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In the following sections, we derive the approximate message passing (AMP) algorithms for arbi-
trary low-rank tensors. The derivation follows similar lines as the derivation in [3, 9] for the matrix
p = 2 case, only here the model is generalized for higher modes p>2. We then derive dynamical
mean field theory (also known as state evolution) and find the phase transition of the inference prob-
lem using non-linear analysis on the recursive dynamical equations of the order parameters. Lastly,
we explicitly solve the equations for several simple examples of mode-3 tensors with a mixture of
different prior distributions. For notational simplicity, we start the derivation assuming all modes
are of the same dimension, N , which we assume to be in the thermodynamic limit, N →∞. Then,
we will generalize for noncubic tensors. We emphasize that even in the cubic case the tensor is
non-symmetric, and each mode is independent and is iid drawn from a prior distribution, which is
potentially different for each mode.

1 Message passing on factorized graph

1.1 Factor graph for tensor decomposition – notations

We consider a given low-rank tensor

w0
a = 1

N
p−1

2

r∑
ρ=1

∏
α

x0ρ
αi. (1)

Here the vectors x0
αi ∈ Rr denote the ground-truth values to the estimation problem. Each entry of

the tensor is denoted with a lower-case latin letter {a, b, c, ...}. The notation stands for the set of p
indices that define that tensor element,

a = {i1, i2, ...ip}. (2)

However, we only have access to noisy measurements of the ground-truth vectors, denoted by

Ya = w0
a +
√

∆εa, (3)

where εa is a random tesnsor, whose elements are i.i.d. gaussians with zero mean and unit variance.
We assume no covariance between two measurements, E(εaεb) = 0 ∀a 6= b.

The goal of the low rank decomposition is to find the estimators x̂αi ∈ Rr that minimize the mean
square error

x̂ = arg min
x

∑
α

∑
i

(
xαi − x0

αi

)2
.
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To solve the Bayesian inference problem, using message passing, we frame it as a bipartite graphical
model. Each of the variable nodes corresponds to an estimator xαi [See figure 1.b in the main text].
We use the notation ∂a to denote all the neighboring nodes to a and the notation ∂a\iα to denote
all the neighboring variable nodes adjacent to a, excluding the node αi. The cardinality of the set of
all factor points is |{a}| = NP .

Each variable point on the graph is connected to Np−1 factor nodes. The set of neighboring factor
nodes that is connected to the variable node αi is denoted as

∂αi = {a|αi ∈ a} . (4)

1.2 Weakly connected graph

An underlying assumption in belief propagation and message passing algorithms is that the incoming
messages into each node are statistically independent. It can be achieved, for example in sparse
graphs, where at each node the graph can be approximately considered as a tree (directed acyclic
graph), without recurring loops. In the physics literature such approximation is often referred to
as Bethe Lattice. In the current model this is possible due to the scaling of individual elements,
w ∼ N (1−p)/2, as defined in Eq. (1) in the main text. Since correlations in the messages are
due to loops in the underlying graph, that pass through several nodes, we neglect them when the
interactions are sufficiently weak [6].

1.3 Message passing

We start by defining two different types of messages (beliefs): one for messages outgoing from a
variable node into a factor node η. Messages going from factor nodes into variable nodes are denoted
by η̃. Messages are the marginal probabilities at each node, measuring the posterior probability
density of the estimator at that source node. A message outgoing from the variable node αi to a
factor node a can be written in terms of the product of messages originating from all its connected
nodes excluding a,

ηαi→a(xαi) = Pα(xαi)
Zαi→a

∏
b∈∂αi\a

η̃b→αi(xαi). (5)

The denominator Zαi→a is a normalization factor

Zαi→a = TrxαiPα(xαi)
∏

b∈∂αi\a

η̃b→αi(xαi).

Incoming messages into variable nodes are obtained by marginalizing over distribution over all the
messages. A message outgoing from a factor node into a variable node is given by

η̃b→αi(xαi) = 1
Zb→αi

∏
βj∈∂b\α

Trxβjηβj→b(xβj) exp g
(
Yb, N

1−p
2 wb

)
, (6)

where

wb ≡
r∑
ρ=1

∏
α

xραi. (7)

The normalization factor in the denominator of eq. (7) is given by

Zb→αi = Trxαi
∏

βj∈∂b\α

Trxβjηβj→b(xβj) exp g
(
Yb, N

1−p
2 wb

)
. (8)

The cost function g(·) at the exponent can be expanded as a power series in N

η̃b→αi(xαi) = 1
Zb→αi

∏
βj∈∂b\α

Trxβjηβj→b(xβj)×

exp
[
g(Y0, 0)

(
1 + 1

N (p−1)/2Sbwb + 1
Np−1

(
Rb − S2

b

)
w2
b +O

(
1

N3(p−1)/2

))]
(9)
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where Sb and Rb are the first and second derivative of the cost function g(Y,w) evaluated at Yb and
wb = 0:

Sb ≡
∂g(Yb, wb)

∂w

∣∣∣∣
wb=0

(10)

Rb ≡

(
∂g(Yb, wb)

∂w

∣∣∣∣
wb=0

)2

+ ∂2g(Yb, wb)
∂w2

b

∣∣∣∣
wb=0

(11)

Belief propagation

The mean values of outgoing messages from variable node αi into factor node a, are obtained by
integrating over the marginal probabilities ηαi→a:

x̂αi→i =
ˆ
dxαiηαi→a(xαi)xTαi ∈ Rr. (12)

Note that we have used the transpose of the vector xTαi, which will become useful for the notation
below. Their covariance matrix is equal to

σ̂αi→a =
ˆ
dxαiηαi→a(xαi)xαixTαi − x̂αi→ix̂Tα)→i ∈ Rr×r. (13)

Using the first- and second-order statistics, we can write explicit expressions for the moments of wb
appearing in the expansion (9) above. The first moment reads∏

βj∈∂b\α

ˆ
dxβiηβ)→b(xβj)wb =

∏
βj∈∂b\α

ˆ
dxβiηβj→b(xβj)

r∑
ρ=1

∏
βj∈∂b

xρβj

= xTαi
�∏

βj∈∂b\α

x̂βj→b. (14)

Similarly, the second moment, w2
b , is given by

∏
βj∈∂b\α

ˆ
dxβiηβj→b(xβj)w2

b =
ˆ ∏

βj∈∂b\α

dxβiηβj→b(xβj)
�∏

βj∈∂b

xρTβj

�∏
γk∈∂b

xργk =

xTαi
�∏

βj∈∂b\α

(
σβj→b + x̂βj→bx̂Tβj→b

)
xαi. (15)

Introducing the explicit moments back into eq. (9), the incoming messages into variable nodes are
given by

η̃b→αi(xαi) = eg(Yb,0)

Zb→αi

1 + 1
N (p−1)/2Sbx

T
αi

�∏
βj∈∂b\α

x̂βj→b+

1
Np−1

(
Rb − S2

b

)
xTαi

�∏
βj∈∂b\α

(
σβj→b + xβj→bxTβj→b

)
xαi

+O
(

1
N3(p−1)/2

)
. (16)

Since we are interested in the marginals in the variable nodes, we can replace this result in the
expression for messages outgoing from a variable node (5), we obtain

ηαi→a(xαi) = Pα(xαi)
Zαi→a

∏
b∈∂αi\a

η̃b→αi(xαi) = Pα(xαi)
Zαi→a

eNg(Yb,0)∏
b∈∂αi\aZb→αi

×

exp
∑

b∈∂αi\a

 1
Np−1

(
Rb − S2

b

)
xTαi

�∏
βj∈∂b\α

(
σβj→b + xβj→bxTβj→b

)
xαi

 . (17)
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Note that g(Yb, 0) is a constant and can be absorbed into the normalization function. We define the
two order parameters

uTαi→a = 1
N (p−1)/2

∑
b∈∂αi\a

Sb

�∏
βj∈∂b\αi

x̂Tβj→b ∈ Rr, (18)

and

Aβj→b = 1
Np−1

∑
b∈∂αi\a

 �∏
βj∈∂b\αi

S2
bxβj→bxTβj→b

−Rb
�∏

βj∈∂b\αi

(
σβj→b + xβj→bxTβj→b

) ∈ Rr×r. (19)

Using the order parameters we rewrite equation (17) as

ηαi→a(xαi) = Pα(xαi)
Zαi→a

∏
b∈∂αi\a

exp
(
−xTαiAβj→bxαi + uTβj→bxαi

)
. (20)

The normalization, or partition function Zαi→a , can be written in terms of the order parameters
uTαi→a and Aβj→b as

Zαi→a = TrxαiPα(xαi)
∏

b∈∂αi\a

exp
(
−xTαiAβj→bxαi + uTβj→bxαi

)
. (21)

Finally, the moments of the local variables xαi with distribution ηαi→a(xαi) can be found directly
from the partition functions Zαi→a by standard derivations. The mean is given by

x̂αi→a = ∂

∂uαi→a
Zαi→a(Aαi→a,uαi→a) ≡ f (Aαi→a,uαi→a) , (22)

and the covariance matrices are

σαi→a = ∂2

∂uαi→a∂uTαi→a
Zαi→a(Aαi→a,uαi→a)

= ∂

∂uαi→a
f (Aαi→a,uαi→a) . (23)

1.4 AMP algorithms

The mean-field equations, describing the equilibrium of the local estimators can be used to iteratively
into an algorithm by iteratively calculating the statistics of the messages given their estimators using
eq. (18) and (19) and then reevaluating the estimators x̂ and σ using eq. (22) and (23). Defining the
upper-script t denoting the time step of the algorithm iteration, we can write the iterative equations
as

utαi→a = 1
N (p−1)/2

∑
b∈∂αi\a

Sb

�∏
βj∈∂b\αi

x̂tβj→b (24)

Atαi→a = 1
Np−1

∑
b∈∂αi\a

S2
b

�∏
βj∈∂b\αi

x̂tβj→bx̂tTβj→b (25)

− Rb

�∏
βj∈∂b\αi

(
σtβj→b + x̂tβj→bx̂tTβj→b

) (26)

x̂t+1
αi→a = ∂

∂utαi→a
logZαi→a(Atαi→a,utαi→a) (27)

σt+1
αi→a = ∂2

∂utαi→a∂utTαi→a
logZαi→a(Atαi→a,utαi→a) (28)
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1.5 Approximate message passing – local mean-field approximation for the messages

In the equations above (24)-(28), the number of overall messages (and thus calculations) scale with
the number of edges in the factorized graph, i.e. as O(NP ). However, the dependence of each
message on the state of the target node is weak. Therefore, the values of utαi→a and Atαi→aare very
close to their mean, when marginalized over all target nodes a. The local deviations about that mean
scale asN (1−p)/2. For that reason, we can consider the statistics of all outgoing messages from each
node (i.e., average over all the adjacent edges), and assume small fluctuations due to the state of the
targets. This procedure is essentially performing mean-field approximation at every node. The result
will be the AMP equations which scale with the number of variable nodes PN, rather than with the
number of edges in the graph. In physics, this analogous to the cavity method.

To apply this reasoning to the equations, we define the order parameters Aαi and uαi, which explic-
itly exclude the dependence of the target node:

utαi = 1
N (p−1)/2

∑
b∈∂αi

Sb

�∏
βj∈∂b

x̂tβj→b, (29)

Atαi = 1
Np−1

∑
b∈∂αi

S2
b

�∏
βj∈∂b\αi

x̂tβj→bx̂tTβj→b −Rb
�∏

βj∈∂b\αi

(
σtβj→b + x̂tβj→bx̂tTβj→b

) . (30)

The difference between the non-directed and the directed messages is the component that depends
on the target node Sa. For the mean-messages, the correction terms scale as O(N (1−p)/2), and is
given by

δutαi→a = utαi − utαi→a = 1
N (p−1)/2Sa

�∏
βj∈∂a\αi

x̂tβj→a. (31)

For the fluctuations in the local messages about their mean, the correction term scales as

Atαi −Atαi→a ∼ O(N1−p), (32)

and we will be neglecting it.

To transform the equations for the local messages statistics, to use only the target-agnostic variables,
x̂tβj and σtβj , we calculate the difference between the two mean values

δx̂αi→a = x̂tαi − x̂t(αi)→a = f
(
At−1
αi→a,u

t−1
αi→a

)
− f

(
At−1
αi ,u

t−1
αi

)
. (33)

We develop the second term on the RHS to linear order in the small parameter of the difference
δuαi→a, and note that the leading order cancel with the first term in the RHS above, yielding

δx̂tαi→a = f
(
At−1
αi ,u

t−1
αi

)
+ ∂

∂uf
(
At−1
αi ,u

t−1
αi

) (
ut−1
αi→a − ut−1

αi

)
− f

(
At−1
αi ,u

t−1
αi

)
=

σtαi
(
ut−1
αi→a − ut−1

αi

)
= σtαi

1
N (p−1)/2Sa

�∏
βj∈∂a\αi

x̂t−1
β,j . (34)

Using eq. (31) and (34), we can write an expression for the node-average local messages,

utαi = 1
N (p−1)/2

∑
b∈∂αi

Sb

�∏
βj∈∂b\αi

(
x̂tβj − δx̂tβj→b

)
. (35)

Expanding the product of the βj factors, and keeping terms up to linear order in the small difference
δx, we obtain

utαi = 1
N (p−1)/2

∑
b∈∂αi

Sb

 �∏
βj∈∂b\αi

x̂tβj −
∑

βj∈∂b\αi

δx̂tβj→b
�∏

γk∈∂b\αi,βj

x̂tγk

+O( 1
N (p−1) ).

(36)
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The first correction for the above, involves the quadratic terms in the expansion of (35). The mixed
terms involve the values at time t and at time t − 1, which originate from the expansion of δx in
(34). The mixed term is given by

1
N (p−1)

∑
b∈∂αi

S2
b

∑
βj∈∂b\αi

σtβj

�∏
γ,k∈∂b\βj

x̂t−1
γk

�∏
γk∈∂b\αi,βj

x̂tγk =

1
N (p−1) x̂

t−1
αi

∑
b∈∂αi

S2
b

∑
βj∈∂b\αi

σtβj

�∏
γk∈∂b\αi,βj

x̂tγkx̂t−1
γk . (37)

This expression, which couples the dynamical variable x̂ into its previous time step is an Onsager
response term. It reflects the changes to the fields of the nodes surrounding the node αi due to the
activity of the node αi in the previous time step.

Importantly, up until this point, we have not yet used the assumption of Bayes optimality, nor have
we used the Nishimori identities that follow the Bayes-optimal assumption. Consequently, algo-
rithms based on the approximate message-passing above should be general and do not require the
Bayes-optimal assumption. In the following section, we consider simplification due to the Bayes-
optimal assumption. Beyond simplification of the mathematical expressions, it will allow us to
systematically derive a dynamical mean-field theory for the errors in section 2.

1.6 Simplifications for Bayes-optimal settings

The covariance matrix in the Bayes-optimal case can be much simplified. First, one can show, using
the Nishimori identities at the equilibrium, that

〈Rb〉 ≡

〈
∂g(Yb, w)

∂w

∣∣∣∣2
w=0

〉
+
〈
∂2g(Yb, w)

∂w2

∣∣∣∣
w=0

〉
= 0. (38)

Here the angular brackets denote averaging over the posterior. The posterior variance of Sb is given
by the Fisher information of the output channel Epost

[
S2
b

]
= 1

∆ . Furthermore, in Bayes-optimal
setting all samples from the equilibrium ensemble are similar, the sum over nodes becomes self-
averaging and so ∑

b

S2
b = EPost

[
S2
b

]
= 1

∆ . (39)

Using the above simplifications, the covariance matrix of the messages can be written as

Atαi = 1
Np−1

1
∆
∑
b∈∂αi

�∏
βj∈∂b\αi

x̂tβj→bx̂tTβj→b = 1
∆

�∏
β 6=α

 1
N

N∑
j=1

x̂tβjx̂tTβj

 ≡ Atα. (40)

Importantly, the covariance matrix does not depend on the specific node i, but it does depend on
the mode of the tensor α. This is a significant difference from the algorithms for symmetric-tensor
decomposition, for which At was uniform for all nodes in the factor graph [4].

The Onsager term, which appears in the iterative mean-field equations for the local mean of the
messages can also be simplified under the Bayes-optimal setting. Using some algebra, the Onsager
correction becomes

1
N (p−1) x̂t−1

αi

∑
b∈∂αi

S2
b

∑
βj∈∂b\αi

σtβj

�∏
(γ,k)∈∂b\αi,(βj)

x̂tγkx̂t−1
γk =

1
∆N x̂t−1

αi

∑
b∈∂αi

∑
βj∈∂b\αi

σtβj

�∏
γ 6=α,β

(
1
N

∑
k

x̂tγkx̂t−1
γk

)
=

1
∆N x̂t−1

αi

∑
β 6=α

∑
j

σtβj �
�∏

γ 6=α,β

(
1
N

∑
k

x̂tγkx̂t−1
γk

)
≡

1
∆N x̂t−1

αi

∑
β 6=α

∑
j

σtβj �Dt
αβ , (41)
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where

Dt
αβ =

�∏
γ 6=α,β

(
1
N

∑
k

x̂tγkx̂t−1
γk

)
. (42)

Finally, we write the simplified AMP equations as

utαi = 1
N (p−1)/2

∑
b∈∂αi

Sb

�∏
βj∈∂b\αi

x̂tβj −
1
∆ x̂t−1

αi

∑
β 6=α

Σtβ �Dt
αβ (43)

Atα = 1
∆

�∏
β 6=α

 1
N

N∑
j=1

x̂tβjx̂tTβj

 (44)

x̂t+1
αi = ∂

∂utαi
logZα(Atα,utαi) (45)

σt+1
αi = ∂2

∂utαi∂utTαi
logZα(Atα,utαi), (46)

where the Onsager term is given by

Dt
αβ =

�∏
γ 6=α,β

(
1
N

∑
k

x̂tγkx̂t−1
γk

)
(47)

Σtα = N−1
∑
i

σtαi , (48)

and the partition function reads

Zα(Atα,utαi) =
ˆ
dxPα(x) exp

[(
uTαix− xTAtαx

)]
. (49)

There are two parameters in these equations (apart from the prior distributions Pα(x). One is the
Fisher information of the output channel, which is a global parameter that can tune the global dy-
namics. The other Sb, which is the Fisher score of the entry at Yb. The last one is what yields the
structure in the solution of the estimators.

2 Dynamic mean field theory (state evolution)

In the previous section we have derived the AMP algorithm for general tensors, and show their
simplified form in the case of the Bayes-optimal assumption, where the priors are known, and the
system follow Nishimori identities at equilibrium. These algorithms follow the iterative evolution
of the estimators in each of the variable nodes in the factor graph. In order to analytically study
the performance of the algorithm, we want to know how the mean error reduces from one iteration
of the algorithm to the next. To do that, we derive a dynamical mean-field theory (also known as
state-evolution). As mentioned above, following the Bayes-optimal assumption, the estimators are
self-averaging; thus a mean-field description of the error is a good measure for the typical evolution
of any given system.

We define an order parameter that measures the overlap between each of the underlying vectors of
estimators x̂tα ∈ Rp×r and the ground truth values x0

α ∈ Rp×r. The overlap matrix is defined as

M t
α = 1

N

N∑
i

x̂tαix0T
αi ∈ Rr×r. (50)

In total, there are p matrices of dimensions r × r, each for each mode of the tensor. In the Bayes-
optimal regime, the ground-truth values can be replaced with any typical sample from the posterior
distribution. Thus, in Bayes-optimal inference, M t

α is also the typical covariance matrix of the
estimators

7



1
N

N∑
i

x̂tαix̂tαi = M t
α. (51)

It follows that under the Bayes-optimality condition, M t
α is a symmetric matrix.

To study the typical dynamics of the algorithm using the mean overlap, we derive yet another mean-
field approximation, now on the spatial degrees of freedom – i.e., the nodes. Given the self-averaging
property of the nodes under the Bayes-optimal setting, and using the central-limit theorem, we need
to find the first two moments of the distribution of the local values uiα (note that Aα are already
node-independent). Following the usual procedure of mean-field theory, we then close the equations
self-consistently using the overlap parameter M t

α.

Using the definition of uαi from eq. (29), we average over the posterior Pout:

E
[
utαi
]

= 1
N (p−1)/2

∑
b∈∂αi

E

Sb �∏
βj∈∂b\αi

x̂tβj→b

 =

1
N (p−1)/2

∑
b∈∂αi

ˆ
dYbPout(Yb, wb)

∂ logPout (Yb |w )
∂w

∣∣∣∣
w=0

�∏
βj∈∂b\αi

x̂tβj→b (52)

Similar to the the approximation carried above for the AMP algorithms, we develop the posterior
probability about w = 0, and keep only the leading terms,

Pout(Yb, wb) = Pout(Yb, 0) + Pout(Yb, 0)wb
(
∂ logPout(Yb, w)

∂w

)
w=0

+O(w2). (53)

Carrying the integration in eq. (52), the leading order will vanish

ˆ
dYbPout(Yb, 0) ∂ logPout (Yb |w )

∂w

∣∣∣∣
w=0

= 0, (54)

which is the consequence of the Nishimori identities. In other words, in a Bayes-optimal setting,
and when the interactions are weak, then the average value of the messages when averaged over the
entire graph vanish to leading order. Intuitively, since the underlying graph is isotropic, we expect
that the dynamics will be similar at every node on average.

Performing the integration on the next, quadratic, term in (52) we get

E
[
utαi
]

= 1
N (p−1)/2×∑

b∈∂αi

Pout(Yb, 0)wb
(
∂ logPout(Yb, w)

∂w

)2

w=0

�∏
βj∈∂b\αi

x̂tβj→b =

1
∆N (p−1)/2

∑
b∈∂αi

wb

�∏
βj∈∂b\αi

x̂tβj→b. (55)

Note that the original tensor components, denoted by wa are the ground-truth in the context of the
inference problem, and we can write

wa = 1
N

p−1
2

�∏
(βj)∈∂a

x0
βj . (56)

8



Replacing this into the expression for the expectation above we get

E
[
utαi
]

= 1
∆N (p−1)

∑
b∈∂αi

r∑
ρ=1

�∏
(βj)∈∂b

x0,ρ
βj

�∏
βj∈∂b\αi

x̂tTβj

= 1
∆N (p−1)

∑
b∈∂αi

(
x0
αi

)T  �∏
βj∈∂b\αi

x0
βj

 �∏
βj∈∂b\αi

x̂tβj

T

= 1
∆
(
x0
αi

)T �∏
β 6=α

 1
N

N∑
j

x0
βjx̂tTβj

 = 1
∆
(
x0
αi

)T �∏
β 6=α

M t
β . (57)

Finally we can write

E
[
utαi
]

= 1
∆

�∏
β 6=α

M t
βx0

αi. (58)

In a similar manner, we can calculate the covariance matrix of the mean-messages

cov
[
utiα
]

=
∑
a∈∂αi

ˆ
dYaPout(Ya, w)

(
∂g(Ya, w)

∂w

)2

w=0

1
Np−1

�∏
βj∈∂a\αi

x̂tβjx̂tTβj . (59)

Keeping the leading order after the expansion of the distribution Pout for small w we get

cov
[
utiα
]

= 1
Np−1∆

∑
a∈∂αi

�∏
βj∈∂a\αi

x̂tβjx̂tTβj . (60)

In the Bayes-optimal setting this is equal to

cov
[
utiα
]

= 1
∆

�∏
β 6=α

M t
β . (61)

While the mean-message uαi varies from node to node, the mean covariance (not to be confused
with the covariance of the mean calculated above), Atα, is node-independent, as we have established
in the previous section. In the Bayes-optimal setting, where the Nishimori identities hold, it is equal
to

Atα = 1
∆

�∏
β 6=α

 1
N

N∑
j=1

x̂tβjx̂tTβj

 = 1
∆

�∏
β 6=α

M t
β . (62)

Using the definition of the mean overlap in eq. (50), and eq. (45), we write

M t
α = 1

N

N∑
i

x̂tαix0T
αi = 1

N

∑
i

fα
(
At−1
α ,ut−1

αi

)
x0T
αi , (63)

where
fα ≡

∂

∂u logZ(Aα,uα), (64)

and with the partition function

Zα(Aα,uα) =
ˆ
dxPα(x) exp

[(
uαTx− xTAtαx

)]
. (65)

Replacing the average over all nodes i in (63) with the expectation, we write an iterative update
equation for the order parameter M t

α,

M t+1
α =

ˆ
dx0

αPα(x0
α)Ez

fα
 1

∆

�∏
β 6=α

M t
β ,

1
∆

�∏
β 6=α

M t
βx

0
αi + 1√

∆

 �∏
β 6=α

M t
β

 1
2

z

x0T
αi

 .
(66)
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Here, z ∈ Rr are random variables with standard normal distribution. The expectation in the RHS
of eq. (66) is over two random variables: First are expected values for the underlying ground-truth
x0
α, which follows the prior distribution Pα; The second is of a standard gaussian variable z, which

represent the node-to-node fluctuations in the local mean-messages, with mean 1
∆
∏�
β 6=αM

t
βx

0
αi

and covariance matrix 1
∆
∏�
β 6=αM

t
β .

The final overlap values of the iterative algorithms are given by the stable fixed points of the dynamic
equations defined in (66). These can be obtained by finding the solutions M∗α for the p equations

M∗α =
ˆ
dx0

αPα(x0
α)Ez

fα
 1

∆

�∏
β 6=α

M∗β ,
1
∆

�∏
β 6=α

M∗βx
0
αi + 1√

∆

 �∏
β 6=α

M∗β

 1
2

z

x0T
αi

 .
(67)

Mean square error The real quantity of interest is the mean square error (MSE) of the estimate.
This can be easily obtained from the mean overlap at any time-step of the algorithm using.

MSEtα = 1
σ2
α

Tr
[
EPα

[
x0

αx0T
α

]
−M t

α

]
. (68)

Finally, the expected error of the AMP algorithms, once it has converged is given by

MSEAMP
α = 1

σ2
α

Tr
[
EPα

[
x0

αx0T
α

]
−M∗α

]
. (69)

3 Convergence of the AMP algorithms

Approximate message passing, and belief-propagation algorithms in general are known to have con-
vergence issues (see for example [7, 1, 2, 8, 5]). A typical naive implementation of the algorithms
will reduce the overall mean square error of the estimator, MSEt. However, at some point, MSEt

will start increasing and may diverge to large deviations from the ground-truth values or will oscil-
late about some fixed value. Loosely speaking, the step size of the iterative update equations (45)
and (46) is too big, and the algorithm may ’overshoot’ the MMSE estimator. One possible way to
correct this behavior (see e.g., [8] and reference therein) is to reduce the step size. Since the differ-
ential change to xt and σt is proportional to derivatives of the partition function in (45) and (46), a
good normalization scheme could use an energy estimation of the configuration at time-step t. To do
this, one can evaluate the Bethe free energy at every time step [8, 5, 3]. However, since this report
does not focus on possible implementations of the algorithms, it is sufficient to use a simpler – and
potentially less efficient – scheme, using fixed step-size reduction, or damping.

To implement the fixed damping algorithm, eq (45) and (46) can be rewritten as

x̂t+1
αi = λx̂t+1

αi + (1− λ) ∂

∂utαi
logZα(Atα,utαi) (70)

σt+1
αi = λσt+1

αi + (1− λ) ∂2

∂utαi∂utTαi
logZα(Atα,utαi) (71)

where 0 ≤ λ < 1 is the damping coefficient that controls the effective step size and the speed
of convergence. In this simple implementation, the level of damping is a control parameter of the
algorithm. A more sophisticated approach would use adaptive dampingλt, where the effective step
size decreases as the Bethe free energy of the configuration {xtα} decreases [7, 3].

4 Noncubic tensors

In the above, we have assumed that the dimensionality of all p modes is N , implying that the
underlying tensor is cubic (i.e., all modes have the same length). To study how the shape of the
tensors influence the AMP algorithm and the performance, we allow for the different modes to
have different dimensionality Nα. Importantly, we assume that all modes are in the thermodynamic
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regime, i.e., Nα → ∞ α = {1, ..., p}. Furthermore, we assume all modes scale in a similar way.
This is done by defining Nα = nαN where all nα = O(1) and

∏
α nα = 1. The thermodynamic

limit is then understood by taking N →∞.

First we note that the scaling of the tensor elements does not change with this choice of scaling,

wb ∼

√
N∏
αNα

∼ N−
p−1

2√∏
α nα

= N
1−p

2 .

However, the algorithms have no symmetry with respect to the dimensionality of the different modes
in this case. This broken symmetry is in the iterative mean-field equations for the local mean mes-
sages uαi, in eq. (43) , which now is scaled by proportion of the dimensionality respective mode:

utαi = nα
N (p−1)/2

∑
b∈∂αi

Sb

�∏
βj∈∂b\αi

x̂tβj −
1
∆ x̂t−1

αi

∑
β 6=α

Σtβ �Dt
αβ (72)

The other mean-field equations of the algorithms are left unchanged.

Correction to the dynamic mean-filed equations In order to make the necessary changes to the
dynamic mean-field theory in section 2, we redefine the mean overlap with the appropriate scaling,
which now depends on the mode α,

M t
α = 1

nαN

N∑
i

x̂tαix0T
αi ∈ Rr×r. (73)

Using the rescaled overlap, we re-derive the iterative dynamic mean-field equations, following the
same steps as in section 2:

E
[
utαi
]

= nα

N (p−1)/2
√∏

β nβ
×

∑
b∈∂αi

Pout(Yb, 0)wb
(
∂ logPout(Yb, w)

∂w

)2

w=0

�∏
βj∈∂b\αi

x̂tβj→b =

1
∆N (p−1)/2

∑
b∈∂αi

wb

�∏
βj∈∂b\αi

x̂tβj→b. (74)

Substituting the expression for w,

E
[
utαi
]

= nα
∆N (p−1)∏

β nβ

∑
b∈∂αi

�∏
(βj)∈∂b

x0
βj

�∏
βj∈∂b\αi

x̂tTβj

= nα
∆N (p−1)∏

β nβ

∑
b∈∂αi

(
x0
αi

)T  �∏
βj∈∂b\αi

x0
βj

 �∏
βj∈∂b\αi

x̂tβj

T

= nα
∆
(
x0
αi

)T �∏
β 6=α

 1
Nnβ

N∑
j

x0
βjx̂tTβj

 = nα
∆
(
x0
αi

)T �∏
β 6=α

M t
β (75)

Finally we arrive at

E
[
utαi
]

= nα
∆

�∏
β 6=α

M t
βx0

αi. (76)

Note that the only difference between this result and eq. (58) is the factor nα. It follows that in
order to generalize the dynamic mean-field theory to noncubic tensors, we simply need to replace
Mα → nαMα throughout the results of section 2. The final equations are presented in the main text.
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5 Solutions to the dynamic mean-field equations with specific priors

In order to theoretically evaluate the performance of the AMP algorithms given different tensors, we
explicitly derive the dynamic mean-field equation of the overlap, and the error, for some common
priors Pα(x). These derivations closely resemble the analysis done in [3] for the p = 2 case, only
here we allow different mixture of prior and different sizes for the modes, and consider arbitrary
order p. In the following we will use rank r = 1 tensors, where the estimators x, the ground truth
x0, and the the overlapsM , which we will denote here asm, are all scalar values. The same analysis
hods with multivariate calculation, when r ≥ 2.

In order to theoretically evaluate the performance of the AMP algorithms given different tensors, we
explicitly derive the dynamic mean-field equations of the overlap, and the error, for some common
priors Pα(x). These derivations closely resemble the analysis done in [3] for the p = 2 case, only
here we allow a different mixture of prior and different sizes for the modes, and consider arbitrary
order p. In the following, we will use rank r = 1 tensors, where the estimators x, the ground truth
x0, and the overlaps M – which we will denote here as m – are all scalar values. The same analysis
holds with multivariate calculation when r ≥ 2.

5.1 Gaussian prior

The first, and perhaps most common, choice for prior is a normal distribution of xα , with variance
σ2
α and and mean µα,

Pα(x) = 1√
2πσα

e−(x−µα)2/2σ2
α . (77)

We use that prior to explicitly calculate the update rule,

fα = ∂

∂uZα(A,u) =
´
dxPα(x)xe− 1

2 xTAx+uTx´
dxPα(x)e− 1

2 xTAx+uTx . (78)

The nominator of (78) can be written as
ˆ
dxx

1√
2π
e−(x−µα)2/2σ2

αe−
1
2Ax

2+ux

=
ˆ
dxx

1√
2πσα

exp 1
2σ2

α

[
−x2 + 2xµα − µ2

α − ax+ 2bx
]

=
ˆ
dxx

1√
2πσα

exp −1
2σ2

α

[
(a+ 1)x2 − 2(µα + b)x+ µ2

α

]
, (79)

where b = uσ2
α and a = Aσ2

α.Completing the quadratic form, we have

=
ˆ
dxx

1√
2πσα

exp −1
2σ2

α

[(√
a+ 1x− µα + b√

a+ 1

)2
+ µ2

α −
(µα + b)2

a+ 1

]

= 1√
a+ 1

exp
[
−1
σ2
α

µ2
α −

(µα + b)2

a+ 1

]ˆ
dxx

√
a+ 1√
2πσα

exp −(a+ 1)
σ2
α

[(
x− µα + b

a+ 1

)2
]
.

Similar treatment in performed on the denominator. It is straight forward to see that the function in
(78) reduces to

fα(A, u) = µα + uσ2
α

Aσ2
α + 1 . (80)

Next, we want to use this functional form in the dynamic mean-field eq. (66). Denote m̃t
α =

1
∆
∏�
β 6=αm

t
β , then we have At = m̂t

α and utα = m̂t
αx

0
α +

√
m̂t
αz then we want to compute〈 µα

σ2
α

+ u
A+ 1

σ2
α

x0

〉
z,x0

α

=
〈 µα
σ2
α

+ m̂t
αx

0
α +

√
m̃t
αz

m̃t
α + 1

σ2
α

x0

〉
z,x0

α

=
〈 µα
σ2
α

+ m̃t
αx

0
α

m̃t
α + 1

σ2
α

x0

〉
x0

, (81)
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Averaging over the distribution of the ground-truth values P (x0),

〈
fα
(
m̃t
α

)
x0〉

Pα
=

µ2
α

σ2
α

+ m̃t
α

(
σ2
α + µ2

α

)
m̃t
α + 1

σ2
α

. (82)

Finally the dynamic mean-field iterative equation on the mean overlap are given by

mt+1
α =

∆µ2
α

σ2
α

+
(
σ2
α + µ2

α

)∏�
β 6=αm

t
β

∆
σ2
α

+
∏�
β 6=αm

t
β

. (83)

In the case of zero mean priors, µα = 0, the equation is reduced to

mt+1
α =

σ2
α

∏�
β 6=αm

t
β

∆
σ2
α

+
∏�
β 6=αm

t
β

. (84)

We note that if all modes are Gaussian with zero means, then the solutionMα = 0 ∀α is a stable fixed
point of the dynamics, implying that if we start from random initial conditions, that are uncorrelated
with the true values, the algorithms will not converge. A numerical analysis of eq. (83) for order
p = 3 tensors is presented in the main text.

Consider the case of µα = µ and σα = σ, with all priors are similar. From the structure of (83) we
find that in the fixed point M∗α

m∗α = m∗ ∀α, (85)

which is what would be expected from the symmetry of the problem. Note however that unlike the
derivation in [4], the underlying tensor in non-symmetric.

Noncubic tensors. If we have different population sizes, then we have a ratio between the order
parameters, and replace mαwith nαmα.

mt+1
α =

∆µ2
α

σ2
α

+
(
σ2
α + µ2

α

)∏
β 6=α nβm

t
β

∆
σ2
α

+
∏
β 6=α kβm

t
β

(86)

5.2 Bernoulli distribution

For many applications, it is expected that some of the modes in the underlying low rank tensors are
sparse, meaning they contribute information to only a small subset of the measurements. A simple
way of modeling such data is using the Bernoulli distribution,

Pα(x) = ρδ(x− 1) + (1− ρ)δ(x). (87)

As in the derivation of the Gaussian priors in the previous subsection, we compute the function (78).
The nominator is equal to
ˆ
dx [ρδ(x− 1) + (1− ρ)δ(x)]xe− 1

2x
TAx+uT x =

ρe
− 1

2

∑
ij
A+
∑

j
uj , (88)

and the denominator is given by
ˆ
dx [ρδ(x− 1) + (1− ρ)δ(x)] e− 1

2x
TAx+uT x =

ρe
− 1

2

∑
ij
A+
∑

j
u + (1− ρ). (89)

Combining both expressions together we get

fα(A, u) = ρe−
1
2A+u

ρe−
1
2A+u + (1− ρ)

= ρ

ρ+ (1− ρ)e 1
2A−u , (90)
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with first derivative equal to

∂

∂ufα =
e−

1
2A+u (ρ−1 − 1

)[(
e−

1
2A+u − 1

)
+ ρ−1

]2 . (91)

In the bayes optimal case we have Aα = m̃α and uαi = m̃αx
0
i +
√
m̃αz ,where we have defined

m̃α ≡ 1
∆
∏
β 6=αmβ . In the expression in the exponent of (91) we have

1
2A− ui = m̃α

(
1
2 − x

0
i

)
+
√
m̃αz. (92)

Next we integrate over the prior and ground-truth to get

mt+1
α = ρEz

[
fα
(
m̃α, m̃α +

√
m̃αz

)]
=

ρ2

〈(
ρ+ (1− ρ) exp

[
1
2m̃α −

√
m̃αz

])−1
〉
z

(93)

In the sparse case, where ρ� 1this can be simplified further

mt+1
α = ρ2

〈(
exp

[
−1

2m̃α +
√
m̃αz

])〉
z

+O(ρ3)

= ρ2
√

2π

∞̂

−∞

dz exp
[
−z

2

2 −
1
2m̃α +

√
m̃αz

]
+O(ρ3)

= ρ2em̃α/2 +O(ρ3) (94)

Note that in a complete overlap we have m = ρ so em̃α/2 = 1/ρ and

1
2∆

∏
β 6=α

mβ = − log ρ

In instances where all of the modes have similar statistics, then we would have

1
2∆ρp−1 = − log ρ⇒ ∆ = ρp−1

2 |log ρ| .

Here, we can expect that for ∆ ∼ ρp−1/ |log ρ|, where p is the order of the tensor, we will have high
overlap with zero error. However, in the case of non-symmetric tensors, not all directions have to
be sparse, and may have different distributions. In that case the noise scale as ∆ ∼ ρp̃−1/ |log ρ|,
where p̃ is the number of sparse modes in the underlying tensor.

5.3 Gauss-Bernoulli

The next logical step is to combine the continuous irregularity of the Gaussian distribution and the
sparse nature of the Bernoulli distribution. The Gauss-Bernoulli distribution is given by

Pα(x) = ρN (µ, σ2) + (1− ρ)δ(x). (95)

For brevity we will use zero mean µ = 0 and unit variance σ2 = 1, and note that the results can be
easily rescaled. The update function is given by

fα(A, u) =
ρ
´
dxx 1√

2π e
− 1

2x
TAx+uT x− 1

2x
2

ρ
´
dx 1√

2π e
− 1

2x
TAx+uT x− 1

2x
2 + (1− ρ)

.
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Using some algebra we get

fα =
ρ
´
dxx 1√

2π exp
[
− 1

2 (
√
A− 1x− u√

A+1 )2 + u2

(A+1)

]
ρ
´
dx 1√

2π exp
[
− 1

2 (
√
A− 1x− u√

A+1 )2 + u2

(A+1)

]
+ (1− ρ)

=

1√
A+1ρ

´
dxx

√
A+1√
2π exp

[
−
√
A−1
2 (x− u

A+1 )2
]
e

u2
(A+1)

1√
A+1ρ

´
dx
√
A+1√
2π exp

[
−
√
A−1
2 (x− u

A+1 )2
]
e

u2
(A+1) + (1− ρ)

=

ρu

(A+ 1)ρ+ (1− ρ) (A+ 1)3/2
e

−u2
(A+1)

(96)

and the first derivative is given by

∂fα
∂u

= ρ

(
(A+ 1)ρ+ (1− ρ) (A+ 1)3/2

e
−u2

(A+1)

)
+ 2(1− ρ)u2 (A+ 1)1/2

e
−u2

(A+1)(
(A+ 1)ρ+ (1− ρ) (A+ 1)3/2

e
−u2

(A+1)

)2 . (97)

For sanity check, if ρ = 1 then
fα(ρ = 1) = u

A+ 1
∂fα (ρ = 1)

∂u
= 1
A+ 1

and we have recovered the results for the Gaussian priors from above. From here we can calculate
the dynamic mean-filed equations

mt+1
α = ρ

ˆ
Pα(x0)dx0 dz√

2π
e−z

2/2
m̃t
αx

0 +
√

1
∆m̃

t
αz

(m̃t
α + 1)ρ+ (1− ρ) (m̃t

α + 1)3/2 exp
[
−
(
m̃tαx

0+
√
m̃tαz

)2

m̃tα+1

]x0

(98)

= ρ2 m̃t
α

(m̃t
α + 1)

ˆ
dzdx0

2π exp
(
−x

02 + z2

2

) (
x0)2

ρ+ (1− ρ) (m̃t
α + 1)1/2 exp

[
−
(
m̃tαx

0+
√
m̃tαz

)2

m̃tα+1

]
5.4 Mixed priors

In the case of general asymmetric tensors, we can construct a tensor using different priors for the
different modes. It is particularly useful in real applications, as different modes of the tensors can
originate from entirely different sources. Consider for example an order-3 tensor holding neural fir-
ing rate data ritk. The index imarks the neuron recorded; index t is the time bin within a single trial,
and k is the trial index. If we believe that the data originates from the low-dimensional dynamical
system, we would want to write the tensor as

ritk =
D∑
ρ

uρi x
ρ
t v
ρ
k +
√

∆εitk, (99)

where D is the dimensions of the dynamical system, and ∆ is the noise of a single measurement.We
may ask how should we design an experiment so that low-rank decomposition of the recorded data
would be possible. In this case, we would assert different priors to the different modes. The mode
xt represent the D dimensional dynamical system. We could assume for example that is generated
by some Gaussian process, thus follows Gaussian statistics. The mode ui represents the projec-
tions of the low-dimensional dynamical system onto the set measured neurons. It may be a valid
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assumption that only a fraction of the neurons responds in coherence with the underlying dynamics;
a Gauss-Bernoulli distribution will be suitable for this mode. Lastly, the trial modulus mode vk
can have Gaussian distribution about some mean with small variance, suggesting small trial-to-trial
modulations.

To solve the dynamic mean field theory for this case, and find the boundaries of the inference we
would use the appropriate equation for each of the modes. For example, for two Gaussian distribu-
tions and one Gauss-Bernoulli, we would have

mt+1
x =

∆µ2
x

σ2
x

+
(
σ2
x + µ2

x

)
mt
um

t
v

∆
σ2
α

+mt
um

t
v

(100)

mt+1
v =

∆µ2
v

σ2
v

+
(
σ2
v + µ2

v

)
mt
um

t
x

∆
σ2
α

+mt
um

t
x

(101)

mt+1
u = ρ2 m̃t

α

(m̃t
α + 1)

ˆ
dzdx0

2π exp
(
−x

02 + z2

2

)
(102)

×
(
x0)2

ρ+ (1− ρ)
( 1

∆m
t
xm

t
v + 1

)1/2 exp
[
−
(

1
∆m

t
xm

t
vx

0+
√

1
∆m

t
xm

t
vz
)2

1
∆m

t
xm

t
v+1

] (103)

This set of equations can be solved numerically, to find an estimate for AMP performances under
the noise.
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