ sampled from a zero-mean
Gaussian distribution, with standard deviation chosen to have signal-to-noise ratio equal to 5 for
each task. Fig. 1 (Left) reports the performance of our LTL estimator for different split sizes r.
Interestingly, we observe exactly the behavior predicted by the theoretical analysis for Ex. 1: in this
setting, the optimal LTL strategy is to set r = 0. This motivates us to consider the following more
challenging environment.

• Ex. 2. We generated the data according to the environment described in Ex. 2 for K = 2 groups
of tasks. The two marginals p

k

were chosen as Gaussian distributions with same standard deviation
� = 1 and means m

1

= 0 and m

2

= 2. Analogously, the task vectors w were sampled from one
of two Gaussians with same standard deviation � = 1 and means respectively w̄

1

= 2 and w̄

2

= 4.
The two clusters were randomly selected with same probability ⌫

k

= 1/2, k 2 [2]. We generated
y = hx,wi+✏ with ✏ sampled with the same strategy as above. Fig. 1 (Right) reports the performance
of our LTL estimator for different split sizes r. Here, differently from the previous case, the best
choice for r is a trade-off between 0 and n� 1. We also compared our LTL estimator with the ITL
baseline (applying Ridge Regression with h = 0 independently for each task) as the number of tasks

4The code used for the following experiments is available at https://github.com/dstamos
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Figure 1: Mean square error (MSE) on the validation tasks after 100 training tasks of the LTL estimator for
varying dataset split sizes. Data generated according to (Left) Ex. 1 and (Right) Ex. 2. The dot indicates the
minimum. The results are averaged over 30 independent runs (dataset generations).

Figure 2: Performance of LTL vs ITL with respect to an increasing number of tasks. (Left) MSE on the test
tasks for the dataset generation of Ex. 2. (Right) Explained variance on the test tasks for the School Dataset. The
results are averaged over 30 independent runs (datasets/train-split generations).

increases. This comparison is reported in Fig. 2 (Left). For LTL we report the performance for the
best split sizes r chosen by cross-validation. Note that LTL rapidly improves with respect to ITL.

School Dataset. We compared the performance of LTL and ITL on the School dataset (see [2]),
which contains 139 tasks of dimension d = 26 each. For all the experiments we randomly sampled
75 tasks for training, 25 for validation and the rest for test. Performance of the two methods was
measured in terms of the explained variance [2] (the higher the better). Fig. 2 (Right) reports the
performance of the two methods. Also here, we report the performance of LTL for the best r chosen
by cross-validation. We observe that, again, LTL very rapidly outperforms ITL. This experiment
shows that the LTL framework around a common mean is a transfer-knowledge method that can be
successfully applied, not only to synthetic toy datasets, but also to appropriate real data.

6 Conclusion and Future Work

In this paper we considered the Learning-To-Learn setting in which the underlying algorithm is
Ridge Regression around a common mean. We showed that the associated LTL problem coincides
with a Least Squares problem with data distribution induced by the tasks’ meta-distribution and,
in order to solve it, we presented a novel stochastic meta-algorithm based on direct optimization
of the transfer risk. Under specific assumptions of the environment, we derived an analysis of the
generalization performance of the method, which highlights the role of the splitting parameter in the
learning process. Preliminary experiments confirmed our theoretical findings. Future work will be
devoted to extend the statistical analysis of our meta-algorithm to more general environments and to
compare our approach with the more standard one working with the future empirical risk.
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