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Abstract

Prior work has investigated variations of prediction markets that preserve par-
ticipants’ (differential) privacy, which formed the basis of useful mechanisms
for purchasing data for machine learning objectives. Such markets required po-
tentially unlimited financial subsidy, however, making them impractical. In this
work, we design an adaptively-growing prediction market with a bounded financial
subsidy, while achieving privacy, incentives to produce accurate predictions, and
precision in the sense that market prices are not heavily impacted by the added
privacy-preserving noise. We briefly discuss how our mechanism can extend to the
data-purchasing setting, and its relationship to traditional learning algorithms.

1 Introduction

In a prediction market, a platform maintains a prediction (usually a probability distribution or
an expectation) of a future random variable such as an election outcome. Participants’ trades of
financial securities tied to this event are translated into updates to the prediction. Prediction markets,
designed to aggregate information from participants, have gained a substantial following in the
machine learning literature. One reason is the overlap in goals (predicting future outcomes) as well
as techniques (convex analysis, Bregman divergences), even at a deep level: the form of market
updates in standard automated market makers have been shown to mimic standard online learning or
optimization algorithms in many settings [2, 3, 8, 9]. Beyond this research-level bridge, recent papers
have suggested prediction market mechanisms as a way of crowdsourcing data or algorithms for
machine learning, usually by providing incentives for participants to repeatedly update a centralized
hypothesis or prediction [4, 12].

One recently-proposed mechanism to purchase data or hypotheses from participants is that of
Waggoner, et al. [12], in which participants submit updates to a centralized market maker, either by
directly altering the hypothesis, or in the form of submitted data; both are interpreted as buying or
selling shares in a market, paying off according to a set of holdout data that is revealed after the close
of the market. The authors then show how to preserve differential privacy for participants, meaning
that the content of any individual update is protected, as well as natural accuracy and incentive
guarantees.

One important drawback of Waggoner, et al. [12], however, is the lack of a bounded worst-case loss
guarantee: as the number of participants grows, the possible financial liability of the mechanism
grows without bound. In fact, their mechanism cannot achieve a bounded worst-case loss without
giving up privacy guarantees. Subsequently, Cummings, et al. [7] show that all differentially-private
prediction markets of the form proposed in [12] must suffer from unbounded financial loss in the
worst case. Intuitively, one could interpret this negative result as saying that the randomness of the
mechanism, which must be introduced to preserve privacy, also creates arbitrage opportunities for
participants: by betting against the noise, they collectively expect to make an unbounded profit from
the market maker. Nevertheless, Cummings, et al. leave open the possibility that mechanisms outside
the mold of Waggoner, et al. could achieve both privacy and a bounded worst-case loss.
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In this paper, we give such a mechanism: the first private prediction market framework with a bounded
worst-case loss. When applied to the crowdsourcing problems stated above, this now allows the
mechanism designer to maintain a fixed budget. Our construction and proof proceeds in two steps.

We first show that by adding a small transaction fee to the mechanism of [12], one can eliminate
financial loss due to arbitrage while maintaining the other desirable properties of the market. The
key idea is that a carefully-chosen transaction fee can make each trader subsidize (in expectation)
any arbitrage that may result from the noise preserving her privacy. Unless prices already match her
beliefs quite closely, however, she still expects to make a profit by paying the fee and participating.
We view this as a positive result both conceptually—it shows that arbitrage opportunities are not an
insurmountable obstacle to private markets—and technically—the designer budget grows very slowly,
only O((log T )2), with the number of participants T .

Nonetheless, this first mechanism is still not completely satisfactory, as the budget is superconstant
in T , and T must be known in advance. This difficulty arises not from arbitrage, but (apparently) a
deeper constraint imposed by privacy that forces the market to be large relative to the participants.
Our second and main result overcomes this final hurdle. We construct a sequence of adaptively-
growing markets that are syntactically similar to the “doubling trick” in online learning. The key
idea is that, in the market from our first result, only about (log T )2 of the T participants can be
informational traders; after this point, additional participants do not cost the designer any more
budget, yet their transaction fees can raise significant funds. So if the end of a stage is reached, the
market activity has actually generated a surplus which subsidizes the initial portion of the next stage
of the market.

2 Setting

In a cost-function based prediction market, there is an observable future outcome Z taking values
in a set Z . The goal is to predict the expectation of a random variable φ : Z → Rd. We assume φ
is a bounded random variable, as otherwise prediction markets with bounded financial loss are not
possible. Participants will buy from the market contracts, each parameterized by a vector r ∈ Rd. The
contract represents a promise for the market to pay the owner r · φ(Z) when Z is observed. Adopting
standard financial terminology, in our model there are d securities j = 1, . . . , d, and the owner of a
share in security j will receive a payoff of φ(Z)j , that is, the jth component of the random variable.
Thus a contract r ∈ Rd contains rj shares of security j and pays off

∑d
j=1 rjφ(Z)j = r ·φ(Z). Note

that rj < 0, or “short selling” security j, is allowed.

The market maintains a market state qt ∈ Rd at time t = 0, . . . , T , with q0 = 0. Each trader
t = 1, . . . , T arrives sequentially and purchases a contract dqt ∈ Rd, and the market state is updated
to qt = qt−1 + dqt. In other words, qt =

∑t
s=1 dq

s, the sum of all contracts purchased up to time t.
The price paid by each participant is determined by a convex cost function C : Rd → R. Intuitively,
C maps qt to the total price paid by all agents so far, C(qt). Thus, participant t making trade dqt
when the current state is qt−1 pays C(qt−1 + dqt)− C(qt−1). Notice that the instantaneous prices
pt = ∇C(qt) represent the current price per unit of infinitesimal purchases, with the jth coordinate
representing the current price per share of the jth security.

The prices∇C(q) are interpreted as predictions of Eφ(Z), as an agent who believes the jth coordinate
is too low will purchase shares in it, raising its price, and so on. This can be formalized through a
learning lens: It is known [2] that agents in such a market maximize expected profit by minimizing
an expected Bregman divergence between φ(Z) and ∇C(q); of course, it is known that ∇C(q) =
Eφ(Z) minimizes risk for any divergence-based loss [1, 6, 10]. (The Bregman divergence is that
corresponding to C∗, the convex conjugate of C.)

Price Sensitivity. The price sensitivity of a cost function C is a measure of how quickly prices
respond to trades, similar to “liquidity” discussed in Abernethy et al. [2, 5] and earlier works.
Formally, the price sensitivity λ of C is the supremum of the operator norm of the Hessian of C, with
respect to the `1 norm.1 In other words, if c = ‖q − q′‖1 shares are purchased, then the change in
prices ‖∇C(q)−∇C(q′)‖1 is at most λc.

1For convenience we will assume C is twice differentiable, though this is not necessary.
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Price sensitivity is directly related to the worst-case loss guarantee of the market, as follows. Those
familiar with market scoring rules may recall that with scoring rule S, the loss can be bounded by
(a constant times) the largest possible score. Hence, scaling S by a factor 1

λ immediately scales the
loss bound by 1

λ as well. Recall that S is defined by a convex function G, the convex conjugate
of C. Scaling S by 1

λ is equivalent to scaling G by 1
λ . By standard results in convex analysis,

this is equivalent to transforming C into Cλ(q) = 1
λC (λq), an operation known as the perspective

transform. This in turn scales the price sensitivity by λ by the properties of the Hessian.

Price sensitivity is also related to the total number of trades required to change the prices in a market.
If we assume each trade consists of at most one share in each security, then 1

λ trades are necessary to
shift the predictions to an arbitrary point from an arbitrary point.

Convention: normalized, scaled C. In the remainder of the paper, we will suppose that we start
with some convex cost function C1 whose price sensitivity equals 1 and worst-case loss bounded by
some constant B1. Then, to obtain price sensitivity λ, we use the cost function C(·) = 1

λC1(λ·). As
discussed above, C has price sensitivity at most λ and a worst-case loss bound of B = B1/λ. (This
assumption is without loss of generality, as any cost function that guarantees a bounded worst-case
loss can be scaled such that its price sensitivity is 1.)

2.1 Prior work

To achieve differential privacy for trades of a bounded size (which will be assumed), the general
approach is to add random noise to the “true” market state q and publish this noisy state q̂. The privacy
level thus determines how close q̂ is to q. The distance from ∇C(q̂) to ∇C(q) is then controlled
by the price sensitivity λ. For a fixed noise and privacy level, a smaller λ leads to small impact of
noise on prices, meaning very good accuracy. However, decreasing λ does not come for free: the
worst-case financial loss of to the market designer scales as 1/λ.

The market of [12] adds controlled and correlated noise over time, in a manner similar to the
“continual observation” technique of differential privacy. This reduces the influence of noise on
accuracy to polylogarithmic in T , the number of participants. Their main result for the prediction
market setting studied here is as follows.
Theorem 1 ([12]). Assuming that all trades satisfy ‖dqt‖1 ≤ 1, the private mechanism is ε-
differentially private in the trades dq1, . . . , dqT with respect to the output q̂1, . . . , q̂T . Further,
to satisfy ‖pt − p̂t‖1 ≤ α for all t, except with probability γ, it suffices for the price sensitivity to be

λ∗ =
α ε

4
√

2ddlog T e ln(2Td/γ)
. (1)

2.2 Our setting and desiderata

This paper builds on the work of Waggoner et al. [12] to overcome the negative results of Cummings
et al. [7]. Here, we formalize our setting and four desirable properties we hope to achieve.

Write a prediction market mechanism as a function M taking inputs ~dq = dq1, . . . , dqT and
outputting a sequence of market states q̂1, . . . , q̂T . Here q̂t is thought of as a noisy version of
qt =

∑
s≤t dq

s. Each of these states is associated with a prediction p̂t in the set of possible prices
(expectations of φ), while the state qt is associated with the “true” underlying prediction pt.

Definition 1 (Privacy). M satisfies (ε, δ)-differential privacy if for all pairs of inputs ~dq, ~dq′ differing
by only a single participants’ entry, and for all sets S of possible outputs, Pr[M( ~dq) ∈ S] ≤
eε Pr[M( ~dq′) ∈ S] + δ. If furthermore δ = 0, we say M is ε-differentially private.

Definition 2 (Precision). M has (α, γ) precision if for all ~dq, with probability 1 − γ, we have
‖p̂t − pt‖1 ≤ α for all t.
Definition 3 (Incentives). M has β-incentive to participate if, for all beliefs p = Eφ(Z), if at any
point ‖p̂t− p‖∞ > β, then there exists a participation opportunity that makes a strictly positive profit
in expectation with respect to p.

For the budget guarantee, we must formalize the notion that participants may respond to
the noise introduced by the mechanism. Following Cummings et al. [7], let a trader
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strategy ~s = (s1, . . . , sT ) where each st is a possibly-randomized function of the form
st(dq1, . . . , dqt−1; q̂1, . . . , q̂t−1) = dqt, i.e. a strategy taking the entire history prior to t and
outputting a trade dqt. Let L(M,~s, z) be a random variable denoting the financial loss of the market
M against trader strategy ~s when Z = z, which for the mechanism described above is simply

L(M,~s, z) =

T∑
t=1

[
C(q̂t)− C(q̂t + dqt)− dqt · φ(z)

]
.

Definition 4. M guarantees designer budget B if, for any trader strategy ~s and all z, EL(M,~s, z) ≤
B, where the expectation is over the randomness in M and each st.

3 Slowly-Growing Budget

The private market of Waggoner et al. [12] causes unbounded loss for the market maker in two ways.
The first is from traders betting against the random noise introduced to protect privacy. This is a key
idea leveraged by Cummings et al. [7] to show negative results for private markets. In this section,
we show that a transaction fee can be chosen to exactly balance the expected profit from this type of
arbitrage.2 We will show that this fee is still small enough to allow for very accurate prices.3 This
transaction fee restores the worst-case loss guarantee to the inverse of the price sensitivity, just as in a
non-private market. The second way the market causes unbounded loss is to require price sensitivity
to shrink as a function of T ; this is addressed in the next section.

We show that with this carefully-chosen fee, the market still achieves precision, incentive, and privacy
guarantees, but now with a worst-case market maker loss of O((log T )2), much improved over the
naïve O(T ) bound. This is viewed as a positive result because the worst-case loss is growing quite
slowly in the total number of participants, and moreover matches the fundamental “informational”
worst-case loss one expects with price sensitivity λ∗.

3.1 Mechanism and result

Here we recall the private market mechanism of [12], adapted to the prediction market setting
following [7]. We will express the randomness of the mechanism in terms of a “noise trader” for both
intuition and technical convenience. The market is defined by a cost function C with price sensitivity
λ, and parameters c (transaction fee), ε (privacy), α, γ (precision), and T (maximum number of
participants). There is a special trader we call the noise trader who is controlled by the designer.
All actions of the noise trader are hidden and known only by the designer. The designer publishes
an initial market state q0 = q̂0 = 0. Let T ′ denote the actual number of arrivals, with T ′ ≤ T by
assumption. Then, for t = 1, . . . , T ′:

1. Participant t arrives, pays a fee of c, and purchases bundle dqt with ‖dqt‖1 ≤ 1. The
payment is C(q̂t + dqt)− C(q̂t).

2. The noise trader purchases a randomly-chosen bundle zt, called a noise trade, after selling
off some subset {zt1 , . . . , ztk} of previously purchased noise trades for ti < t, according
to a predetermined schedule described below. Letting wt = zt −

∑k
i=1 z

ti denote this net
noise bundle, the noise trader is thus charged C(q̂t + dqt + wt)− C(q̂t + dqt).

3. The “true” market state is updated to qt = qt−1 + dqt, but is not revealed.
4. The noisy market state is updated to q̂t = q̂t−1 + dqt + wt and is published.

Finally, z ∈ Z is observed and each participant t receives a payment dqt · φ(z). For the sake of
budget analysis, we suppose that at the close of the market, the noise trader sells back all of her
remaining bundles; letting wT

′
be the sum of these bundles, she is charged C(q̂T

′ − wT ′
)− C(q̂T

′
).

Noise trades. Each zt is a d-dimensional vector with each coordinate drawn from an independent
Laplace distribution with parameter b = 2dlog T e/ε. To determine which bundles zs are sold at
time t, write t = 2jm where m is odd, and sell all bundles zs purchased during the previous

2Intuitively, it is enough for the fee to cover arbitrage amounts in expectation, because a trader must pay the
fee to trade before the random noise is drawn and any arbitrage opportunity is revealed.

3For instance, if the current price of a security is 0.49 and a trader believes the true price should be 0.50, she
will purchase a share if the fee is c < 0.01. (For privacy, we limit each trade to a fixed size, say, one share.)

4



2j−1 time steps which are not yet sold. Thus, the noise trader will sell bundles purchased at times
s = t− 1, t− 2, t− 4, t− 8, . . . , t− 2j−1; in particular, when t is odd we have j = 0, so no previous
bundles will be sold.

Budget. The total loss of the market designer can now be written as the sum of three terms: the loss
of the market maker, the loss of the noise trader, and the gain from transaction fees. By convention,
the noise trader eventually sells back all bundles it purchases and is left with no shares remaining.

L(M,~s, z) =

net loss of market maker︷ ︸︸ ︷
T ′∑
t=1

C(q̂t−1)− C(q̂t−1+ dqt) + dqt · φ(z) +

net loss of noise trader︷ ︸︸ ︷
T ′∑
t=1

C(q̂t−1+ dqt)− C(q̂t) +

fees︷︸︸︷
cT ′. (2)

The main result of this section is as follows.

Theorem 2. When each arriving participant pays a transaction fee c = α, the private market with
any λ ≤ λ∗ from eq. (1) satisfies ε-differential privacy, (α, γ)-precision, 2α-incentive to trade, and
budget bound B1

λ , where B1 is the budget bound of the underlying cost function C1.

3.2 Proof ideas: privacy, precision, incentives

The differential privacy and precision claims follow directly from the prior results, as nothing has
changed to impact them. The incentive claim is not technically involved, but perhaps subtle: the
transaction fee should be high enough to eliminate expected profit from arbitrage, yet low enough to
allow for profit from information. The key point is that the transaction fee is a constant, but the farther
the prices are from the trader’s belief, the more money she expects to make from a constant-sized
trade. The transaction fee creates a ball of size 2α around the current prices where, if one’s belief lies
in that ball, then participation is not profitable.

We give most of the proof of the designer budget bound, with some claims deferred to the full version.

Lemma 1 (Budget bound). The transaction-fee private market with any price sensitivity λ ≤ λ∗

guarantees a designer budget bound of B1

λ .

Proof. Let c be the transaction fee; we will later take c = α. Then the worst-case loss from eq. (2) is

WC(λ, T ′) := WC0(λ, T ′) +NTL(λ, T ′)− T ′c ,

where WC0(λ, T ′) is the worst-case loss of a standard prediction market maker with parameter λ
and T ′ participants, NTL(λ, T ′) is the worst-case noise trader loss, and T ′c is the revenue from T ′

transaction fees of size c each.

The worst-case loss of a standard prediction market maker is well-known; see e.g. [2]. By our
normalization and definition of price sensitivity, we thus have WC0(λ, T ′) ≤ B1

λ .

To bound the noise trader loss NTL(λ, T ′), we will consider each bundle zt purchased by the noise
trader. The idea is to bound the difference in price between the purchase and sale of zt. For analysis,
we suppose that at each t, the noise trader first sells any previous bundles (e.g. at t = 4, first selling
z3 and then selling z2), and then purchases zt.

Now let b(t) be the largest power of 2 that divides t. Let qtbuy and qtsell be the market state just before
the noise trader purchases zt and just after she sells zt, respectively.

Claim 1. For each t, exactly b(t) traders arrive between the purchase and the sale of bundle zt;
furthermore, qtsell − qtbuy is exactly equal to the sum of these participants’ trades.

For example, suppose t is odd. Then only one participant arrives between the purchase and sale of zt.
Furthermore, zt is the last bundle purchased by the noise trader at time t and is the first sold at time
t+ 1, so the difference in market state is exactly zt plus that participant’s trade.

Claim 2. If the noise trader purchases and later sells zt, then her net loss in expectation over zt (but
for any trader behavior in response to zt), is at most λb(t)K where K = E ‖zt‖2.
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We now sum over all bundles zt purchased by the noise trader, i.e. at time steps 1, . . . , T ′. Recall
that the noise trader sells back every bundle zt she purchases. Thus, her total payoff is the sum
over t of the difference in price at which she buys zt and price at which she sells it. For each
j = 0, . . . , log T ′ − 1, there are 2j different steps t with b(t) = T ′/2j+1. The total loss is thus,

NTL(λ, T ′) ≤
log T ′−1∑
j=0

2j
T ′

2j+1
λK =

T ′ log T ′

2
λK . (3)

Note that if the noise trader has some noise bundles left over after the final participant, we suppose
she immediately sells all remaining bundles back to the market maker in reverse order of purchase.

Putting eq. (3) together with the above bound on WC0 gives

WC(λ, T ′) ≤WC0(λ, T ′) + T ′ log T ′λK − T ′c ≤ B1

λ
+ T ′ (K log T ′λ− c) , (4)

which is in turn at most B1/λ if we choose λ and the transaction fee c such that c ≥ K log Tλ. In
other words, we take λ ≤ c/K log T .

Finally, we can bound K = E ‖zt‖2 from Claim 2 as follows: for each t, the components of the
d-dimensional vector zt are each independent Lap(b) variables with b = 2dlog T e/ε. By concavity
of
√
·, we have

K = E

√√√√ d∑
i=1

zt(i)2 ≤
√∑

i

E zt(i)2 =
√
dVar(Lap(b)) =

√
2db2 = 2

√
2d
dlog T e

ε
.

Therefore, it suffices to pick
λ ≤ c ε

2
√

2ddlog T e log T
.

For c = α, this is in fact accomplished by the private, accurate market choosing λ ≤ λ∗ (Equation
1).

Limitations of this result. Unfortunately, Theorem 2 does not completely solve our problem: the
other way that privacy impacts the market’s loss is by lowering the necessary price sensitivity to
λ∗ ≈ 1

(log T )2 as mentioned above, leading to a worst-case loss growing with T . It does not seem
possible to address this via a larger transaction fee without giving up incentive to participate: traders
participate as long as their expected profit exceeds the fee, and collectively Ω(1/λ) of them can arrive
making consistent trades all moving the prices in the same (correct) direction, so the total payout will
still be Ω(1/λ).

4 Constant Budget via Adaptive Market Size

In this section, we achieve our original goal by constructing an adaptively-growing prediction market
in which each stage, if completed, subsidizes the initial portion of the next.

The market design is the following, with each T (k) to be chosen later. We run the transaction-fee pri-
vate market above with T = T (1), transaction fee α, and price sensitivity λ(1) = λ∗(T (1), α/2, γ/2)
from eq. (1). When (and if) T (1) participants have arrived, we create a new market whose initial
state is such that its prices match the final (noisy) prices of the previous one. We set T (2) and price
sensitivity λ(2) = λ∗(T (2), α/4, γ/4) for the new market. We repeat, halving α and γ at each stage
and increasing T in a manner to be specified shortly, until no more participants arrive.
Theorem 3. For any α, γ, ε, the adaptive market satisfies ε-differential privacy, 2α-incentive to trade,
(α, γ)-accuracy, and a designer budget bound of

B ≤ B1
72
√

2d

α ε

(
ln

4608B1

√
2d2

γα2ε

)2

,

where B1 is the budget bound of the underlying unscaled cost function C1.
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Proof idea. We set T (1) = Θ
(B1d ln(B1d/γαε)

2

α2 ε

)
, and T (k) = 4T (k−1) thereafter. The key will be

the following observation. The total “informational” profit available to the traders (by correcting
the initial market prices) is bounded by O(1/λ), so if each trader expects to profit more than the
transaction fee c, then only O(1/λc) traders can all arrive and simultaneously profit. Indeed, if all
T participants arrive, then the total profit from transaction fees is Θ(T ) while the worst-case loss
from the market is O

(
(log T )2

)
.

We can leverage this observation to achieve a bounded worst-case loss with an “adaptive-liquidity”
approach, similar in spirit to Abernethy et al. [5] but more technically similar to the doubling trick in
online learning. Begin by setting λ(1) on the order of 1/(log T (1))2 = Θ(1), and run a private market
for T (1) participants. If fewer than T (1) participants show up, the worst-case loss is order 1/λ(1), a
constant. If all T (1) participants arrive, then (for the right choice of constants) the market has actually
turned a profit Ω(T (1)) from the transaction fees. Now set up a private market for T (2) = 4T (1)

traders with λ(2) on the order of 1/(log T (2))2. If fewer than T (2) participants arrive, the worst-case
loss is order 1/λ(2). However, we will have chosen T (2) such that this loss is smaller than the Ω(T (1))
profit from the previous market. Hence, the total worst-case loss remains bounded by a constant.

If all T (2) participants arrive, then again this market has turned a profit, which can be used to
completely offset the worst-case loss of the next market, and so on. Some complications arise, as to
achieve (α, γ)-precision, we must set α(1), γ(1), α(2), γ(2), . . . as a convergent series summing to α
and γ; and we must show that all of these scalings are possible in such a way that the transaction fees
cover the cost of the next iteration. (An interesting direction for future work would be to replace the
iterative approach here with the continuous liquidity adaptation of [5].)

More specifically, we prove that the loss in any round k that is not completed (not all participants
arrive) is at most α

16T
(k); moreover, the profit in any round k that is completed is at least α2 T

(k).
Of course, only one round is not completed: the final round k. If k = 1, then the financial loss is
bounded by 1

λ(1) , a constant depending only on α, γ, ε. Otherwise, the total loss is the sum of the
losses across rounds, but the mechanism makes a profit in every round but k. Moreover, the loss in
round k is at most α2 T

(k) = α
8 T

(k−1), which is at most half of the profit in round k − 1. So if k ≥ 2,
the mechanism actually turns a net profit.

While this result may seem paradoxical, note that the basic phenomenon appears in a classical
(non-private) prediction market with a transaction fee, although to our knowledge this observation
has not yet appeared in the literature. Specifically, a classical prediction market with budget bound
B1, trades of size 1, and a small transaction fee α, will still have an α-incentive to participate, and the
worst case loss will still be Θ(B1); this loss, however, can be extracted by as few as Θ(1) participants.
Any additional participants must be in a sense disagreeing about the correct prices; their transaction
fees go toward market maker profit, but they do not contribute further to worst-case loss.

5 Kernels, Buying Data, Online Learning

While preserving privacy in prediction markets is well-motivated in the classical prediction market
setting, it is arguably even more important in a setting where machine-learning hypotheses are learned
from private personal data. Waggoner et al. [12] develop mechanisms for such a setting based on
prediction markets, and further show how to preserve differential privacy of the participants. Yet their
mechanisms are not practical in the sense that the financial loss of the mechanism could grow without
bound. In this section, we sketch how our bounded-financial-loss market can also be extended to this
setting. This yields a mechanism for purchasing data for machine learning that satisfies ε-differential
privacy, α-precision and incentive to participate, and bounded designer budget.

To develop a mechanism which could be said to “purchase data” from participants, Waggoner et
al. [12] extend the classical setting in two ways. The first is to make the market conditional, where
we let Z = X × Y , and have independent markets Cx : Rd → R for each x. Trades in each market
take the form qx ∈ Rd, which pay out qx · φ(y) upon outcome (x′, y) if x = x′, and zero if x 6= x′.
Importantly, upon outcome (x, y), only the costs associated to trades in the Cx market are tallied.

The second is to change the bidding language using a kernel, a positive semidefinite function
k : Z × Z → R. Here we think of contracts as functions f : Z → R in the reproducing kernel
Hilbert space (RKHS) F given by k, with basis {fz(·) = k(z, ·) : z ∈ Z}. For example, we recover
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the conditional market setting with independent markets with the kernel k((x, y), (x′, y′)) = 1{x =
x′}φ(y) · φ(y′). The RKHS structure is natural here because a basis contract fz pays off at each z′
according to the “covariance” structure of the kernel, i.e. the payoff of contract fz when z′ occurs
equals fz(z′) = k(z, z′). For example, when Y = {−1, 1} one recovers radial basis classification
using k((x, y), (x′, y′)) = yy′e−(x−x′)2 .

These two modifications to classical prediction markets, given as Mechanism 2 in [12], have clear
advantages as a mechanism to “buy data”. One may imagine that each agent, arriving at time
t ∈ {1, . . . , T}, holds a data point (xt, yt) ∈ Z = X × Y . A natural purchase for this agent would
be a basis contract f(xt,yt), as this corresponds to a payoff that is highest when the test data point
actually equals (xt, yt) and decreases with distance as measured by the kernel structure.

The importance of privacy now becomes even more apparent, as the data point (xt, yt) could be
information sensitive to trader t. Fortunately, we can extend our main results to this setting. To
demonstrate the idea, we give a sketch of the result and proof below.

Theorem 4 (Informal). Let Z = X × Y where X is a compact subset of a finite-dimensional real
vector space and Y is finite, and let positive semidefinite kernel k : Z × Z → R be given. For
any choices of accuracy parameters α, γ, privacy parameters ε, δ, trade size ∆, and query limit
Q, the kernel adaptive market satisfies (ε, δ)-differential privacy, (α, γ)-precision, 2α-incentive to
participate, and a bounded designer budget.

Proof Sketch. The precision property, i.e. that prices are approximately accurate despite privacy-
preserving noise, follows from [12, Theorem 2], and the technique in Theorem 3 to combine the
accuracy and privacy of multiple epochs. The incentive to trade property is essentially unchanged, as
a participants’ profit is still the improvement in expected Bregman divergence, which exceeds the
transaction fee unless prices are already accurate. It thus remains only to show a bounded designer
budget, which is slightly more involved. Briefly, Claim 1 goes through unchanged, and Claim 2
holds as written where now C becomes Cx and zt becomes zt(x) = f t(x, ·), i.e., the trade at time t
restricted to the Cx market alone.

The remainder of Lemma 1 now proceeds with one modification regarding the constant K. In eq. (3),
the expression for the noise trader loss becomes NTL(λ, T ′) = E

[
supx∈X

∑T ′

t=1 λαt‖zt(x)‖2
]
,

where the αt are simply coefficients to keep track of how many trades occurred between the buy and
sell of noice trade t. We can proceed as follows:

NTL(λ, T ′) ≤ E

 sup
x1,...,xT ′∈X

T ′∑
t=1

λαt‖zt(xt)‖2

 = λ

T ′∑
t=1

αt E
[

sup
x∈X
‖zt(x)‖2

]
= λ

T ′∑
t=1

αtK ,

whereK is simply the constant E [supx∈X ‖zt(x)‖2] where the expectation is taken over the Gaussian
process generating the noise. It is well-known that the expected maximum of a Gaussian process is
bounded [11], and thus boundedness of K follows from the fact that Y is finite. Thus, continuing
from eq. (3) we obtain NTL(λ, T ′) ≤ T ′ log T ′

2 λK as before, with this new K. Finally, the proof of
Theorem 3 now goes through, as it only treats the mechanism from Theorem 2 as a black box.

We close by noting the similarity between the kernel adaptive market mechanism and traditional
learning algorithms, as alluded to in the introduction. As observed by Abernethy, et al. [2], the market
price update rule for classical prediction markets resembles Follow-the-Regularized-Leader (FTRL);
specifically, the price update at time t is given by pt = ∇C(qt) = argmaxw∈∆(Y)〈w,

∑
s≤t dq

s〉 −
R(w), where dqs is the trade at time s, and R = C∗ is the convex conjugate of C.

In our RKHS setting, we can see the same relationship. For concreteness, let Cx(q) = 1
λC(λq)

for all x ∈ X , and let R : ∆(Y) → R be the conjugate of C. Suppose further that each agent t
purchases a basis contract df t = fxt,yt , where we take a classification kernel k′((x, y), (x′, y′)) =
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k(x, x′)1{y = y′}. Letting dqt(x) = df t(x, ·) ∈ RY , the market price at time t is given by,

ptx = argmax
w∈∆(Y)

〈
w,
∑
s≤t

dqs(x)

〉
− 1

λ
R(w)

= argmax
w∈∆(Y)

〈
w,
∑
s≤t

k((xs, ys), (x, ·))
〉
− 1

λ
R(w)

= argmax
w∈∆(Y)

〈
w,
∑
s≤t

k(xs, x)1ys

〉
− 1

λ
R(w) ,

where 1y is an indicator vector. Thus, the market price update follows a natural kernel-weighted
FTRL algorithm, where the learning rate λ is the price sensitivity of the market.

6 Summary and Future Directions

Motivated by the problem of purchasing data, we gave the first bounded-budget prediction mar-
ket mechanism that achieves privacy, incentive alignment, and precision (low impact of privacy-
preserving noise the predictions). To achieve bounded budget, we first introduced and analyzed a
transaction fee, achieving a slowly-growing O((log T )2) budget bound, thus eliminating the arbitrage
opportunities underlying previous impossibility results. Then, observing that this budget still grows
in the number of participants T , we further extended these ideas to design an adaptively-growing
market, which does achieve bounded budget along with privacy, incentive, and precision guarantees.

We see several exciting directions for future work. An extension of Theorem 4 where Y need not be
finite should be possible via a suitable generalization of Claim 2. Another important direction is to
establish privacy for parameterized settings as introduced by Waggoner, et al. [12], where instead of
kernels, market participants update the (finite-dimensional) parameters directly as in linear regression.
Finally, we would like a deeper understanding of the learning–market connection in nonparametric
kernel settings, which could lead to practical improvements for design and deployment.
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