
Practical Deep Stereo (PDS): Toward
applications-friendly deep stereo matching.

Stepan Tulyakov
Space Engineering Center at

École Polytechnique Fédérale de Lausanne
stepan.tulyakov@epfl.ch

Anton Ivanov
Space Engineering Center at

École Polytechnique Fédérale de Lausanne
anton.ivanov@epfl.ch

Francois Fleuret
École Polytechnique Fédérale de Lausanne

and Idiap Research Institute
francois.fleuret@idiap.ch

Abstract

End-to-end deep-learning networks recently demonstrated extremely good perfor-
mance for stereo matching. However, existing networks are difficult to use for
practical applications since (1) they are memory-hungry and unable to process even
modest-size images, (2) they have to be trained for a given disparity range.
The Practical Deep Stereo (PDS) network that we propose addresses both issues:
First, its architecture relies on novel bottleneck modules that drastically reduce
the memory footprint in inference, and additional design choices allow to handle
greater image size during training. This results in a model that leverages large
image context to resolve matching ambiguities. Second, a novel sub-pixel cross-
entropy loss combined with a MAP estimator make this network less sensitive to
ambiguous matches, and applicable to any disparity range without re-training.
We compare PDS to state-of-the-art methods published over the recent months, and
demonstrate its superior performance on FlyingThings3D and KITTI sets.

1 Introduction

Stereo matching consists in matching every point from an image taken from one viewpoint to
its physically corresponding one in the image taken from another viewpoint. The problem has
applications in robotics [22], medical imaging [23], remote sensing [32], virtual reality and 3D
graphics and computational photography [37, 1].

Recent developments in the field have been focused on stereo for hard / uncontrolled environ-
ments (wide-baseline, low-lighting, complex lighting, blurry, foggy, non-lambertian) [36, 11, 3, 5, 27],
usage of high-order priors and cues [9, 8, 14, 17, 34], and data-driven, and in particular, deep neural
network based, methods [25, 3, 39, 40, 19, 33, 30, 16, 31, 7, 13, 20, 24, 2, 18, 43]. This work
improves on this latter line of research.

The first successes of neural networks for stereo matching were achieved by substitution of hand-
crafted similarity measures with deep metrics [3, 39, 40, 19, 33] inside a legacy stereo pipeline for the
post-processing (often [21]). Besides deep metrics, neural networks were also used in other subtasks
such as predicting a smoothness penalty in a CRF model from a local intensity pattern [30, 16]. In [31]
a “global disparity” network smooth the matching cost volume and predicts matching confidences,
and in [7] a network detects and fixes incorrect disparities.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Table 1: Number of parameters, inference memory footprint, 3-pixels-error (3PE) and mean-absolute-
error on FlyingThings3D (960× 540 with 192 disparities). DispNetCorr1D [20], CRL [24], iResNet-
i2 [18] and LRCR [12] predict disparities as classes and are consequently over-parameterized.
GC [13] omits an explicit correlation step, which results in a large memory usage during inference.
Our PDS has a small number of parameters and memory footprint, the smallest 3PE and smallest or
second smallest MAE, depending on evaluation protocol, and it is the only method able to handle
different disparity ranges without re-training. Note, that for our method we report two results. The
result outside of brackets is obtained using protocol of PSM [2] method, according to which the
errors are calculated only for ground truth pixel with disparity < 192. The result in the brackets is
calculated according to protocol of CRL [24], DispNetCorr1D [20] and iResNet-i2 [18] methods,
according to which the error is calculated only for images where less than 25% of pixels have
disparity > 300, as explained in [24]. Inference memory footprints are our theoretical estimates based
on network structures and do not include memory required for storing networks’ parameters (real
memory footprint will depend on implementation). Error rates and numbers of parameters are taken
from the respective publications.

Method Params Memory 3EP MAE Modify.
[M] [GB] [%] [px] Disp.

PDS (proposed) 2.2 0.4 3.38 (2.89) 1.12 (0.87) 3
PSM [2] 5.2 0.6 n/a 1.09 7
CRL [24] 78 0.2 6.20 1.32 7
iResNet-i2 [18] 43 0.2 4.57 1.40 7
DispNetCorr1D [20] 42 0.1 n/a 1.68 7
LRCR [12] 30 9.0 8.67 2.02 7
GC [13] 3.5 4.5 9.34 2.02 7

End-to-end deep stereo. Recent works attempt at solving stereo matching using neural network
trained end-to-end without post-processing [4, 20, 13, 43, 24, 12, 18, 2]. Such a network is typically
a pipeline composed of embedding, matching, regularization and refinement modules:

The embedding module produces image descriptors for left and right images, and the (non-
parametric) matching module performs an explicit correlation between shifted descriptors to compute
a cost volume for every disparity [4, 20, 24, 12, 18]. This matching module may be absent, and
concatenated left-right descriptors directly fed to the regularization module [13, 2, 43]. This strategy
uses more context, but the deep network implementing such a module has a larger memory footprint
as shown in Table 1. In this work we reduce memory use without sacrificing accuracy by introducing
a matching module that compresses concatenated left-right image descriptors into compact matching
signatures.

The regularization module takes the cost volume, or the concatenation of descriptors, regularizes it,
and outputs either disparities [20, 4, 24, 18] or a distribution over disparities [13, 43, 12, 2]. In the
latter case, sub-pixel disparities can be computed as a weighted average with SoftArgmin, which is
sensitive to erroneous minor modes in the inferred distribution.

This regularization module is usually implemented as a hourglass deep network with shortcut
connections between the contracting and the expanding parts [20, 4, 24, 13, 43, 2, 18]. It is composed
of 2D convolutions and does not treat all disparities symmetrically in some models [20, 4, 24, 18],
which makes the network over-parametrized and prohibits the change of the disparity range without
modification of its structure and re-training. Or it can use 3D convolutions that treat all disparities
symmetrically [13, 43, 12, 2]. As a consequence these networks have less parameters, but their
disparity range is still non-adjustable without re-training due to SoftArgmin as we show in § 3.3. In
this work, we propose to use a novel sup-pixel MAP approximation for inference which computes a
mean around the disparity with minimum matching cost. It is more robust to erroneous modes in the
distribution and allows to modify the disparity range without re-training.

Finally, some methods [24, 18, 12] also have a refinement module, that refines the initial low-
resolution disparity relying on attention map, computed as left-right warping error. The training of
end-to-end networks is usually performed in fully supervised manner (except of [43]).

2

All described methods [4, 20, 13, 43, 24, 12, 18, 2] use modest-size image patches during training.
In this work, we show that training on full-size images boosts networks ability to utilize large context
and improves its accuracy. Also, the methods, even the ones producing disparity distribution, rely on
L1 loss, since it allows to train the network to produce sub-pixel disparities. We, instead propose to
use more “natural” sub-pixel cross-entropy loss that ensures faster converges and better accuracy.

Our contributions can be summarize as follows:

1. We decrease the memory footprint by introducing a novel bottleneck matching module. It
compresses the concatenated left-right image descriptors into compact matching signatures, which
are then concatenated and fed to the hourglass network we use as regularization module, instead
of the concatenated descriptors themselves as in [13, 2]. Reduced memory footprint allows to
process larger images and to train on full-size images, that boosts networks ability to utilize large
context.

2. Instead of computing the posterior mean of the disparity and training with a L1 penalty [2, 12, 43,
13] we propose for inference a sub-pixel MAP approximation that computes a expectation around
the disparity with minimum matching cost, which is robust to erroneous modes in the disparity
distribution and allows to modify the disparity range without re-training. For training we similarly
introduce a sub-pixel criterion by combining the standard cross-entropy with a kernel interpolation,
which provides faster convergence rates and higher accuracy.

In the experimental section, we validate our contributions. In § 3.2 we show how the reduced
memory footprint allows to train on full-size images and to leverage large image contexts to improve
performance. In § 3.3 we demonstrate that, thanks to the proposed sub-pixel MAP and cross-entropy,
we are able to modify the disparity range without re-training, and to improve the matching accuracy.
Then, in § 3.4 we compare our method to state-of-the-art baselines and show that it has smallest 3-
pixels error (3PE) and smallest or second smallest mean absolute error (MAE) on the FlyingThings3D
set, depending on the evaluation protocol and ranked third and fourth on KITTI’15 and KITTI’12
sets respectively.

Sub-pix. MAP

estimator

64 x W/4 x H/4

Right

descriptor

Left

descriptor

Match

Regularization

 network

(3D conv.)

3 x W x H

Left

image

3 x W x H

Right

image

W/4

H/4

Compact

matching

signatures

8
 x

 D
/4

8

D
 /

 4
 p

a
ir

s

W

H

Cost

volume

D/2

Inference

Training

Sub-pix.

Cross Entropy

W x H

Disparity

W x H

Ground

truth

64 x W/4 x H/4

Figure 1: Network structure and processing flow during training and inference. Input / output
quantities are outlined with thin lines, while processing modules are drawn with thick ones. Following
the vocabulary introduced in § 1, the yellow shapes are embedding modules, the red rectangle the
matching module and the blue shape the the regularization module. The matching module is a
contribution of our work, as in previous methods [13, 2] left and shifted right descriptors are directly
fed to the regularization module (hourglass network). Note that the concatenated compact matching
signature tensor is a 4D tensor represented here as 3D by combining the feature indexes and disparities
along the vertical axis.

2 Method

2.1 Network structure

Our network takes as input the left and right color images {xL,xR} of size W ×H and produces a
“cost tensor” C = Net(xL,xR | Θ, D) of size D

2 ×W ×H , where Θ are the model’s parameters,
an D ∈ N is the maximum disparity.

3

The computed cost tensor is such that Ck,i,j is the cost of matching the pixel xLi,j in the left image to
the pixel xRi−2k,j in the right image, which is equivalent to assigning the disparity di,j = 2k to the
left image pixel.

This cost tensor C can then be converted into an a posterior probability tensor as

P
(
d | xL,xR

)
= softmax

k
(−Ck,i,j) .

The overall structure of the network and processing flow during training and inference are shown in
Figure 1, and we can summarize for clarity the input/output to and from each of the modules:

• The embedding module takes as input a color image 3×W×H , and computes an image descriptor
64× W

4 ×
H
4 .

• The matching module takes as input, for each disparity d, a left and a (shifted) right image
descriptor both 64 × W

4 ×
H
4 , and computes a compact matching signature 8 × W

4 ×
H
4 . This

module is unique to our network and described in details in § 2.2.

• The regularization module is a hourglass 3D convolution neural network with shortcut connections
between the contracting and the expanding parts. It takes a tensor composed of concatenated
compact matching signatures for all disparities of size 8× D

4 ×
W
4 ×

H
4 , and computes a matching

cost tensor C of size D
2 ×W ×H .

Additional information such as convolution filter size or channel numbers is provided in the Supple-
mentary materials.

According to the taxonomy in [28] all traditional stereo matching methods consist of (1) matching
cost computation, (2) cost aggregation, (3) optimization, and (4) disparity refinement steps. In the
proposed network, the embedding and the matching modules are roughly responsible for the step
(1) and the regularization module for the steps (2-4).

Besides the matching module, there are several other design choices that reduce test and training
memory footprint of our network. In contrast to [13] we use aggressive four-times sub-sampling
in the embedding module, and the hourglass DNN we use for regularization module produces
probabilities only for even disparities. Also, after each convolution and transposed convolution in our
network we place Instance Normalization (IN) [35] instead of Batch Normalization (BN), since we
use individual full-size images during training.

2.2 Matching module

The core of state-of-the-art methods [13, 43, 12, 2] is the 3D convolutions Hourglass network used
as regularization module, that takes as input a tensor composed of concatenated left-right image
descriptor for all possible disparity values. The size of this tensor makes such networks have a huge
memory footprint during inference.

We decrease the memory usage by implementing a novel matching with a DNN with a “bottleneck”
architecture. This module compresses the concatenated left-right image descriptors into a compact
matching signature for each disparity, and the results is then concatenated and fed to the Hourglass
module. This contrasts with existing methods, which directly feed the concatenated descriptors [13,
43, 12, 2] to the Hourglass regularization module. For example, while in [13] authors feed 64 channels
3D tensor to the regularization network, we feed 8 channels tensor and reach a similar accuracy.
Reducing the memory footprint allows to process a larger area during inference, and consequently to
use a larger context to estimate disparity which solve ambiguities and translates directly into better
performance.

This module is inspired by CRL [24] and DispNetCorr1D [24, 20] which control the memory
footprint (as shown in Table 1) by feeding correlation results instead of concatenated embeddings
to the Hourglass network and by [38] that show superior performance of joint left-right image
embedding. We also borrowed some ideas from the bottleneck module in ResNet [10], since it also
encourages compressed intermediate representations.

4

Sub-pixel MAP

estimation

SoftArgmin

estimation

Sub-pixel MAP

estimation

SoftArgmin

estimation

(a) (b)

Figure 2: Comparison of the proposed Sub-pixel MAP with the standard
SoftArgmin: (a) in presence of a multi-modal distribution SoftArgmin
blends all the modes and produces an incorrect disparity estimate. (b)
when the disparity range is extended (blue area), SoftArgmin estimate
may degrade due to additional modes.

Ground Truth

Target distribution

Figure 3: Target distri-
bution of sub-pixel cross-
entropy is a discretized
Laplace distribution cen-
tered at sub-pixel ground-
truth disparity.

2.3 Sub-pixel MAP

In state-of-the-art methods, a network produces an posterior disparity distribution and then use a
SoftArgmin module [13, 43, 12, 2], introduced in [13], to compute the predicted sub-pixel disparity
as an expectation of this distribution1:

d̂ =
∑
d

d · P
(
d = d | xL,xR

)
This SoftArgmin approximates a sub-pixel maximum a posteriori (MAP) solution when the distri-
bution is unimodal and symmetric. However, as illustrated in Figure 2, this strategy suffers from
two key weaknesses: First, when these assumptions are not fulfilled, for instance if the posterior is
multi-modal, this averaging blends the modes and produces a disparity estimate far from all of them.
Second, if we want to apply the model to a greater disparity range without re-training, the estimate
may degrade even more due to additional modes.

The authors of [13] argue that when the network is trained with the SoftArgmin, it adapts to it during
learning by rescaling its output values to make the distribution unimodal. However, the network
learns rescaling only for disparity range used during training. If we decide to change the disparity
range during the test, we will have to re-train the network.

To address both of these drawbacks, we propose to use for inference a sub-pixel MAP approximation
that computes a expectation around the disparity with minimum matching cost as

d̃ =
∑
d

d · P
(
d = d | xL,xR

)
, where

P
(
d | xL,xR

)
= softmax
d:|d̂−d|≤δ

(−Cd,x,y) and d̂ = argmin
d

(Cd,x,y) (1)

with δ a meta-parameter (in our experiments we choose δ = 4 based on small scale grid search
experiment on the validation set). The approximation works under assumption that the distribution is
symmetric in a vicinity of a major mode.

In contrast to the SoftArgmin, the proposed sup-pixel MAP is used only for inference. During training
we use the posterior disparity distribution and the sub-pixel cross-entropy loss discussed in the next
section.

2.4 Sub-pixel cross-entropy

Many methods use the L1 loss [2, 12, 43, 13], even though the “natural” choice for the classification
by design networks, producing distribution over discrete disparity values is a cross-entropy. The L1

loss is often selected because it empirically [13] performs better than cross-entropy, and because
when it is combined with SoftArgmin, it allows to train a network with sub-pixel ground truth.

1The name SoftArgmin comes from the fact that the function computes disparity of the match with the
minimum matching cost in a “soft” way. The matching cost, unlike likelihood probability, is small for correct
matches and large for incorrect ones. However, it can be also interpreted as expectation of probability distribution
over disparities.

5

In this work, we propose a novel sub-pixel cross-entropy that provides faster convergence and better
accuracy. The target distribution of our cross-entropy loss is a discretized Laplace distribution
centered at the ground-truth disparity dgt, shown in Figure 3 and computed as

Qgt(d) =
1

N
exp

(
−|d− d

gt|
b

)
, where N =

∑
i

exp

(
−|i− d

gt|
b

)
,

where b is a diversity of the Laplace distribution (in our experiments we set b = 2, reasoning that
the distribution should cover at least several discrete disparities). With this target distribution we
compute cross-entropy as usual

L(Θ) =
∑
d

Qgt(d) · logP
(
d = d | xL,xR,Θ

)
. (2)

The proposed sub-pixel cross-entropy is different from soft cross entropy [19], since in our case
probability in each discrete location of the target distribution is a smooth function of a distance to the
sub-pixel ground-truth. This allows to train the network to produce a distribution from which we can
compute sub-pixel disparities using our sub-pixel MAP.

3 Experiments

Our experiments are done with the PyTorch framework [26]. We initialize weights and biases of the
network using default PyTorch initialization and train the network as shown in Table 2. During the
training we normalize training patches to zero mean and unit variance. The optimization is performed
with the RMSprop method with standard settings.

Table 2: Summary of training settings for every dataset.

FlyingThings3D KITTI
Mode from scratch fine-tune
Lr. schedule 0.01 for 120k, half every 20k 0.005 for 50k, half every 20k
Iter. # 160k 100k
Tr. image size 960× 540 full-size 1164× 330
Max disparity 255 255
Augmentation not used mixUp [42], anisotropic zoom, random crop

We guarantee reproducibility of all experiments in this section by using only available data-sets, and
making our code available online under open-source license after publication.

3.1 Datasets and performance measures

We used three data-sets for our experiments: KITTI’12 [6] and KITTI’15 [22], that we combined
into a KITTI set, and FlyingThings3D [20] summarized in Table 3. KITTI’12, KITTI’15 sets have
online scoreboards [15].

The FlyingThings3D set suffers from two problems: (1) as noticed in [24, 42], some images have
very large (up to 103) or negative disparities; (2) some images are rendered with black dots artifacts.
For the training we use only images without artifacts and with disparities ∈ [0, 255].

To deal with this problem, in some previous publications authors process the test set using the
ground truth which is used for benchmarking. Such pre-processing may consist of ignoring pixels
with disparity > 192 [2], or discarding images with more than 25% of pixels with disparity >
300 [24, 18, 20]. For the sake of fairness of the comparison we computed the error using both
protocols during the benchmarking on FlyingThings3D set. In all other experiments we use the
unaltered test set.

We make validation sets by withholding 500 images from the FlyingThings3D training set, and 58
from the KITTI training set, respectively.

We measure the performance of the network using two standard measures: (1) 3-pixel-error (3PE),
which is the percentage of pixels for which the predicted disparity is off by more than 3 pixels, and

6

Table 3: Datasets used for experiments. During benchmarking, we follow previous works and use
maximum disparity, that is different from absolute maximum for the datasets, provided between
parentheses.

Dataset Test # Train # Size Max disp. Ground truth Web score
KITTI 395 395 1226× 370 192 (230) sparse, ≤ 3 px. 3
FlyingThings3D 4370 25756 960× 540 192 (6773) dense , unknown 7

Table 4: Error of the proposed PDS network on FlyingThings3d test set as a function of training
patch size. The network trained on full-size images (highlighted), outperforms the network trained on
small image patches. Note, that in this experiment we used SoftArgmin with L1 loss during training.

Train size Test size 3PE, [%] MAE, [px]
512× 256 512× 256 8.63 4.18
512× 256 960× 540 5.28 3.55
960× 540 960× 540 4.50 3.40

(2) mean-absolute-error (MAE), the average difference of the predicted disparity and the ground truth.
Note, that 3PE and MAE are complimentary, since 3PE characterize error robust to outliers, while
MAE accounts for sub-pixel error.

3.2 Training on full-size images

In this section we show the effectiveness of training on full-size images. For that we train our network
till convergence on FlyingThings3D dataset with the L1 loss and SoftArgmin twice, the first time
we use 512× 256 training patches randomly cropped from the training images as in [13, 2], and the
second time we used full-size 960× 540 training images. Note, that the latter is possible thanks to
the small memory footprint of our network.

As seen in Table 4, the network trained on small patches, performs better on larger than on smaller
test images. This suggests, that even the network that has not seen full-size images during training
can utilize a larger context. As expected, the network trained on full-size images makes better use of
the said context, and performs significantly better.

3.3 Sub-pixel MAP and cross-entropy

Figure 4: Example of disparity estimation errors with the Sof-
tArgmin and sup-pixel MAP on FlyingThings3d set. The first
column shows the input image, the second – ground truth disparity,
the third – SoftArgmin estimate and the fourth sub-pixel MAP
estimate. Note that SoftArgmin estimate, though wrong, is closer
to the ground truth than sub-pixel MAP estimate. This can explain
larger MAE of the sub-pixel MAP estimate.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
epoch

3

4

5

6

7

8

va
lid

at
io
n
se

t 3
PE

Sub-pix CrossEntropy
L1

Figure 5: Comparison of the
convergence speed on FlyingTh-
ings3d set with sub-pixel cross
entropy and L1 loss. With the
proposed sub-pixel cross-entropy
loss (blue) network converges
faster. Note, that the error is
computed using the validation set,
containing 500 examples.

In this section, we first show the advantages of the sub-pixel MAP over the SoftArgmin. We train our
PDS network till convergence on FlyingThings3D with SoftArgmin, L1 loss and full-size training

7

images and then test it twice: the first time with SoftArgmin for inference, and the second time with
our sub-pixel MAP for inference instead.

As shown in Table 5, the substitution leads to the reduction of the 3PE and slight increase of the
MAE. The latter probably happens because in the erroneous area SoftArgmin estimates are wrong,
but nevertheless closer to the ground truth since it blends all distribution modes, as shown in Figure 4.

Table 5: Performance of the sub-pixel MAP estimator and cross-entropy loss on FlyingThings3d set.
Note, that: (1) if we substitute SoftArgmin with sub-pixel MAP during the test we get lower 3PE and
similar MAE; (2) if we increase disparity range twice MAE and 3PE of the network with sub-pixel
MAP almost does not change, while errors of the network with SoftArgmin increase; (3) if we train
network with with sub-pixel cross entropy it has much lower 3PE and only slightly worse MAE.

Loss Estimator 3PE, [%] MAE, [px]
Standard disparity range ∈ [0, 255]

L1 + SoftArgmin SoftArgmin 4.50 3.40
L1 + SoftArgmin Sub-pixel MAP 4.22 3.42
Sub-pixel cross-entropy. Sub-pixel MAP 3.80 3.63

Increased disparity range ∈ [0, 511]
L1 + SoftArgmin SoftArgmin 5.20 3.81
L1 + SoftArgmin Sub-pixel MAP 4.27 3.53

When we test the same network with the disparity range increased from 255 to 511 pixels the
performance of the network with the SoftArgmin plummets, while performance of the network with
sub-pixel MAP remains almost the same as shown in Table 5. This shows that with Sub-pixel MAP
we can modify the disparity range of the network on-the-fly, without re-training.

Next, we train the network with the sub-pixel cross-entropy loss and compare it to the network trained
with SoftArgmin and the L1 loss. As show in Table 5, the former network has much smaller 3PE and
only slightly larger MAE. The convergence speed with sub-pixel cross-entropy is also much faster
than with L1 loss as shown in Figure 5. Interestingly, in [13] also reports faster convergence with
one-hot cross-entropy than with L1 loss, but contrary to our results, they found that L1 provided
smaller 3PE.

3.4 Benchmarking

In this section we show the effectiveness of our method, compared to the state-of-the-art methods.
For KITTI, we computed disparity maps for the test sets with withheld ground truth, and uploaded
the results to the evaluation web site. For the FlyingThings3D set we evaluated performance on the
test set ourselves, following the protocol of [2] as explained in § 3.1.

FlyingThings3D set benchmarking results are shown in Table 1. Notably, the method we propose
has lowest 3PE error according to both evaluation protocols and has lowest or second lowest MAE,
depending on the protocol. Moreover, in contrast to other methods, our method has small memory
footprint, number of parameters, and it allows to change the disparity range without re-training.

KITTI’12, KITTI’15 benchmarking results are shown in Table 6. The method we propose ranks third
on KITTI’15 set and fourth on KITTI’12 set, taking into account state-of-the-art results published a
few months ago or not officially published yet iResNet-i2 [18], PSMNet [2] and LRCR [12] methods.

4 Conclusion

In this work we addressed two issues precluding the use of deep networks for stereo matching in
many practical situations in spite of their excellent accuracy: their large memory footprint, and the
inability to adjust to a different disparity range without complete re-training.

We showed that by carefully revising conventionally used networks architecture to control the memory
footprint and adapt analytically the network to the disparity range, and by using a new loss and
estimator to cope with multi-modal posterior and sub-pixel accuracy, it is possible to resolve these
practical issues and reach state-of-the-art performance.

8

Table 6: KITTI’15 (top) and KITTI’12 (bottom) snapshots from 15/05/2018 with top-10 methods,
including published in a recent months on not officially published yet: iResNet-i2 [18], PSMNet [2]
and LRCR [12]. Our method (highlighted) is 3rd in KITTI’15 and 4th in KITTI’12 leader boards.

dd/mm/yy Method 3PE (all pixels), [%] Time, [s]
1 30/12/17 PSMNet [2] 2.16 0.4
2 18/03/18 iResNet-i2 [18] 2.44 0.12
3 15/05/18 PDS (proposed) 2.58 0.5
4 24/03/17 CRL [24] 2.67 0.47
5 27/01/17 GC-NET [13] 2.87 0.9
6 15/11/17 LRCR [12] 3.03 49
7 15/11/16 DRR [7] 3.16 0.4
8 08/11/17 SsSMnet [43] 3.40 0.8
9 15/12/16 L-ResMatch [31] 3.42 48
10 26/10/15 Displets v2 [8] 3.43 265

dd/mm/yy Method 3PE (non-occluded), [%] Time, [s]
1 31/12/17 PSMNet [2] 1.49 0.4
2 23/11/17 iResNet-i2 [18] 1.71 0.12
3 27/01/17 GC-NET [13] 1.77 0.9
4 15/05/18 PDS (proposed) 1.92 0.5
5 15/12/16 L-ResMatch [31] 2.27 48
6 11/09/16 CNNF+SGM [41] 2.28 71
7 15/12/16 SGM-NET [30] 2.29 67
8 08/11/17 SsSMnet [43] 2.30 0.8
9 27/04/16 PBCP [29] 2.36 68
10 26/10/15 Displets v2 [8] 2.37 265

5 Acknowledgement

We gratefully acknowledge support from the NCCR PlanetS and CaSSIS project of the University of
Bern funded through the Swiss Space Office via ESA’s PRODEX program. We also acknowledge
the support of NVIDIA Corporation with the donation of the GeForce GTX TITAN X used for this
research.

References
[1] Jonathan T Barron, Andrew Adams, YiChang Shih, and Carlos Hernández. Fast bilateral-space

stereo for synthetic defocus. In CVPR, 2015.

[2] Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo matching network. CoRR, 2018.

[3] Zhuoyuan Chen, Xun Sun, and Liang Wang. A Deep Visual Correspondence Embedding Model
for Stereo Matching Costs. ICCV, 2015.

[4] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas, Vladimir Golkov,
Patrick van der Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learning optical flow with
convolutional networks. In CVPR, 2015.

[5] Meirav Galun, Tal Amir, Tal Hassner, Ronen Basri, and Yaron Lipman. Wide baseline stereo
matching with convex bounded distortion constraints. In ICCV, 2015.

[6] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the
kitti vision benchmark suite. In CVPR, 2012.

[7] Spyros Gidaris and Nikos Komodakis. Detect, replace, refine: Deep structured prediction for
pixel wise labeling. CVPR, 2017.

[8] Fatma Güney and Andreas Geiger. Displets: Resolving Stereo Ambiguities using Object
Knowledge. CVPR, 2015.

9

[9] Simon Hadfield and Richard Bowden. Exploiting high level scene cues in stereo reconstruction.
In ICCV, 2015.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

[11] Hae-Gon Jeon, Joon-Young Lee, Sunghoon Im, Hyowon Ha, and In So Kweon. Stereo matching
with color and monochrome cameras in low-light conditions. In CVPR, 2016.

[12] Zequn Jie, Pengfei Wang, Yonggen Ling, Bo Zhao, Yunchao Wei, Jiashi Feng, and Wei Liu.
Left-right comparative recurrent model for stereo matching. In CVPR, 2018.

[13] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter Henry, Ryan Kennedy, Abraham
Bachrach, and Adam Bry. End-to-end learning of geometry and context for deep stereo
regression. ICCV, 2017.

[14] K. R. Kim and C. S. Kim. Adaptive smoothness constraints for efficient stereo matching using
texture and edge information. In ICIP, 2016.

[15] KITTY. Kitti stereo scoreboards. http://www.cvlibs.net/datasets/kitti/ Accessed:
05 May 2018.

[16] Patrick Knöbelreiter, Christian Reinbacher, Alexander Shekhovtsov, and Thomas Pock. End-to-
end training of hybrid cnn-crf models for stereo. CVPR, 2017.

[17] Ang Li, Dapeng Chen, Yuanliu Liu, and Zejian Yuan. Coordinating multiple disparity proposals
for stereo computation. In CVPR, 2016.

[18] Zhengfa Liang, Yiliu Feng, Yulan Guo Hengzhu Liu Wei Chen, and Linbo Qiao Li Zhou Jianfeng
Zhang. Learning for disparity estimation through feature constancy. CoRR, 2018.

[19] Wenjie Luo, Alexander G Schwing, and Raquel Urtasun. Efficient deep learning for stereo
matching. In CVPR, 2016.

[20] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers, Alexey Dosovitskiy,
and Thomas Brox. A large dataset to train convolutional networks for disparity, optical flow,
and scene flow estimation. In CVPR, 2016.

[21] Xing Mei, Xun Sun, Mingcai Zhou, Shaohui Jiao, Haitao Wang, and Xiaopeng Zhang. On
building an accurate stereo matching system on graphics hardware. In ICCV Workshops, 2011.

[22] Moritz Menze and Andreas Geiger. Object scene flow for autonomous vehicles. In CVPR, 2015.

[23] Kyoung Won Nam, Jeongyun Park, In Young Kim, and Kwang Gi Kim. Application of
stereo-imaging technology to medical field. Healthcare informatics research, 2012.

[24] Jiahao Pang, Wenxiu Sun, JS Ren, Chengxi Yang, and Qiong Yan. Cascade residual learning: A
two-stage convolutional neural network for stereo matching. In ICCVW, 2017.

[25] Min-Gyu Park and Kuk-Jin Yoon. Leveraging stereo matching with learning-based confidence
measures. In CVPR, 2015.

[26] PyTorch. Pytorch web site. http://http://pytorch.org/ Accessed: 05 May 2018.

[27] Yvain QUeau, Tao Wu, François Lauze, Jean-Denis Durou, and Daniel Cremers. A non-convex
variational approach to photometric stereo under inaccurate lighting. In CVPR, 2017.

[28] Daniel Scharstein and Richard Szeliski. A Taxonomy and Evaluation of Dense Two-Frame
Stereo Correspondence Algorithms. IJCV, 2001.

[29] Akihito Seki and Marc Pollefeys. Patch based confidence prediction for dense disparity map. In
BMVC, 2016.

[30] Akihito Seki and Marc Pollefeys. Sgm-nets: Semi-global matching with neural networks. 2017.

10

http://www.cvlibs.net/datasets/kitti/
http://http://pytorch.org/

[31] Amit Shaked and Lior Wolf. Improved stereo matching with constant highway networks and
reflective confidence learning. CVPR, 2017.

[32] David E Shean, Oleg Alexandrov, Zachary M Moratto, Benjamin E Smith, Ian R Joughin,
Claire Porter, and Paul Morin. An automated, open-source pipeline for mass production of
digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery.
{ISPRS}, 2016.

[33] S. Tulyakov, A. Ivanov, and F. Fleuret. Weakly supervised learning of deep metrics for stereo
reconstruction. In ICCV, 2017.

[34] Ali Osman Ulusoy, Michael J Black, and Andreas Geiger. Semantic multi-view stereo: Jointly
estimating objects and voxels. In CVPR, 2017.

[35] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. Instance normalization: The missing
ingredient for fast stylization. CoRR, 2016.

[36] Cedric Verleysen and Christophe De Vleeschouwer. Piecewise-planar 3d approximation from
wide-baseline stereo. In CVPR, 2016.

[37] Ting-Chun Wang, Manohar Srikanth, and Ravi Ramamoorthi. Depth from semi-calibrated
stereo and defocus. In CVPR, 2016.

[38] Sergey Zagoruyko and Nikos Komodakis. Learning to compare image patches via convolutional
neural networks. 2015.

[39] Jure Žbontar and Yann LeCun. Computing the Stereo Matching Cost With a Convolutional
Neural Network. CVPR, 2015.

[40] Jure Zbontar and Yann LeCun. Stereo matching by training a convolutional neural network to
compare image patches. JMLR, 2016.

[41] F. Zhang and B. W. Wah. Fundamental principles on learning new features for effective dense
matching. IEEE Transactions on Image Processing, 27(2):822–836, Feb 2018. ISSN 1057-7149.
doi: 10.1109/TIP.2017.2752370.

[42] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. In International Conference on Learning Representations, 2018.

[43] Yiran Zhong, Yuchao Dai, and Hongdong Li. Self-supervised learning for stereo matching with
self-improving ability. CoRR, 2017.

11

