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Abstract

Monte Carlo sampling in high-dimensional, low-sample settings is important in
many machine learning tasks. We improve current methods for sampling in Eu-
clidean spaces by avoiding independence, and instead consider ways to couple
samples. We show fundamental connections to optimal transport theory, leading
to novel sampling algorithms, and providing new theoretical grounding for exist-
ing strategies. We compare our new strategies against prior methods for improving
sample efficiency, including quasi-Monte Carlo, by studying discrepancy. We ex-
plore our findings empirically, and observe benefits of our sampling schemes for
reinforcement learning and generative modelling.

1 Introduction and related work

Monte Carlo (MC) methods are popular in many areas of machine learning, including approximate
Bayesian inference (Robert and Casella, 2005; Rezende et al., 2014; Kingma and Welling, 2014;
Welling and Teh, 2011), reinforcement learning (RL) (Salimans et al., 2017; Choromanski et al.,
2018c; Mania et al., 2018), and random feature approximations for kernel methods (Rahimi and
Recht, 2007; Yu et al., 2016). Typically, Monte Carlo samples are drawn independently. In many
applications, however, there may be an imbalance between the computational cost in drawing MC
samples from the distribution of interest, and the subsequent cost incurred due to downstream com-
putation with the samples. For example, when a sample represents the configuration of weights in
a policy network for an RL problem, the cost of computing forward passes, backpropagating gradi-
ents through the network, and interacting with the environment, is much greater than drawing the
sample itself. Since a high proportion of total time is spent computing with each sample relative to
the cost of generating the sample, it may be possible to improve efficiency by replacing the default
of independent, identically distributed samples by samples with some non-trivial coupling.

Such approaches have been studied in computational statistics for decades, often under the guise of
variance reduction. Related methods such as control variates, quasi-Monte Carlo (QMC) (Halton,
1960; Aistleitner and Dick, 2015; Dick et al., 2015; Brauchart and Dick, 2012; Sloan and Wozni-
akowski, 1998; Avron et al., 2016)), herding (Chen et al., 2010; Huszar and Duvenaud, 2012) and
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antithetic sampling (Hammersley and Morton, 1956; Salimans et al., 2017) have also been explored.
Methods used in recent machine learning applications include orthogonality constraints (Yu et al.,
2016; Choromanski et al., 2018b,c, 2017, 2018a). In this paper, we investigate improvements to MC
sampling through carefully designed joint distributions, with an emphasis on the low-sample, high-
dimensional regime, which is often relevant for practical machine learning applications (Rezende
et al., 2014; Kingma and Welling, 2014; Salimans et al., 2017). We call our approach Geometrically
Coupled Monte Carlo (GCMC) since, as we will see, it is geometrically motivated. Importantly, we
focus on Monte Carlo sampling, in contrast to (pseudo-)deterministic approaches such as QMC and
herding, as unbiasedness of estimators is often an important property for stochastic approximation.
Whilst approaches such as herding and QMC are known to have superior asymptotic performance
to Monte Carlo methods in low dimensions, this may not hold in high-dimensional, low-sample
regimes, where they do not provide any theoretical improvement guarantees.

We summarize our main contributions below. Throughout the paper, we save proofs of our results
for the Appendix; where appropriate, we provide proof sketches to aid intuition.

• We frame the problem of finding an optimal coupling amongst a collection of samples as a multi-
marginal transport (MMT) problem: this generalises the notion of optimal transport, which has seen
many applications in machine learning (see for example Arjovsky et al., 2017). We show several
settings where the MMT problem can be solved analytically. We recover some existing coupling
strategies (based on orthogonal matrices), and derive novel strategies, involving coupling norms of
pairs of samples.
• To connect to QMC, we show that sets of geometrically coupled Monte Carlo samples give rise

to low discrepancy sequences. To our knowledge, we present the first explanation of the success of
structured orthogonal matrices for scalable RBF kernel approximation via discrepancy theory.
• We provide exponentially small upper bounds on failure probabilities for estimators of gradients

of Gaussian smoothings of blackbox functions based on the gradient sensing mechanism, both for
unstructured and orthogonal settings (Choromanski et al., 2018c). These methods can be used to
learn good quality policies for reinforcement learning tasks.
• We empirically measure the discrepancy of sequences produced by our method and show that

they enable us to learn good quality policies for quadruped robot navigation in low-sample, high-
dimensional regimes, where standard QMC approaches based on Halton sequences and related con-
structions fail.

2 Optimal couplings, herding, and optimal transport

Consider the problem of computing the expectation If = EX∼η[f(X)], where η ∈ P(Rd) is a
multivariate probability distribution and f : Rd → R is some measurable function in L1(η). A
standard Monte Carlo approach is to approximate If by Î iid

f = 1
m

∑m
i=1 f(Xi), where the samples

X1, . . . , Xm ∼ η are taken independently. This estimator is clearly unbiased. The main question
that we are interested in is what joint distributions (or couplings) over the ensemble of samples
(X1, . . . , Xm) lead to estimators of the expectation above which are still unbiased, but have lower
mean squared error (MSE) than the i.i.d. estimator Î iid

f , defined for a general estimator Îf by:

MSE(Îf ) = E
[(
Îf − If

)2]
. (1)

For sufficiently rich functions classes F ⊆ L2(η), a coupling of the random variables (X1, . . . , Xm)
that achieves optimal MSE simultaneously for all functions f ∈ F need not exist. We illustrate this
with examples in the Appendix Section 8.2. This motivates the approach below to define optimality
of a coupling by taking into account average performance across a function class of interest.

2.1 K-optimal couplings

We begin by defining formally the notion of coupling.
Definition 2.1. Given a probability distribution η ∈ P(Rd) and m ∈ N, we denote by Λm(η) the
set of all joint distributions of m random variables (X1, . . . , Xm), where each random variable Xi
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has the marginal distribution η. More formally,

Λm(η) = {µ ∈ P(Rd×m)|(πi)#µ = η for i = 1, . . . ,m} ,

where πi : Rd×m → Rd denotes projection onto the ith set of d coordinates, for i = 1, . . . ,m.

Note that if X1:m ∼ µ ∈ Λm(η), then because of the restriction on the marginals of X1:m, the
estimator m−1

∑m
i=1 f(Xi) is unbiased for EX∼η [f(X)], for any f ∈ L1(η).

We now define the following notion of optimality of a coupling. Similar notions have appeared in
the literature when samples are taken to be non-random, or when selecting importance distributions,
sometimes referred to as kernel quadrature (Rasmussen and Ghahramani, 2003; Briol et al., 2017).
Definition 2.2 (K-optimal coupling). Given a kernel K : Rd × Rd → R, a K-optimal coupling is
a solution to the optimisation problem

argmin
µ∈Λm(η)

Ef∼GP(0,K)

EX1:m∼µ

( 1

m

m∑
i=1

f(Xi)− If

)2
 . (2)

That is, a K-optimal coupling is one that gives the best MSE on average when the function con-
cerned is drawn from the Gaussian process GP(0,K). For background on Gaussian processes, see
(Rasmussen and Williams, 2005).
Remark 2.3. There are measure-theoretic subtleties in making sure that the objective in Expression
(2) is well-defined. For readability, we treat these issues in the Appendix (Section 7), but remark
here that it is sufficient to restrict to kernelsK for which sample paths of the corresponding Gaussian
process are continuous, which we do for the remainder of the paper.

Our ultimate aim is to characterise K-optimal couplings under a variety of conditions algorithmi-
cally to enable practical implementation. We discuss the identification of K-optimal couplings,
along with precise statements of algorithms, in Section 2.3. First we develop the theoretical prop-
erties of K-optimal couplings, starting with the intimate connection between K-optimal couplings
and multi-marginal transport theory (Pass, 2014). This theory is a generalisation of optimal transport
theory to the case where there are more than two marginal distributions.
Theorem 2.4. The optimisation problem defining K-optimality in Equation (2) is equivalent to the
following multi-marginal transport problem:

argmin
µ∈Λm(η)

EX1:m∼µ

∑
i ̸=j

K(Xi, Xj)

 .
Remark 2.5. The optimal transport problem of Theorem 2.4 has an interesting difference from most
optimal transport problems arising in machine learning: in general, its cost function is repulsive, so
it seeks a transport plan where transport paths are typically long, as opposed to the short transport
paths sought when the cost is given by e.g. a metric. Intuitively, the optimal transport cost rewards
space-filling couplings, for which it is uncommon to observe collections of samples close together.

2.2 Minimax couplings and herding

Definition 2.2 (K-optimality) considers best average-case behaviour. We could instead use a “mini-
max" definition of optimality, by examining best worst-case behaviour.
Definition 2.6 (Minimax coupling). Given a function class F ⊆ L2(η), we say that µ ∈ Λm(η) is
an F -minimax coupling if it is a solution to the following optimisation problem:

argmin
µ∈Λm(η)

sup
f∈F

EX1:m∼µ

( 1

m

m∑
i=1

f(Xi)− If

)2
 . (3)

In general, the minimax coupling objective appearing in Equation (3) is intractable. However, there
is an elegant connection to concepts from the kernel herding literature that may be established by
taking the function class F to be the unit ball in some reproducing kernel Hilbert space (RKHS).
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Proposition 2.7. Suppose that the function class F is the unit ball in some RKHS given by a kernel
K : Rd × Rd → R. Then the component

sup
f∈F

EX1:m∼µ

( 1

m

m∑
i=1

f(Xi)− If

)2


of the minimax coupling objective in Equation (3) may be upper-bounded by the following objective:

EX1:m∼µ

∥∥∥∥∥θK
(

1

m

m∑
i=1

δXi

)
− θK (η)

∥∥∥∥∥
2

HK

 , (4)

where θK : P(Rd) → HK is the kernel mean embedding into the RKHS HK associated with K.

We note the intimate connection of the objective in Equation (4) with maximum mean discrepancy
(MMD) (Gretton et al., 2012) and herding (Chen et al., 2010; Huszar and Duvenaud, 2012). First,
the integrand appearing in Equation (4) is exactly the MMD-squared between m−1

∑m
i=1 δXi

and η
with respect to the kernelK. Second, if we instead takem−1

∑m
i=1 δXi

to be a non-random measure
of the formm−1

∑m
i=1 δxi , viewing Expression (4) as a function of the delta locations x1, . . . , xk re-

sults in exactly the herding optimisation problem. A connection between variance-reduced sampling
and herding has also been noted in the context of random permutations (Lomelí et al., 2018). As
well as these similarities, there are important differences between herding and the notion described
here. Because all samples are regarded as random variables which are constrained to be marginally
distributed according to η, a coupling maintains the usual unbiasedness guarantees of finite-sample
Monte Carlo estimators. In contrast, herding is theoretically supported by fast asymptotic rates of
convergence for a wide variety of estimators, but because samples are chosen in a deterministic way,
estimator properties based on finite numbers of herding samples are harder to describe statistically.
Often there are good reasons to eschew unbiasedness of an estimator in favour of fast convergence
rates; however, unbiasedness of gradient estimators is crucial in optimisation algorithms performing
correctly, as is well-established in the stochastic approximation literature. Bellemare et al. (2017)
provide a discussion of this phenomenon in the context of generative modelling.

Interestingly, the following result shows that solutions of Problem (4) coincide exactly with K-
optimal couplings of Definition 2.2.
Theorem 2.8. Given a probability distribution η ∈ P(Rd) and a kernel K : Rd × Rd → R, a
coupling µ ∈ Λm(η) is K-optimal iff it is solves the optimisation problem in Expression (4).

Connections similar to Theorem 2.8 have previously been established in the study of identifying
deterministic quadrature points (Paskov, 1993) – we also highlight (Kanagawa et al., 2018) as a
recent review of such connections. In contrast, here we take random quadrature points with fixed
marginal distributions.

2.3 Solving for K-optimal couplings

In this section, we study the objective defining K-optimal couplings, as given in Definition 2.2. The
problem is intractable to solve analytically in general, so we present several solutions in settings
with additional restrictions, either on the number of samples m in the problem, or on the types
of couplings considered. The theoretical statements are given in Theorems 2.9 and 2.10, with the
corresponding practical algorithms given as Algorithms 1 and 2. We emphasise that solving Problem
(2) in general remains an interesting direction for future work.
Theorem 2.9. Let η ∈ P(Rd) be isotropic, and let K : Rd × Rd → R be a stationary isotropic
kernel, such that K(x,y) is a strictly decreasing, strictly convex function of ∥x− y∥. Then the K-
optimal coupling of 2 samples (X1, X2) from η is given by first drawing X1 ∼ η, and then setting
the direction of X2 to be opposite to that of X1, and setting the norm of ∥X2∥ so that

FR(∥X2∥) + FR(∥X1∥) = 1 , (5)

where FR is the CDF associated with the norm of a random vector distributed according to η.

The proof of this theorem can be found in the Appendix Section 9 and relies on first showing that
any optimal coupling must be antithetic and second that an antithetic coupling must satisfy equation
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Algorithm 1 Antithetic inverse lengths coupling
of Theorem 2.9

for i = 1, . . . ,m do
Draw Xi ∼ η.
Set Xm+i = −Xi

F−1
R (1−FR(||Xi||))

||Xi|| .
end for
Output: X1, . . . , X2m marginally η dis-
tributed, with low MSE.

Algorithm 2 Orthogonal coupling of Theo-
rem 2.10

for i = 1, . . . ,m do
Draw Xi ∼ η conditionally orthogonal to
X1, . . . , Xi−1.
Set Xm+i = −Xi.

end for
Output: X1, . . . , X2m marginally η dis-
tributed, with low MSE.

(5) in order for the marginals to be equal to η. In the Appendix Section 8 we illustrate with a
counterexample that the convexity assumption is required. Indeed if most of the mass of η is near
the origin and the RBF kernel is larger around 0 then the classical antithetic coupling X2 = −X1

performs better.

Further extending the above situation, we restrict our attention to antithetic couplings and establish
that the optimal way to couple m antithetic pairs (Xi, Xm+i) = (Xi,−Xi) is to draw sequentially
orthogonal samples if the dimension of the space allows it and the marginal η is spherically symmet-
ric. Introduce the following notation for the set of antithetic couplings with independent lengths:

Λanti
2m(η) = {Law(X1, . . . , X2m) ∈ Λ2m(η)| ||Xi||, 1 ≤ i ≤ m are independent, Xi = −Xm+i } .

Theorem 2.10. Let η ∈ P(Rd) be isotropic and let K : Rd × Rd → R be a stationary
isotropic kernel, such that K(x,y) = Φ(||x − y||2), where Φ is a decreasing, convex function.
If Law(X1, . . . , X2m), with m ≤ d, is a solution to the constrained optimal coupling problem

argmin
µ∈Λanti

2m(η)

EX1:2m∼µ

 2m∑
i,j=1

Φ
(
||Xi −Xj ||2

) ,
then it satisfies ⟨Xi, Xj⟩ = 0 a.s. for all 1 ≤ i < j ≤ m.

The proof of this theorem can be found in the Appendix Section 9 and relies on reformulating
the objective function and showing that the exact minimum is attained thanks to convexity. This
result illustrates the advantage that orthogonal samples can have over i.i.d. samples, see (Yu et al.,
2016) for earlier such settings. Details on how to efficiently sample orthogonal samples can be
found in (Stewart, 1980); exact simulation of d orthogonal samples is possible in O(d3) time, whilst
empirically good quality samples can be obtained from approximate algorithms in O(d2 log d) time.
We emphasise that we focus on applications where these increases in sampling costs are insignificant
relative to the downstream costs of computing with the samples (such as simulating rollouts in RL
environments, as in Section 5.1). However, we note that an interesting direction for future work
would be to incorporate a notion of computational complexity into the K-optimality objective, to
trade off statistical efficiency against sampling costs.

3 Low discrepancy of geometrically coupled samples

Having described our notions of optimal couplings in the previous section and obtained several
sampling schemes, we now provide an interesting connection between our geometrically coupled
samples and low discrepancy sequences that are studied in the QMC literature. Our main interest
is in the local discrepancy function disrS : Rd → R parametrised by a given set of samples S =
{X1, ..., X|S|} and defined as follows:

disrS(u) = Vol(Ju)−
|{i : Xi ∈ Ju}|

|S|
,

where: Ju = [0, u1)× ...× [0, ud) and Vol(Ju) =
∏d
j=1 uj . Now define the star discrepancy func-

tion D∗(S) as: D∗(S) = supu∈[0,1]d |disrS(u)|. This function measures the discrepancy between
the empirical sample S from the uniform distribution on a hypercube [0, 1]d.
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Consider an expression If = EX∼λ[f(X)], where λ ∈ P(R1), and a set of samples S =
{X1, ..., X|S|} that is used in a given (Q)MC estimator to approximate If . The star discrep-

ancy function D∗
λ with respect to a distribution λ is defined on S as: D∗

λ(S)
def
= D∗(Fλ(S)) =

supu∈[0,1] |disrFλ(S)(u)|, where Fλ(S) = {Fλ(Xi)}i=1,...,|S| and Fλ stands for the cdf function
for λ. In other words, to measure the discrepancy between arbitrary distribution λ ∈ P(R1) and
a set of samples S, the set of samples is transformed to the interval [0, 1] via the cdf Fλ and the
discrepancy between the uniform distribution on [0, 1] and the transformed sequence Fλ(S) is cal-
culated.

We will focus here on distributions λ ∈ P(R1), which we call regular distributions, corresponding
to random variables X defined as X = g⊤z, where z ∈ Rd is a deterministic vector and g ∈ Rd
is taken from some isotropic distribution τ (e.g. multivariate Gaussian distribution). Regular distri-
butions play an important role in machine learning. It is easy to show that the random feature map
approximation of radial basis function (RBF) kernels such as Gaussian kernels can be rewritten as
If = EX∼λ[f(X)], where f(x) def

= cos(x) and λ is a regular distribution (Rahimi and Recht, 2007).
To sample points from λ, we will use the standard set Siid of independent samples as well as the set
of orthogonal samples Sort, where marginal distributions of different gi are λ but different gi are
conditioned to be exactly orthogonal (see Choromanski et al., 2018b, for explicit constructions).Our
main result of this section shows that local discrepancy disrFλ(S)(u) for a fixed u ∈ [0, 1]d is better
concentrated around 0 for regular distributions λ if orthogonal sets of samples S are used instead
of independent samples. Indeed, in both cases one can obtain exponentially small upper bounds on
failure probabilities but these are sharper when orthogonal samples are used.

Theorem 3.1. [Local discrepancy & regular distributions] Denote by Siid a set of independent sam-
ples, each taken from a regular distribution λ and by Sort the set of orthogonal samples for that
distribution. Let s = |Siid| = |Sort|. Then for any fixed u ∈ [0, 1] and a ∈ R+ the following holds:
P[|disrFλ(Siid)(u)| > a] ≤ 2e−

sa2

8
def
= piid(a) and for some port satisfying port < piid it holds point-

wise: P[|disrFλ(Sort)(u)| > a] ≤ port(a) . Also: V ar(disrFλ(Sort)(u)) < V ar(disrFλ(Siid)(u)).

Sharper concentration results regarding local discrepancies translate to sharper concentration results
for the star discrepancy function D∗

λ via the ϵ-net argument and thus also ultimately to sharper
results regarding approximation error of MC estimators using regular distributions via the celebrated
Koksma-Hlawka Inequality ((Avron et al., 2016); see Theorem 10.4 in the Appendix).

0.00 0.05 0.10 0.15 0.20 0.25
Discrepancy
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15.0

17.5

De
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no norm coupling
antithetic, equal norm
antithetic, inv. cdf.

i.i.d. ort. RQMC

Figure 1: Histograms of the D∗ discrepancy for
different sampling methods: samples gi have i.i.d.,
orthogonal or RQMC directions with uncoupled
lengths or lengths coupled according to Algo-
rithms 1 or 2

We conclude that orthogonal samples (special
instantiations of the GCMC mechanism) lead to
strictly better guarantees regarding the approxi-
mation error of If for functions f with bounded
variation and regular distributions λ than stan-
dard MC mechanisms. This is the case in par-
ticular for random feature map based approxi-
mators of RBF kernels. The advantages of or-
thogonal samples in this setting were partially
understood before for certain classes of RBF
kernels (Choromanski et al., 2018b; Yu et al.,
2016), but to the best of our knowledge, gen-
eral non-asymptotic results and the connection
with discrepancy theory were not known.

In Figure 1 we show a kernel density
estimate of the distributions of the D∗

discrepancies of 50,000 sample sequences(
F−1
N (0,1)

(
gi

T z
||z||

))
i=1,...,40

for a range of cou-

pling algorithms to generate Gaussian samples
gi. We see that using antithetic samples with
coupled lengths as in Algorithm 1 leads to a
sequence with lower discrepancy on average.
We also observe that coupling the samples to
be orthogonal reduces the discrepancy. This
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confirms the above results. Finally this figure
shows that an algorithm designed to have a low
discrepancy (RQMC) will still reach a lower discrepancy than a classical sampling method but this
difference can be mitigated by using antithetic samples.

4 Geometric coupling for estimating gradients of function smoothings

Here we provide results on the concentration of zeroth order gradient estimators for reinforcement
learning applications, helping to explain their efficacy. This area is one of the main applications of
the GCMC methods introduced in Section 2, and we present experiments for these applications in
Section 5.1. To our knowledge, we provide the first result showing exponential concentration for the
Evolution Strategies (ES) gradient estimator (Salimans et al., 2017) in this setting. We also provide
exponential concentration bounds for orthogonal gradient estimators.

Recall that given a function F : Θ → R to be minimised, the Vanilla ES gradient estimator is
defined as:

∇̂V
NFσ(θ) =

1

Nσ

N∑
i=1

F (θ + σϵi)ϵi, where ϵi ∼ N (0, I) are all i.i.d. . (6)

In what follows we assume that F is uniformly bounded over its domain by F . In the case that F is
a sum of discounted rewards, an upper bound of R for the reward function yields an upper bound of
1

1−γR for F , where γ is the discount factor. Whenever F is bounded in absolute value, the random

vector ∇̂V
NFσ(θ) is sub-Gaussian.

Theorem 4.1. If F is a bounded function such that |F | ≤ R1, then the vanilla ES estimator is a
sub-Gaussian vector with parameter

√
2R1

√
8c2+1√

Nσ
; with c = 24e and therefore for any t ≥ 0:

P
(

max
j=1,...,d

∣∣∣∣(∇̂V
NFσ(θ)

)
j
−
(
E
[
∇̂V
NFσ(θ)

])
j

∣∣∣∣ ≥ t

)
≤ 2de

−t2Nσ2

2R2
1(8c2+1) ,

for a universal constant c.

For the case of pairs of antithetic coupled gradient estimators, one can obtain a similar bound with
comparable performance using this technique.

4.1 Bounds for orthogonal estimators

We show that a general class of orthogonal gradient estimators present similar exponential concentra-
tion properties as the Vanilla ES estimator. Proving these bounds is substantially more challenging
because of the correlation structure between samples. To our knowledge, these are the first results
showing exponential concentration for structured gradient estimators, yielding insight as to why
these perform well in practice. We provide concentration bounds for gradient estimators of the
form:

∇̂Ort
d F (θ) =

1

dσ

d∑
i=1

νibiF (θ + σνibi) ,

where the random vectors νi ∈ Rd are sampled uniformly from the unit sphere using a sequentially
orthogonal process, and bi are zero mean signed lengths, sampled from sub-Gaussian distributions
each with sub-Gaussian parameter βi, independent from each other and from all other sources of

randomness. Let c := 2
√
(24e)2 + 1

2 . Whenever the function F is bounded, the random variable

vector ∇̂Ort
d F (θ) is sub-Gaussian.

Theorem 4.2. Let B = maxi E [|bi|], and β = maxi βi, |F | ≤ R, then the orthogonal gradient

estimator ∇̂Ort
d F (θ) is sub-Gaussian with parameter

√
β2c2R2

σ2d2 + R2B2

4dσ2 .

Assuming N = Td and the availability of T i.i.d. orthogonal estimators (indexed by j), define:

∇̂Ort
N F (θ) =

1

T

T∑
j=1

∇̂Ort,j
d F (θ) .
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Theorem 4.3. The gradient estimator ∇̂Ort
N F (θ) is sub-Gaussian with parameter

1√
T

√
β2c2R2

σ2d2 + R2B2

4σ2d = 1√
N

√
β2c2R2

dσ2 + R2B2

4σ2 ; and therefore:

P
(

max
j=1,...,d

∣∣∣∣(∇̂Ort
N F (θ)

)
j
−
(
E
[
∇̂Ort
N F (θ)

])
j

∣∣∣∣ ≥ t

)
≤ 2de

−t2Nσ2

β2c2R2σ2

d
+R2B2

4 .

5 Experiments

5.1 Learning efficient navigation policies with ES strategies

We consider the task of closed-loop policy optimization to train stable walking behaviors for
quadruped locomotion of the Minitaur platform on the Bullet simulator (Coumans and Bai, 2016–
2018). We train neural network policies with d ≥ 96 parameters and optimize the blackbox
function F that takes as input parameters of the neural network and outputs the total reward,
by applying MC estimators of gradients of Gaussian smoothings of F , as described in Expres-
sion (6). The main aim of the experiments is to compare policies learnt by using i.i.d. sam-
ples, as in Expression (6), against estimators using GCMC methods. We test four different con-
trol variate terms that lead to four different variants of the MC algorithm: vanilla (no control
variate), forward finite-difference (see Choromanski et al., 2018c, for details), antithetic and
antithetic-coupled (see: below). For each of these four variants we use different sampling strate-
gies of calculating the MC estimator: MCGaussian, Halton (baselines), MCGaussianOrthogonal,
MCGaussianOrthogonalFixed, and MCRandomHadamard that correspond to: independent
Gaussian samples (Salimans et al., 2017), samples constructed from randomized Halton sequences
used on a regular basis in QMC methods, Gaussian orthogonal samples (introduced first in Choro-
manski et al. (2018c) but not tested for m < d and in the locomotion task setting), Gaussian or-
thogonal samples with renormalized lengths (each length equals

√
d) and finally: rows of random

Hadamard matrices (that approximate Gaussian orthogonal samples, but are easier to compute, (see
Choromanski et al., 2018c)). For the antithetic variant using Gaussian orthogonal samples, we also
test the variant which couples the lengths of antithetic pairs of samples as in Algorithm 1; we refer
to this as antithetic− coupled. We tested different number of samples s with the emphasis on MC
estimators satisfying: m≪ d. We chose: m = 8, 16, 32, 48, 56, 64, 96. Full details of the sampling
mechanisms described above are given in the Appendix Section.

Figure 2 shows comparison of different MC methods using antithetic variant for m = 8, 32, 48
samples given to the MC estimator per iteration of the optimization routine (with an exception of the
Halton approach, where we usedm = 96 samples to demonstrate that even with the larger number of
samples standard QMC methods fail). Walkable policies are characterized by total rewardR > 10.0.
We notice that structured approaches outperform the unstructured one and that QMC method based
on Halton sequences did not lead to walkable policies. Since it will be also the case for other settings
considered by us, we exclude it from the subsequent plots.

(a) m = 8 (b) m = 32 (c) m = 48, 600 iterations (d) m = 48, 100 itera-
tions

Figure 2: Training curves for different MC methods. iid, ort, coupled, fixed,
halton-96 correspond to: MCGaussian, MCGaussianOrthogonal, antithetic − coupled,
MCGaussianOrthogonalFixed and Halton-based QMC method. Subfigure (d) is a zoomed ver-
sion of Subfigure (c) after just 100 iterations and with Halton approach excluded.

For m = 32 we excluded the comparison with MCGaussian since it performed substantially
worse than other methods and with MCGaussianOrthogonalFixed since it was very similar to
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MCGaussianOrthogonal (for clarity). Again, for clarity, for m = 8 we plot the max-reward-
curves, where the maximal reward from already constructed policies instead of the current one is
plotted (thus these curves are monotonic). In Subfigure (a) the curves stabilize after about 87 itera-
tions (for the MCGaussianOrthogonal strategy the curve ultimately exceeds reward 10.0 but after
> 500 iterations).

We conclude that for m = 8 the coupling mechanism is the only one that leads to walkable policies
and for m = 32 it leads to the best policy among all considered structured mechanisms. More ex-
perimental results are given in the Appendix. We also attach videos showing how policies learned
by applying certain structured mechanisms work in practice (details in the Appendix). Testing all
variants of the MC mechanism mentioned above, we managed to successfully train stable walking be-
haviours using onlym = 8 samples per iteration only for k = 5 settings: MCGaussianOrthogonal-
antithetic-coupled, MCGaussianOrthogonal-antithetic, MCGaussianOrthogonal-forward-fd,
MCRandomHadamard-antithetic and MCRandomHadamard-vanilla. Thus all 5 policies corre-
spond to some variants of our GCMC mechanism.

We did not conduct hyperparameters tuning to obtain the above curves. We used hyperparameters
applied on a regular basis in other Monte Carlo algorithms for policy optimization, in particular
chose σ = 0.1 and η = 0.01, where σ stands for the standard deviation of the entries of Gaussian
vectors used for MC and η is the gradient step size. The experiments where conducted in a dis-
tributed environment on a cluster of machines, where each machine was responsible for evaluating
exactly one sample.

5.2 Variance-reduced ELBO estimation for deep generative models

In this section, we test GCMC sampling strategies on a deep generative modelling application. We
consider a variational autoencoder (VAE) (Rezende et al., 2014; Kingma and Welling, 2014) with
latent variable z with prior p(z), observed variable x with trainable generative model pθ(x|z), and
trainable recognition model qϕ(z|x). In the standard VAE training algorithm, the evidence lower-
bound (ELBO) for a single training point x is:

Ez∼qϕ(·|x) [log pθ(x, z)− log qϕ(z|x)] .
This objective is then optimised by estimating gradients using a combination of m ∈ N i.i.d. Monte
Carlo samples together with the reparametrisation trick. We adjust the training algorithm by using a
variety of GCMC sampling algorithms, rather than i.i.d. sampling. We train on MNIST, and report
the average train and test ELBO after 50 epochs for a variety of sampling algorithms and numbers
of samples K, to understand the effect of these sampling methods on speeding up learning. The full
results and experiment specifications are given in the Appendix Section 12. We observe that GCMC
methods consistently lead to better log-likelihoods than i.i.d. sampling, in fact with GCMC methods
with 2 samples performing better than i.i.d. methods using 8 samples. We highlight concurrent
work (Buchholz et al., 2018) that presents an in-depth study of quasi-Monte Carlo integration for
variational inference.

6 Conclusion

We have introduced Monte Carlo coupling strategies in Euclidean spaces for improving algorithms
that typically operate in a high-dimensional, low-sample regime, demonstrating fundamental con-
nections to multi-marginal transport. In future work, it will be interesting to explore applications in
other areas such as random feature kernel approximation. We also highlight more general solution
of the K-optimality criterion, and incorporation of a sampling cost penalty into the corresponding
objective as interesting problems left open by this paper.
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