
Appendix A Algorithms

A.1 Algorithms

In this section, we present two detailed practical algorithms based on the HCP concept. Alg. 2 is
HCP based on PPO which can be used to solve tasks with dense reward. Alg. 3 is HCP based on
DDPG+HER which can be used to solve multi-goal tasks with sparse reward.

Algorithm 2 Hardware Conditioned Policy (HCP) - on-policy

Initialize PPO algorithm
Initialize a robot pool P of size N with robots in different dynamics and kinematics
for episode = 1, M do

for actor=1, K do
Sample a robot instance I ∈ P
Sample an initial state s0
Retrieve the robot hardware representation vector vh
Augment s0:

ŝ0 ← s0 ⊕ vh
for t = 0, T-1 do

Sample action at ← π(ŝt) using current policy
Execute action at, receive reward rt, observe new state st+1, and augmented state ŝt+1

end for
Compute advantage estimates A0, A1, ..., AT−1

end for
for n=1,W do

Optimize actor and critic networks with PPO via minibatch gradient descent
if vh is to be learned then

update vh via gradient descent in the optimization step as well
end if

end for
end for

Algorithm 3 Hardware Conditioned Policy (HCP) - off-policy

Initialize DDPG algorithm
Initialize experience replay bufferR
Initialize a robot pool P of size N with robots in different dynamics and kinematics
for episode = 1, M do

Sample a robot instance I ∈ P
Sample a goal position g and an initial state s0
Retrieve the robot hardware representation vector vh
Augment s0:

ŝ0 ← s0 ⊕ g ⊕ vh
for t = 0, T-1 do

Sample action at ← πb(ŝt) using behavioral policy
Execute action at, receive reward rt, observe new state st+1, and augmented state ŝt+1

Store (ŝt, at, rt, ŝt+1) intoR
end for
AugmentR with pseudo-goals via HER
for n=1,W do

Optimize actor and critic networks with DDPG via minibatch gradient descent
if vh is to be learned then

update vh via gradient descent in the optimization step as well
end if

end for
end for
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Appendix B Experiment Details

We performed experiments on three environments in this paper: reacher, peg insertion, and hopper, as
shown in Figure 7. Videos of experiments are available at: https://sites.google.com/view/
robot-transfer-hcp.

B.1 Reacher and Peg Insertion

(a) reacher (b) peg insertion (c) hopper

Figure 7: (a): reacher, the green box represents
end effector initial position distribution, and the
yellow box represents end effector target position
distribution. (b): peg insertion. The white rings
in (a) and (b) represent joints. (c): hopper.

The reason why we choose reacher and peg in-
sertion task is that most of manipulator tasks like
welding, assembling, grasping can be seen as a
sequence of reacher tasks in essence. Reacher task
is the building block of many manipulator tasks.
And peg insertion task can further show the con-
trol accuracy and robustness of the policy network
in transferring torque control to new robots.

B.1.1 Robot Variants

During training time, we consider 9 basic robot
types (named as Type A,B,...,I) as shown in Figure
2 which have different DOF and joint placements.
The 5-DOF and 6-DOF robots are created by re-
moving joints from the 7-DOF robot.

We also show the length range of each link and dynamics parameter ranges in Table 2. The link
name and joint name conventions are defined in Figure 8. Notice that damping values ranged from
[0, 1), (1,+∞) are called underdamped and overdamped systems respectively. As these systems have
very different dynamics characteristics, 50% of the damping values sampled are less than 1, and the
rest 50% are greater than or equal to 1.
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Figure 8: Link name and joint name convention

Table 2: Manipulator Parameters
Kinematics

Links Length Range (m)
l0 0.290± 0.10
l1_1 0.119± 0.05
l1_2 0.140± 0.07
l2 0.263± 0.12
l3_1 0.120± 0.06
l3_2 0.127± 0.06
l4 0.275± 0.12
l5_1 0.096± 0.04
l5_2 0.076± 0.03
l6 0.049± 0.02

Dynamics
damping [0.01, 30]
friction [0, 10]
armature [0.01, 4]
link mass [0.25, 4]× default mass

Even though we only train with robot types listed in Figure 2, our policy can be directly transferred
to other new robots like the Fetch robot shown in Figure 9.

B.1.2 Hyperparameters

We closely followed the settings in original DDPG paper. Actions were added at the second hidden
layer of Q. All hidden layers used scaled exponential linear unit (SELU) as the activation function
and we used Adam optimizer. Other hyperparameters are summarized in Table 3.
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(a) J: new 5-DOF robot
(b) K: new 7-DOF robot
(Fetch)

Figure 9: New types of robot. We used the model trained in Exp. V and directly applied to robot
shown in (a) and Fetch robot shown in (b). We tested the model on 1000 unseen test robots (averaged
over 10 trials, 100 robots per trial) of type J (as shown in (a)), and got 86.30± 4.41% success rate.
We tested on the fetch robot in (b) 10 times and got 100% success rate.

Initial position distributions: For reacher task, the initial position of end effector is randomly
sampled from a box region 0.3m × 0.4m × 0.2m. For peg insertion task, all robots start from a
horizontal fully-expanded pose.

Goal distributions: For reacher task, the target end effector position region is a box region 0.3m×
0.6m × 0.4m which is located 0.2m below the initial position sampling region. For peg insertion
task, we have experiments on hole position fixed and hole position randomly moved. If the hole
position is to be randomly moved, the table’s position will be randomly sampled from a box region
0.2m× 0.2m× 0.2m.

Rewards: As mentioned in paper, we add action penalty on rewards so as to avoid bang-bang control.
The reward is defined as: r(st, at, g) = sgn±(ε− ‖st+1(POI)− g‖2)− β ‖at‖22, where st+1(POI)
is the position of the point of interest (POI, end effector in reacher and peg bottom in peg insertion)
after the execution of action at in the state st, β is a hyperparameter β > 0 and β ‖at‖22 � 1.

Success criterion: For reacher task, the end effector has to be within 0.02m Euclidean distance to
the target position to be considered as a success. For peg insertion task, the peg bottom has to be
within 0.02m Euclidean distance to the target peg bottom position to be considered as a success.
Since the target peg bottom position is always 0.05m below the table surface no matter how table
moves, so the peg has to be inserted into the hole more than 0.03m.

Observation noise: We add uniformly distributed observation noise on states (joint angles and joint
velocities). The noise is uniformly sampled from [−0.02, 0.02] for both joint angles (rad) and joint
velocities (rad s−1).

Table 3: Hyperparameters for reacher
and peg insertion tasks

number of training robots for
each type

140

success distance threshold ε 0.02m
maximum episode time steps 200
actor learning rate 0.0001
critic learning rate 0.0001
critic network weight decay 0.001
hidden layers 128-256-256
discount factor γ 0.99
batch size 128
warmup episodes 50
experience replay buffer size 1000000
network training iterations
after each episode

100

soft target update τ 0.01
number of future goals k 4
action penalty coefficient β 0.1
robot control frequency 50Hz

Table 4: Hyperparameters for hopper
number of training hoppers 1000
number of actors K 8
maximum episode time steps 2048
learning rate 0.0001
hidden layers 128-128
discount factor γ 0.99
GAE parameter λ 0.95
clip ratio η 0.2
batch size 512
vh dimension 32
network training epochs after
each rollout

5

value function loss coefficient c1 0.5
entropy loss coefficient c2 0.015

15



B.2 Hopper

Table 5: Hopper Parameters

Kinematics
Links Length Range (m)
torso 0.40± 0.10
thigh 0.45± 0.10
leg 0.50± 0.15
foot 0.39± 0.10

Dynamics
damping [0.01, 5]
friction [0, 2]
armature [0.1, 2]
link mass [0.25, 2]× default mass

We used the same reward design as the hopper
environment in OpenAI Gym. As it’s a dense re-
ward setting, we use PPO for this task. All hidden
layers used scaled exponential linear unit (SELU)
as the activation function and we used Adam opti-
mizer. Other hyperparameters are summarized in
Table 4. And the sampling ranges of link lengths
and dynamics are shown in Table 5.

Appendix C Supplementary
Experiments

In section C.1 and section C.2, we explore the dy-
namics effect in manipulators. Section C.3 shows
the learning curves for 7-DOF robots with different link lengths and dynamics. In section C.4, we
show more training details of HCP-E experiments on different combinations of robot types and how
well HCP-E models perform on robots that belong to the same training robot types but with different
link lengths and dynamics.

C.1 Effect of Dynamics in Transferring Policies for Manipulation

Explicit encoding is made possible when knowing the dynamics of the system doesn’t help learning.
In such environments, as long as the policy network is exposed to a diversity of robots with different
dynamics during training, it will be robust enough to adapt to new robots with different dynamics.
To show that knowing ground-truth dynamics doesn’t help training for reacher and peg insertion
tasks, we experimented on 7-DOF robots (Type I) with different dynamics only with following
algorithms:DDPG+HER, DDPG+HER+dynamics, DDPG+HER+random number. The first one uses
DDPG+HER with only joint angles and joint velocities as the state. The second experiment uses
DDPG+HER with the dynamics parameter vector added to the state. The dynamics are scaled to be
within [0, 1). The third experiment uses DDPG+HER with a random vector ranged from [0, 1) added
to states that is of same size as the dynamics vector. The dynamics parameters sampling ranges are
shown in Table 2. The number of training robots is 100.

Figure 10 shows that DDPG+HER with only joint angles and joint velocities as states is able to
achieve about 100% success rate in both reacher and peg insertion (fixed hole position) tasks. In fact,
we see that even if state is augmented with a random vector, the policy network can still generalize
over new testing robots, which means the policy network learns to ignore the augmented part. Figure
10 also shows that with ground-truth dynamics parameters or random vectors input to the policy
and value networks, the learning process becomes slower. In hindsight, this makes sense because
the dynamics information is not needed for the policy network and if we forcefully feed in those
information, it will take more time for the network to learn to ignore this part and train a robust policy
across robots with different dynamics.
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Figure 10: Learning curves on 7-DOF robots with different dynamics only.
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C.2 How robust is the policy network to changes in dynamics?

We performed a stress test on the generalization or robustness of the policy network to variation in
dynamics. The experiments are similar to those in section C.1, but the training joint damping values
are randomly sampled from [0.01, 2) this time. Other dynamics parameters are still randomly sampled
according to Table 2. The task here is peg insertion. Figure 11 and Table 6 show the generalization
capability of the DDPG + HER model with only joint angles and joint velocities as the state.

Table 6: Success rate on 100 testing robots

Testing damping range Success rate
[0.01, 2) 100%
[2, 10) 100%
[10, 20) 100%
[20, 30) 100%
[30, 40) 85%
[40, 50) 47%

We can see from Figure 11 and Table 6 that even
though the DDPG + HER model is trained with
joint damping values sampled from [0.01, 2),
it can successfully control robots with damp-
ing values sampled from other ranges includ-
ing [2, 10), [10, 20), [20, 30) with 100% success
rate. It is noteworthy that a damping value of 1
corresponds to critical damping (which is what
most practical systems aim for), while < 1 is
under-damped and above is over-damped. For
the damping range [30, 40), the success rate is
85%. In damping range [40, 50), the success rate is 47%. Note that each joint has a torque limit, so
when damping becomes too large, the control is likely to be unable to move some joints and thus fail.
Also, the larger the damping values are, the more time steps it takes to finish the peg insertion task, as
shown in Figure 11b.
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Figure 11: Performance (violin plots) on 100 testing robots with damping values sampled from
different ranges using the DDPG+HER model trained with damping range [0.01, 2)). Other dynamics
parameters are still randomly sampled according to Table 2. The left plot shows the distribution of
the distances between the robot’s peg bottom and the target peg bottom position at the end of episode.
The right plot shows the distribution of the episode length. An episode will be ended early if the peg
is inserted into the hole successfully and the maximum number of episode time steps is 200. The
three horizontal lines in each violin plot stand for the lower extrema, median value, and the higher
extrema.

C.3 Learning curves for 7-DOF robots with different link length and dynamics

In this section, we provide two supplementary experiments on training 7-DOF (type I) to perform
reacher and peg insertion task.
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Figure 12: Learning curves for 7-DOF robots with different link length and dynamics. We show the
HCP-E+Dyn learning curves only for comparison. In real robots, dynamics parameters are usually not
easily accessible. So it’s not pratical to use dynamics information in robotics applications. We can see
that both HCP-I and HCP-E got much higher success rates on both tasks than vanilla DDPG+HER.

C.4 Multi-DOF robots learning curves

Figure 13 provides more details of training progress in different experiments.
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Figure 13: Learning curves for multi-DOF setting. Symbol A,B,...,I in the figure represent the types
of robot used in training. All these experiments are only trained on 8 types of robots (leave one out).
The 100 testing robots used to generate the learning curves are from the same training robot types
but with different link length and dynamics. The second row shows the results on peg insertion task
with hole position randomly generated within a 0.2m box region. (a): reacher task with robot types
A-D + F-I. (b): peg insertion task with a fixed hole position with robot types A-D + F-I. (c): peg
insertion task with a fixed hole position with robot types A-H. (d): peg insertion task with a random
hole position with robot types A-G + I. (e): peg insertion task with a random hole position with robot
types A-D + F-I. (f): peg insertion task with a random hole position with robot types A-H.

Table 1 in the paper shows how well HCP-E models perform when they are applied to the new robot
type that has never been trained before. Table 7 to 14 show how the universal policy behaves on the
robot types that have been trained before. These robots are from the training robot types, but with
different link lengths and dynamics.
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The less DOF the robot has, the less dexterous the robot can be. Also, where to place the n joints
affects the workspace of the robot and determine how flexible the robot can be. Therefore, we can see
some low success rate data even in trained robot types. For example,the trained HCP-E model only
got 6.70 success rate when tested on robot type D which has actually been trained in peg insertion
tasks with random hole positions, as shown in Table 12. This is because its joint displacements and
number of DOFs limit the flexibility as shown in Figure 2d. Type D doesn’t have joint J4 and J5
which are crucial for peg insertion tasks.

Table 7: Zero-shot testing performance on training robot types (Exp. I & II)
Alg. Testing Robot Types

A B C D E F G I

HCP-E 93.10±
2.91

95.70±
1.55

98.20±
1.55

97.50±
1.02

95.30±
1.49

94.00±
3.26

98.40±
1.11

97.90±
1.67

DDPG+HER 1.00±
1.22

1.00±
1.00

2.50±
1.36

0.10±
0.30

0.70±
0.78

1.20±
1.40

1.30±
1.35

2.00±
1.26

Table 8: Zero-shot testing performance on training robot types (Exp. III & IV)
Alg. Testing Robot Types

A B C D F G H I

HCP-E 92.00±
2.28

89.60±
3.01

98.60±
1.20

99.00±
0.63

96.70±
1.42

97.90±
1.64

99.30±
0.64

99.20±
0.60

DDPG+HER 1.30±
0.90

1.30±
0.89

1.60±
0.92

0.70±
0.46

0.20±
0.40

2.30±
1.18

0.90±
0.83

1.40±
0.92

Table 9: Zero-shot testing performance on training robot types (Exp. V & VI)
Alg. Testing Robot Types

A B C D E F G I

HCP-E 91.10±
2.77

95.90±
1.92

98.50±
1.50

84.89±
3.29

94.70±
1.85

92.00±
2.97

97.20±
1.32

94.20±
2.79

DDPG+HER 0.30±
0.46

1.90±
1.30

3.00±
1.26

0.00±
0.00

0.00±
0.00

0.00±
0.00

0.60±
0.66

0.00±
0.00

Table 10: Zero-shot testing performance on training robot types (Exp. VII & VIII)
Alg. Testing Robot Types

A B C D E F G I

HCP-E 88.60±
2.45

95.30±
2.00

98.90±
0.83

83.30±
3.49

81.30±
3.20

92.00±
3.13

89.40±
3.20

88.00±
4.54

DDPG+HER 3.30±
2.32

1.70±
1.00

0.00±
0.00

0.00±
0.00

0.00±
0.00

0.00±
0.00

0.00±
0.00

0.10±
0.30
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Table 11: Zero-shot testing performance on training robot types (Exp. IX & X)
Alg. Testing Robot Types

A B C D E F G H

HCP-E 92.90±
3.59

95.90±
1.70

97.30±
1.10

90.90±
3.58

95.59±
1.43

94.60±
1.28

98.80±
0.60

97.10±
1.51

DDPG+HER 1.60±
1.20

2.30±
1.27

0.40±
0.66

0.00±
0.00

1.80±
1.54

0.00±
0.00

0.40±
0.49

0.00±
0.00

Table 12: Zero-shot testing performance on training robot types (Exp. XI & XII)
Alg. Testing Robot Types

A B C D E F G I

HCP-E 71.00±
5.22

85.80±
3.19

89.00±
2.53

6.70±
2.53

79.30±
3.90

45.70±
4.86

88.50±
2.42

68.50±
5.18

DDPG+HER 1.70±
1.88

3.90±
2.20

0.90±
1.04

0.10±
0.30

2.50±
0.92

0.10±
0.30

1.00±
1.00

0.70±
0.78

Table 13: Zero-shot testing performance on training robot types (Exp. XIII & XIV)
Alg. Testing Robot Types

A B C D F G H I

HCP-E 64.70±
6.30

86.10±
3.36

89.60±
2.95

54.10±
3.53

58.60±
3.83

83.20±
2.96

66.30±
3.57

62.50±
4.03

DDPG+HER 0.30±
0.46

0.10±
0.30

1.90±
0.94

0.00±
0.00

0.20±
0.40

1.90±
1.30

0.10±
0.30

2.80 ±
1.60

Table 14: Zero-shot testing performance on training robot types (Exp. XV & XVI)
Alg. Testing Robot Types

A B C D E F G H

HCP-E 73.70±
4.79

86.20±
4.04

80.90±
3.88

16.00±
3.26

69.70±
4.54

76.80±
3.25

85.80±
4.38

59.90±
5.22

DDPG+HER 1.90±
1.37

7.60±
2.65

3.10±
1.04

0.00±
0.00

3.70±
1.62

0.60±
0.66

1.30±
1.00

0.40 ±
0.80
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