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Abstract

We present a framework for learning disentangled and interpretable jointly continu-
ous and discrete representations in an unsupervised manner. By augmenting the
continuous latent distribution of variational autoencoders with a relaxed discrete
distribution and controlling the amount of information encoded in each latent unit,
we show how continuous and categorical factors of variation can be discovered
automatically from data. Experiments show that the framework disentangles con-
tinuous and discrete generative factors on various datasets and outperforms current
disentangling methods when a discrete generative factor is prominent.

1 Introduction

Disentangled representations are defined as ones where a change in a single unit of the representation
corresponds to a change in single factor of variation of the data while being invariant to others (Bengio
et al. (2013)). For example, a disentangled representation of 3D objects could contain a set of units
each corresponding to a distinct generative factor such as position, color or scale. Most recent work
on learning disentangled representations has focused on modeling continuous factors of variation
(Higgins et al. (2016); Kim & Mnih (2018); Chen et al. (2018)). However, a large number of datasets
contain inherently discrete generative factors which can be difficult to capture with these methods. In
image data for example, distinct objects or entities would most naturally be represented by discrete
variables, while their position or scale might be represented by continuous variables.

Several machine learning tasks, including transfer learning and zero-shot learning, can benefit from
disentangled representations (Lake et al. (2017)). Disentangled representations have also been applied
to reinforcement learning (Higgins et al. (2017a)) and for learning visual concepts (Higgins et al.
(2017b)). Further, in contrast to most representation learning algorithms, disentangled representations
are often interpretable since they align with factors of variation of the data. Different approaches
have been explored for semi-supervised or supervised learning of factored representations (Kulkarni
et al. (2015); Whitney et al. (2016); Yang et al. (2015); Reed et al. (2014)). These approaches achieve
impressive results but either require knowledge of the underlying generative factors or other forms of
weak supervision. Several methods also exist for unsupervised disentanglement with the two most
prominent being InfoGAN and β-VAE (Chen et al. (2016); Higgins et al. (2016)). These frameworks
have shown promise in disentangling factors of variation in an unsupervised manner on a number of
datasets.

InfoGAN (Chen et al. (2016)) is a framework based on Generative Adversarial Networks (Goodfellow
et al. (2014)) which disentangles generative factors by maximizing the mutual information between
a subset of latent variables and the generated samples. While this approach is able to model both
discrete and continuous factors, it suffers from some of the shortcomings of Generative Adversarial
Networks (GAN), such as unstable training and reduced sample diversity. Recent improvements in
the training of GANs (Arjovsky et al. (2017); Gulrajani et al. (2017)) have mitigated some of these
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issues, but stable GAN training still remains a challenge (and this is particularly challenging for
InfoGAN as shown in Kim & Mnih (2018)). β-VAE (Higgins et al. (2016)), in contrast, is based on
Variational Autoencoders (Kingma & Welling (2013); Rezende et al. (2014)) and is stable to train.
β-VAE, however, can only model continuous latent variables.

In this paper we propose a framework, based on Variational Autoencoders (VAE), that learns disentan-
gled continuous and discrete representations in an unsupervised manner. It comes with the advantages
of VAEs, such as stable training, large sample diversity and a principled inference network, while
having the flexibility to model a combination of continuous and discrete generative factors. We
show how our framework, which we term JointVAE, discovers independent factors of variation on
MNIST, FashionMNIST (Xiao et al. (2017)), CelebA (Liu et al. (2015)) and Chairs (Aubry et al.
(2014)). For example, on MNIST, JointVAE disentangles digit type (discrete) from slant, width and
stroke thickness (continuous). In addition, the model’s learned inference network can infer various
properties of data, such as the azimuth of a chair, in an unsupervised manner. The model can also be
used for simple image editing, such as rotating a face in an image.

2 Analysis of β-VAE

We derive our approach by modifying the β-VAE framework and augmenting it with a joint latent
distribution. β-VAEs model a joint distribution of the data x and a set of latent variables z and learn
continuous disentangled representations by maximizing the objective

L(θ, φ) = Eqφ(z|x)[log pθ(x|z)]− βDKL(qφ(z|x) ‖ p(z)) (1)

where the posterior or encoder qφ(z|x) is a neural network with parameters φ mapping x into z,
the likelihood or decoder pθ(x|z) is a neural network with parameters θ mapping z into x and β
is a positive constant. The loss is a weighted sum of a likelihood term Eqφ(z|x)[log pθ(x|z)] which
encourages the model to encode the data x into a set of latent variables z which can efficiently
reconstruct the data and a second term that encourages the distribution of the inferred latents z
to be close to some prior p(z). When β = 1, this corresponds to the original VAE framework.
However, when β > 1, it is theorized that the increased pressure of the posterior qφ(z|x) to match the
prior p(z), combined with maximizing the likelihood term, gives rises to efficient and disentangled
representations of the data (Higgins et al. (2016); Burgess et al. (2017)).

We can derive further insights by analyzing the role of the KL divergence term in the objective (1).
During training, the objective will be optimized in expectation over the data x. The KL term then
becomes (Makhzani & Frey (2017); Kim & Mnih (2018))

Ep(x)[DKL(qφ(z|x) ‖ p(z))] = I(x; z) +DKL(q(z) ‖ p(z))
≥ I(x; z)

(2)

i.e., when taken in expectation over the data, the KL divergence term is an upper bound on the mutual
information between the latents and the data (see appendix for proof and details). Thus, a mini batch
estimate of the mean KL divergence is an estimate of the upper bound on the information z can
transmit about x.

Penalizing the mutual information term improves disentanglement but comes at the cost of increased
reconstruction error. Recently, several methods have been explored to improve the reconstruction
quality without decreasing disentanglement (Burgess et al. (2017); Kim & Mnih (2018); Chen et al.
(2018); Gao et al. (2018)). Burgess et al. (2017) in particular propose an objective where the upper
bound on the mutual information is controlled and gradually increased during training. Denoting the
controlled information capacity by C, the objective is defined as

L(θ, φ) = Eqφ(z|x)[log pθ(x|z)]− γ|DKL(qφ(z|x) ‖ p(z))− C| (3)

where γ is a constant which forces the KL divergence term to match the capacity C. Gradually
increasing C during training allows for control of the amount of information the model can encode.
This objective has been shown to improve reconstruction quality as compared to (1) without reducing
disentanglement (Burgess et al. (2017)).
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3 JointVAE Model

We propose a modification to the β-VAE framework which allows us to model a joint distribution of
continuous and discrete latent variables. Letting z denote a set of continuous latent variables and c
denote a set of categorical or discrete latent variables, we define a joint posterior qφ(z, c|x), prior
p(z, c) and likelihood pθ(x|z, c). The β-VAE objective then becomes

L(θ, φ) = Eqφ(z,c|x)[log pθ(x|z, c)]− βDKL(qφ(z, c|x) ‖ p(z, c)) (4)

where the latent distribution is now jointly continuous and discrete. Assuming the continuous
and discrete latent variables are conditionally independent1, i.e. qφ(z, c|x) = qφ(z|x)qφ(c|x) and
similarly for the prior p(z, c) = p(z)p(c) we can rewrite the KL divergence as

DKL(qφ(z, c|x) ‖ p(z, c)) = DKL(qφ(z|x) ‖ p(z)) +DKL(qφ(c|x) ‖ p(c)) (5)

i.e. we can separate the discrete and continuous KL divergence terms (see appendix for proof). Under
this assumption, the loss becomes

L(θ, φ) = Eqφ(z,c|x)[log pθ(x|z, c)]− βDKL(qφ(z|x) ‖ p(z))− βDKL(qφ(c|x) ‖ p(c)) (6)

In our initial experiments, we found that directly optimizing this loss led to the model ignoring
the discrete latent variables. Similarly, gradually increasing the channel capacity as in equation (3)
leads to the model assigning all capacity to the continuous channels. To overcome this, we split
the capacity increase: the capacities of the discrete and continuous latent channels are controlled
separately forcing the model to encode information both in the discrete and continuous channels. The
final loss is then given by

L(θ, φ) = Eqφ(z,c|x)[log pθ(x|z, c)]−γ|DKL(qφ(z|x) ‖ p(z))−Cz|−γ|DKL(qφ(c|x) ‖ p(c))−Cc|
(7)

where Cz and Cc are gradually increased during training.

3.1 Parametrization of continuous latent variables

As in the original VAE framework, we parametrize qφ(z|x) by a factorised Gaussian, i.e. qφ(z|x) =∏
i qφ(zi|x) where qφ(zi|x) = N (µi, σ

2
i ) and let the prior be a unit Gaussian p(z) = N (0, I). µ

and σ2 are both parametrized by neural networks.

3.2 Parametrization of discrete latent variables

Parametrizing qφ(c|x) is more difficult. Since qφ(c|x) needs to be differentiable with respect to its
parameters, we cannot parametrize qφ(c|x) by a set of categorical distributions. Recently, Maddison
et al. (2016) and Jang et al. (2016) proposed a differentiable relaxation of discrete random variables
based on the Gumbel Max trick (Gumbel (1954)). If c is a categorical variable with class probabilities
α1, α2, ..., αn, then we can sample from a continuous approximation of the categorical distribution,
by sampling a set of gk ∼ Gumbel(0, 1) i.i.d. and applying the following transformation

yk =
exp((logαk + gk)/τ)∑
i exp((logαi + gi)/τ)

(8)

where τ is a temperature parameter which controls the relaxation. The sample y is a continuous
approximation of the one hot representation of c. The relaxed discrete distribution is called a Concrete
or Gumbel Softmax distribution and is denoted by g(α) where α is a vector of class probabilities.

1β-VAE assumes the data is generated by a fixed number of independent factors of variation, so all latent
variables are in fact conditionally independent. However, for the sake of deriving the JointVAE objective we
only require conditional independence between the continuous and discrete latents.
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We can parametrize qφ(c|x) by a product of independent Gumbel Softmax distributions, qφ(c|x) =∏
i qφ(ci|x) where qφ(ci|x) = g(α(i)) is a Gumbel Softmax distribution with class probabilities

α(i). We let the prior p(c) be equal to a product of uniform Gumbel Softmax distributions. This
approach allows us to use the reparametrization trick (Kingma & Welling (2013); Rezende et al.
(2014)) and efficiently train the discrete model.

3.3 Architecture

The final architecture of the JointVAE model is shown in Fig. 1. We build the encoder to output the
parameters of the continuous distribution µ and σ2 and of each of the discrete distributions α(i). We
then sample zi ∼ N (µi, σ

2
i ) and ci ∼ g(α(i)) using the reparametrization trick and concatenate z

and c into one latent vector which is passed as input to the decoder.

...

Figure 1: JointVAE architecture. The input x is encoded by qφ into the parameters of the latent
distributions. Samples are drawn from each of the latent distributions using the reparametrization
trick (indicated by dashed arrows on the diagram). The samples are then concatenated and decoded
through pθ.

3.4 Choice and sensitivity hyperparameters

The JointVAE loss in equation 7 depends on the hyperparameters γ, Cc and Cz . While the choice of
these is ultimately empirical, there are various heuristics we can use to narrow the search. The value
of γ, for example, is chosen so that it is large enough to maintain the capacity at the desired level
(e.g. large improvements in reconstruction error should not come at the cost of breaking the capacity
constraint). We found the model to be quite robust to changes in γ. As the capacity of a discrete
channel is bounded, Cc is chosen to be the maximum capacity of the channel, encouraging the model
to use all categories of the discrete distribution. Cz is more difficult to choose and is often chosen by
experiment to be the largest value where the representation is still disentangled (in a similar way that
β is chosen as the lowest value where the representation is still disentangled in β-VAE).

4 Experiments

We perform experiments on several datasets including MNIST, FashionMNIST, CelebA and Chairs.
We parametrize the encoder by a convolutional neural network and the decoder by the same network,
transposed (for the full architecture and training details see appendix). The code, along with all
experiments and trained models presented in this paper, is available at https://github.com/
Schlumberger/joint-vae.
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MNIST

Disentanglement results and latent traversals for MNIST are shown in Fig. 2. The model was trained
with 10 continuous latent variables and one discrete 10-dimensional latent variable. The model
discovers several factors of variation in the data, such as digit type (discrete), stroke thickness, angle
and width (continuous) in an unsupervised manner. As can be seen from the latent traversals in Fig.
2, the trained model is able to generate realistic samples for a large variety of latent settings. Fig. 4a
shows digits generated by fixing the discrete latent and sampling the continuous latents from the prior
p(z) = N (0, 1), which can be interpreted as sampling from a distribution conditioned on digit type.
As can be seen, the samples are diverse, realistic and honor the conditioning.

For a large range of hyperparameters we were not able to achieve disentanglement using the purely
continuous β-VAE framework (see Fig. 3). This is likely because MNIST has an inherently discrete
generative factor (digit type), which β-VAE is unable to map onto a continuous latent variable. In
contrast, the JointVAE approach allows us to disentangle the discrete factors while maintaining
disentanglement of continuous factors. To the best of our knowledge, JointVAE is, apart from
InfoGAN, the only framework which disentangles MNIST in a completely unsupervised manner and
it does so in a more stable way than InfoGAN.

(a) Angle (continuous) (b) Thickness (continuous)

(c) Digit type (discrete) (d) Width (continuous)

Figure 2: Latent traversals of the model trained on MNIST with 10 continuous latent variables and 1
discrete latent variable. Each row corresponds to a fixed random setting of the latent variables and
the columns correspond to varying a single latent unit. Each subfigure varies a different latent unit.
As can be seen each of the varied latent units corresponds to an interpretable generative factor, such
as stroke thickness or digit type.

Figure 3: Traversals of all latent dimensions on MNIST for JointVAE, β-VAE and β-VAE with
controlled capacity increase (CCβ-VAE). JointVAE is able to disentangle digit type from continuous
factors of variation like stroke thickness and angle, while digit type is entangled with continuous
factors for both β-VAE and CCβ-VAE.
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(a) (b) (c)

Figure 4: (a) Samples conditioned on digit type. Each row shows samples from pθ where the discrete
latent variable is fixed and all other latent values are sampled from the prior. As can be seen each
row produces diverse samples of each digit. Note that digits which are similar, such as 5 and 8 are
sometimes confused and not perfectly disentangled. (b) Samples conditioned on fashion item type.
The samples are diverse and largely disentangled. (c) Latent traversals of FashionMNIST model. The
rows correspond to different settings of the discrete latent variable, while the columns correspond to
a traversal of the most informative continuous latent variable. Various factors are discovered, such as
sleeve length, bag handle size, ankle height and shoe opening.

FashionMNIST

Latent traversals for FashionMNIST are shown in Fig. 4c. We also used 10 continuous and 1 discrete
latent variable for this dataset. FashionMNIST is harder to disentangle as the generative factors for
creating clothes are not as clear as the ones for drawing digits. However, JointVAE performs well
and discovers interesting dimensions, such as sleeve length, heel size and shirt color. As some of
the classes of FashionMNIST are very similar (e.g. shirt and t-shirt are two different classes), not
all classes are discovered. However, a significant amount of them are disentangled including dress,
t-shirt, trousers, sneakers, bag, ankle boot and so on (see Fig. 4b).

CelebA

For CelebA we used a model with 32 continuous latent variables and one 10 dimensional discrete
latent variable. As shown in Fig. 5, the JointVAE model discovers various factors of variation
including azimuth, age and background color, while being able to generate realistic samples. Different
settings of the discrete variable correspond to different facial identities. While the samples are not as
sharp as those produced by entangled models, we can still see details in the images such as distinct
facial features and skin tones (the trade-off between disentanglement and reconstruction quality is a
well known problem which is discussed in Higgins et al. (2016); Burgess et al. (2017); Kim & Mnih
(2018); Chen et al. (2018)).

Chairs

For the chairs dataset we used a model with 32 continuous latent variables and 3 binary discrete latent
variables. JointVAE discovers several factors of variation such as chair rotation, width and leg style.
Furthermore, different settings of the discrete variables correspond to different chair types and colors.

(a) Azimuth (b) Background color (c) Age

Figure 5: Latent traversals of the model trained on CelebA. Each row corresponds to a fixed setting
of the discrete latent variable and the columns correspond to varying a single continuous latent unit.
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