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Abstract

Future mobile devices are anticipated to perceive, understand and react to the world
on their own by running multiple correlated deep neural networks on-device. Yet
the complexity of these neural networks needs to be trimmed down both within-
model and cross-model to fit in mobile storage and memory. Previous studies
squeeze the redundancy within a single model. In this work, we aim to reduce the
redundancy across multiple models. We propose Multi-Task Zipping (MTZ), a
framework to automatically merge correlated, pre-trained deep neural networks
for cross-model compression. Central in MTZ is a layer-wise neuron sharing and
incoming weight updating scheme that induces a minimal change in the error
function. MTZ inherits information from each model and demands light retraining
to re-boost the accuracy of individual tasks. Evaluations show that MTZ is able
to fully merge the hidden layers of two VGG-16 networks with a 3.18% increase
in the test error averaged on ImageNet and CelebA, or share 39.61% parameters
between the two networks with < 0.5% increase in the test errors for both tasks.
The number of iterations to retrain the combined network is at least 17.8x lower
than that of training a single VGG-16 network. Moreover, experiments show that
MTZ is also able to effectively merge multiple residual networks.

1 Introduction

Al-powered mobile applications increasingly demand multiple deep neural networks for correlated
tasks to be performed continuously and concurrently on resource-constrained devices such as wear-
ables, smartphones, self-driving cars, and drones [5, 18]. While many pre-trained models for different
tasks are available [14, 23, 25], it is often infeasible to deploy them directly on mobile devices. For
instance, VGG-16 models for object detection [25] and facial attribute classification [17] both contain
over 130M parameters. Packing multiple such models easily strains mobile storage and memory.
Sharing information among tasks holds potential to reduce the sizes of multiple correlated models
without incurring drop in individual task inference accuracy.

We study information sharing in the context of cross-model compression, which seeks effective and
efficient information sharing mechanisms among pre-trained models for multiple tasks to reduce the
size of the combined model without accuracy loss in each task. A solution to cross-model compression
is multi-task learning (MTL), a paradigm that jointly learns multiple tasks to improve the robustness
and generalization of tasks [1, 5]. However, most MTL studies use heuristically configured shared
structures, which may lead to dramatic accuracy loss due to improper sharing of knowledge [31].
Some recent proposals [17, 19, 28] automatically decide “what to share” in deep neural networks.
Yet deep MTL usually involves enormous training overhead [31]. Hence it is inefficient to ignore the
already trained parameters in each model and apply MTL for cross-model compression.

We propose Multi-Task Zipping (MTZ), a framework to automatically and adaptively merge correlated,
well-trained deep neural networks for cross-model compression via neuron sharing. It decides the
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optimal sharable pairs of neurons on a layer basis and adjusts their incoming weights such that
minimal errors are introduced in each task. Unlike MTL, MTZ inherits the parameters of each
model and optimizes the information to be shared among models such that only light retraining
is necessary to resume the accuracy of individual tasks. In effect, it squeezes the inter-network
redundancy from multiple already trained deep neural networks. With appropriate hardware support,
MTZ can be further integrated with existing proposals for single-model compression, which reduce
the intra-network redundancy via pruning [4, 6, 8, 15] or quantization [2, 7].

The contributions and results of this work are as follows.

o We propose MTZ, a framework that automatically merges multiple correlated, pre-trained
deep neural networks. It squeezes the task relatedness across models via layer-wise neuron
sharing, while requiring light retraining to re-boost the accuracy of the combined model.

e Experiments show that MTZ is able to merge all the hidden layers of two LeNet net-
works [14] (differently trained on MNIST) without increase in test errors. MTZ manages to
share 39.61% parameters between the two VGG-16 networks pre-trained for object detection
(on ImageNet [24]) and facial attribute classification (on CelebA [16]), while incurring less
than 0.5% increase in test errors. Even when all the hidden layers are fully merged, there is
a moderate (averaged 3.18%) increase in test errors for both tasks. MTZ achieves the above
performance with at least 17.9x fewer iterations than training a single VGG-16 network
from scratch [25]. In addition, MTZ is able to share 90% of the parameters among five
ResNets on five different visual recognition tasks while inducing negligible loss on accuracy.

2 Related Work

Multi-task Learning. Multi-task learning (MTL) leverages the task relatedness in the form of
shared structures to jointly learn multiple tasks [1]. Our MTZ resembles MTL in effect, i.e., sharing
structures among related tasks, but differs in objectives. MTL jointly trains multiple tasks to improve
their generalization, while MTZ aims to compress multiple already trained tasks with mild training
overhead. Georgiev et al. [5] are the first to apply MTL in the context of multi-model compression.
However, as in most MTL studies, the shared topology is heuristically configured, which may lead
to improper knowledge transfer [29]. Only a few schemes optimize what to share among tasks,
especially for deep neural networks. Yang er al. propose to learn cross-task sharing structure at
each layer by tensor factorization [28]. Cross-stitching networks [19] learn an optimal shared and
task-specific representations using cross-stitch units. Lu ef al. automatically grow a wide multi-task
network architecture from a thin network by branching [17]. Similarly, Rebuffi et al. sequentially add
new tasks to a main task using residual adapters for ResNets [21]. Different to the above methods,
MTZ inherits the parameters directly from each pre-trained network when optimizing the neurons
shared among tasks in each layer and demands light retraining.

Single-Model Compression. Deep neural networks are typically over-parameterized [3]. There
have been various model compression proposals to reduce the redundancy in a single neural net-
work. Pruning-based methods sparsify a neural network by eliminating unimportant weights (con-
nections) [4, 6, 8, 15]. Other approaches reduce the dimensions of a neural network by neuron
trimming [11] or learning a compact (yet dense) network via knowledge distillation [22, 10]. The
memory footprint of a neural network can be further reduced by lowering the precision of param-
eters [2, 7].Unlike previous research that deals with the intra-redundancy of a single network, our
work reduces the inter-redundancy among multiple networks. In principle, our method is a dimension
reduction based cross-model compression scheme via neuron sharing. Although previous attempts
designed for a single network may apply, they either adopt heuristic neuron similarity criterion [11]
or require training a new network from scratch [22, 10]. Our neuron similarity metric is grounded
upon parameter sensitivity analysis for neural networks, which is applied in single-model weight
pruning [4, 8, 15]. Our work can be integrated with single-model compression to further reduce the
size of the combined network.

3 Layer-wise Network Zipping
3.1 Problem Statement

Consider two inference tasks A and B with the corresponding two well-trained models M* and M B,
i.e., trained to a local minimum in error. Our goal is to construct a combined model M€ by sharing
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Figure 1: An illustration of layer zipping via neuron sharing: neurons and the corresponding weight
matrices (a) before and (b) after zipping the I-th layers of A/ and M 5.

as many neurons between layers in M4 and M as possible such that (i) M has minimal loss in
inference accuracy for the two tasks and (i) the construction of M ¢ involves minimal retraining.

For ease of presentation, we explain our method with two feed-forward networks of dense fully
connected (FC) layers. We extend MTZ to convolutional (CONV) layers in Sec. 3.5, sparse layers
in Sec. 3.6 and residual networks (ResNets) in Sec. 3.7. We assume the same input domain and the
same number of layers in M4 and M 5.

3.2 Layer Zipping via Neuron Sharing: Fully Connected Layers

This subsection presents the procedure of zipping the I-th layers (1 <1 < L — 1) in M“ and M5
given the previous (I — 1) layers have been merged (see Fig. 1). We denote the input layers as the
0-th layers. The L-th layers are the output layers of A/4 and M.

Denote the weight matrices of the I-th layers in A/ and M as Wf‘ e RNEN! and WE e
RN 1% N, lB, where NV, lA and NV, lB are the numbers of neurons in the [-th layers in M A and MB.
Assume N;_; € [0, min{ N/, N ,}] neurons are shared between the (I — 1)-th layers in M“ and
MB . Hence there are ]\Afl“il =N, - N,_; and Nﬁl =NpB, - N, task-specific neurons left in
the (I — 1)-th layers in M and M 7, respectively.

Neuron Sharing. To enforce neuron sharing between the I-th layers in M and M P, we calculate the
functional difference between the i-th neuron in layer [ in M“, and the j-th neuron in the same layer

in M. The functional difference is measured by a metric d[w;’;, W/}, where w/;, w/?, € RN
are the incoming weights of the two neurons from the shared neurons in the (I — 1)-th layer. We do
not alter incoming weights from the non-shared neurons in the (I — 1)-th layer because they are likely
to contain task-specific information only.

To zip the [-th layers in M and M2, we first calculate the functional difference for each pair
of neurons (i, j) in layer [ and select N; € [0, min{N/*, N }] pairs with the smallest functional

difference. These pairs of neurons form a set {(ix,jx)}, where k = 0,--- , N; and each pair is
merged into one neuron. Thus the neurons in the I-th layers in M4 and M P fall into three groups:

Nl shared, NlA = NlA — Nl specific for A and NlB = NZB — Nl specific for B.

Weight Matrices Updating. Finally the weight matrices WZA and W7 are re-organized as follows.
The weights vectors v?/fik and \iffjk, where k = 0, - - - , N, are merged and replaced by a matrix
W, € RVi-1xNi_ whose columns are Wik = f(\?\/l‘f‘ik,v?/fjk), where f(-) is an incoming weight
update function. W represents the task-relatedness between A and B from layer (I — 1) to layer (.
The incoming weights from the N;* | neurons in layer (I — 1) to the N/* neurons in layer [ in M*
form a matrix WlA e RNE<N The remaining columns in WZA are packed as WlA € RN N
Matrices Wf‘ and VVZA contain the task-specific information for A between layer (I — 1) and layer
l. For task B, we organize matrices WlB IS RNlEil xNf and WlB S ]RNEI xNi in a similar manner.

We also adjust the order of rows in the weight matrices in the (I + 1)-th layers, Wf_‘H and WEH, to
maintain the correct connections among neurons.



The above layer zipping process can reduce Ni_1 x N; weights from WZA and WP, Essential in
MTZ are the neuron functional difference metric d[-] and the incoming weight update function f(-).
They are designed to demand only light retraining to recover the original accuracy.

3.3 Neuron Functional Difference and Incoming Weight Update

This subsection introduces our neuron functional difference metric d[-] and weight update function
f () leveraging previous research on parameter sensitivity analysis for neural networks [4, 8, 15].

Preliminaries. A naive approach to accessing the impact of a change in some parameter vector € on
the objective function (training error) F is to apply the parameter change and re-evaluate the error on
the entire training data. An alternative is to exploit second order derivatives [4, 8]. Specifically, the
Taylor series of the change J E in training error due to certain parameter vector change 66 is [8]:
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where H = 9*E/ D6? is the Hessian matrix containing all the second order derivatives. For a network
trained to a local minimum in £, the first term vanishes. The third and higher order terms can also be
ignored [8]. Hence:
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Eq.(2) approximates the deviation in error due to parameter changes. However, it is still a bottleneck
to compute and store the Hessian matrix H of a modern deep neural network. As next, we harness the
trick in [4] to break the calculations of Hessian matrices into layer-wise, and propose a Hessian-based
neuron difference metric as well as the corresponding weight update function for neuron sharing.

Method. Inspired by [4] we define the error functions of A/ and M in layer [ as
1
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where y;* and y;* are the pre-activation outputs of the [-th layers in M before and after layer
zipping, evaluated on one instance from the training set of A; y? and y are defined in a similar
way; || - || is 2-norm; n.4 and n are the number of training samples for M4 and M 7, respectively;
¥ is the summation over all training instances. Since M“ and M ? are trained to a local minimum in
training error, ElA and ElB will have the same minimum points as the corresponding training errors.

~

We further define an error function of the combined network in layer [ as
E =aE!+(1—a)EP ©)

where a € (0,1) is used to balance the errors of M# and MZ. The change in E; with respect to
neuron sharing in the [-th layer can be expressed in a similar form as Eq.(2):
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where 5v~vf‘i and 5v~lej are the adjustments in the weights of ¢ and j to merge the two neurons;
HY, = 0°E,/(0w{,)? and HE; = 0E,/(0W[,)? denote the layer-wise Hessian matrices. Similarly
to [4], the layer-wise Hessian matrices can be calculated as
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where x* | and xf_l are the outputs of the merged neurons from layer (I — 1) in M4 and M5,
respectively.



When sharing the i-th and j-th neurons in the I-th layers of M“ and MZ, respectively, our aim is to
minimize 0 E;, which can be formulated as the optimization problem below:

min{ min  JE}s.tWi + 0w = Wi, + 0w, 9)
(id) (5], 6%P)) ’ ’ ’ ’

Applying the method of Lagrange multipliers, the optimal weight changes and the resulting § F; are:
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Finally, we define the neuron functional difference metric d[v~leZ, ij} = 0E" *, and the weight
A opt _ ~ B,opt

update function f (W, wf%) = W, + 6w, = wf 4 6w

3.4 MTZ Framework

Algorithm 1 outlines the process of MTZ on two tasks of the same input domain, e.g., images. We
first construct a joint input layer. In case the input layer dimensions are not equal in both tasks, the
dimension of the joint input layer equals the larger dimension of the two original input layers, and
fictive connections (i.e., weight 0) are added to the model whose original input layers are smaller.
Afterwards we begin layer-wise neuron sharing and weight matrix updating from the first hidden layer.
The two networks are “zipped” layer by layer till the last hidden layer and we obtain a combined
network. After merging each layer, the networks are retrained to re-boost the accuracy.

Practical Issues. We make the following notes on the practicability of MTZ.

e How to set the number of neurons to be shared? One can directly set N neurons to be
shared for the [-th layers, or set a layer-wise threshold ¢; instead. Given a ttheshold e, MTZ
shares pairs of neurons where {(ik,jk)\d[v?/fik,vvl?jk} < g }. Inthis case N; = |{(ix, ji) }|-
One can set {Nl} if there is a hard constraint on storage or memory. Otherwise {£;} can be
set if accuracy is of higher priority. Note that {51} controls the layer wise error 6El, which

correlates to the accumulated errors of the outputs in layer L &4 \/ﬁ S |jx4 — x#| and
e = =2 IIxE —xZ | [41.

e How to execute the combined model for each task? During inference, only task-related
connections in the combined model are enabled. For instance, when performing inference on
task A, we only activate {W1}, {W'} and {W,}, while {W} and {W£} are disabled
(e.g., by setting them to zero).

e How to zip more than two neural networks? MTZ is able to zip more than two models by
sequentially adding each network into the joint network, and the calculated Hessian matrices
of the already zipped joint network can be reused. Therefore, MTZ is scalable in regards to
both the depth of each network and the number of tasks to be zipped. Also note that since
calculating the Hessian matrix of one layer requires only its layer input, only one forward
pass in total from each model is needed for the merging process (excluding retraining).

3.5 Extension to Convolutional Layers

The layer zipping procedure of two convolutional layers are very similar to that of two fully connected
layers. The only difference is that sharing is performed on kernels rather than neurons. Take the
i-th kernel of size k; x k; in layer [ of M as an example. Its incoming weights from the previous
shared kernels are W™ € R¥t**1*Ni-1_ The weights are then flatten into a vector W, to calculate
functional dlfferences As with in Sec. 3.2, after layer zipping in the [-th layers, the weight matrices

in the (I + 1)-th layers need careful permutations regarding the flattening ordering to maintain correct
connections among neurons, especially when the next layers are fully connected layers.
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Algorithm 1: Multi-task Zipping via Layer-wise Neuron Sharing
input :{W'}, {WP}: weight matrices of M and M5
XA XB: training datum of task A and B (including labels)
a: coefficient to adjust the zipping balance of M Aand M B
{NN;}: number of neurons to be shared in layer !/
fori=1,...,.L—1do
Calculate inputs for the current layer x;* | and x” | using training data from X# and X?
‘and forward propagation
I:If}i s Soxty - (xty)T
HP o 2o 3 0xf - ()T
Select N, pairs of neurons {(ix, j )} with the smallest d[ﬁrl“}i, x?vffj]
fork < 1,...,N, do
L V~Vl,k <~ f(‘i’fzkawﬁ“)
Re-organize WlA and WZB into Wl, VAVf‘, VV{‘, WlB and V~VZB
Permute the order of rows in Wf}H and Wﬁ_l to maintain correct connections
Conduct a light retraining on task A and B to re-boost accuracy of the joint model

output: {W'}, {W}, {W,},{WPF}, {WPF}: weights of the zipped multi-task model M

3.6 Extension to Sparse Layers

Since the pre-trained neural networks may have already been sparsified via weight pruning, we also
extend MTZ to support sparse models. Specifically, we use sparse matrices, where zeros indicate no
connections, to represent such sparse models. Then the incoming weights from the previous shared
neurons/kernels w;;, w/%; still have the same dimension. Therefore d[w;';, w/], f (Wi, w{%;) can
be calculated as usual. However, we also calculate two mask vectors rhf‘i and ﬁlfj, whose elements
are 0 when the corresponding elements in v~vf‘i and vNVFj are 0, and 1 otherwise. We pick the mask

vector with more 1’s and apply it to w;. This way the combined model always have a smaller number
of connections (weights) than the sum of the original two models.

3.7 Extension to Residual Networks

MTZ can also be extended to merge residual networks [9]. To simplify the merging process, we
assume that the last layer is always fully-merged when merging the next layers. Hence after merging
we have only matrices Wl“l € RNI{lXNlA, WlB € RNlFilXNlB, and W, € RN L NE FX N
This assumption is able to provide decent performance (see Sec. 4.3). Note that the sequence of the
channels of the shortcuts need to be permuted before and after the adding operation at the end of each
residual block in order to maintain correct connections after zipping.

4 Experiments

We evaluate the performance of MTZ on zipping networks pre-trained for the same task (Sec. 4.1)
and different tasks (Sec. 4.2 and Sec. 4.3). We mainly assess the test errors of each task after network
zipping and the retraining overhead involved. MTZ is implemented with TensorFlow.All experiments
are conducted on a workstation equipped with Nvidia Titan X (Maxwell) GPU.

4.1 Performance to Zip Two Networks (LeNet) Pre-trained for the Same Task

This experiment validates the effectiveness of MTZ by merging two differently trained models for
the same task. Ideally, two models trained to different local optimums should function the same on
the test data. Therefore their hidden layers can be fully merged without incurring any accuracy loss.
This experiment aims to show that, by finding the correct pairs of neurons which shares the same
functionality, MTZ can achieve the theoretical limit of compression ratio i.e., 100%, even without
any retraining involved.
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Figure 2: Test error on MNIST by continually sharing neurons in (a) the first and (b) the second fully
connected layers of two dense LeNet-300-100 networks till the merged layers are fully shared.

Table 1: Test errors on MNIST by sharing all neurons in two LeNet networks.

Model err A errp re-err¢ # re-iter

LeNet-300-100-Dense 1.57% 1.60% 1.64% 550
LeNet-300-100-Sparse 1.80% 1.81% 1.83% 800
LeNet-5-Dense 0.89% 0.95% 0.93% 600
LeNet-5-Sparse 1.27%  1.28%  1.29% 1200

Dataset and Settings. We experiment on MNIST dataset with the LeNet-300-100 and LeNet-5
networks [14] to recognize handwritten digits from zero to nine. LeNet-300-100 is a fully connected
network with two hidden layers (300 and 100 neurons each), reporting an error from 1.6% to 1.76%
on MNIST [4][14]. LeNet-5 is a convolutional network with two convolutional layers and two fully
connected layers, which achieves an error ranging from 0.8% to 1.27% on MNIST [4][14].

We train two LeNet-300-100 networks of our own with errors of 1.57% and 1.60%; and two LeNet-5
networks with errors of 0.89% and 0.95%. All the networks are initialized randomly with different
seeds, and the training data are also shuffled before every training epoch. After training, the ordering
of neurons/kernels in all hidden layers is once more randomly permuted. Therefore the models have
completely different parameters (weights). The training of LeNet-300-100 and LeNet-5 networks
requires 1.05 x 10% and 1.1 x 10% iterations in average, respectively.

For sparse networks, we apply one iteration of L-OBS [4] to prune the weights of the four LeNet
networks. We then enforce all neurons to be shared in each hidden layer of the two dense LeNet-
300-100 networks, sparse LeNet-300-100 networks, dense LeNet-5 networks, and sparse LeNet-5
networks, using MTZ.

Results. Fig. 2a plots the average error after sharing different amounts of neurons in the first layers
of two dense LeNet-300-100 networks. Fig. 2b shows the error by further merging the second layers.
We compare MTZ with a random sharing scheme, which shares neurons by first picking (i, ji) at
random, and then choosing randomly between virfik and x?vfjk as the shared weights w;,. When

all the 300 neurons in the first hidden layers are shared, there is an increase of 0.95% in test error
(averaged over the two models) even without retraining, while random sharing induces an error
of 33.47%. We also experiment MTZ to fully merge the hidden layers in the two LeNet-300-100
networks without any retraining i.e., without line 10 in Algorithm 1. The averaged test error increases
by only 1.50%.

Table 1 summarizes the errors of each LeNet pair before zipping (err 4 and errp), after fully merged
with retraining (re-err) and the number of retraining iterations involved (# re-iter). MTZ consistently
achieves lossless network zipping on fully connected and convolutional networks, either they are
dense or sparse, with 100% parameters of hidden layers shared. Meanwhile, the number of retraining
iterations is approximately 19.0x and 18.7x fewer than that of training a dense LeNet-300-100
network and a dense LeNet-5 network, respectively.



Table 2: Test errors and retraining iterations of sharing all neurons (output layer fc8 excluded) in two
well-trained VGG-16 networks for ImageNet and CelebA.

ImageNet (Top-5 Error) CelebA (Error)

Layer N lA # re-iter
w/o-re-errc re-err¢ w/o-re-err ¢ re-erre

convi_1 64 10.59% 10.61%  8.45% 8.43% 50
convi_2 64 11.19% 10.78%  8.82% 8.77% 100
conv2_1 128 10.99% 10.68%  8.91% 8.82% 100
conv2_2 128 11.31% 11.03%  9.23% 9.07% 100
conv3_1 256 11.65% 11.46%  9.16% 9.04% 100
conv3_2 256 11.92% 11.83%  9.17% 9.05% 100
conv3_3 256 12.54% 12.41%  9.46% 9.34% 100
conv4_1 512 13.40% 12.28% 10.18% 9.69% 400
conv4_2 512 13.02% 12.62% 10.65% 10.25% 400
conv4_3 512 13.11% 12.97% 12.03% 10.92% 400
conv5_1 512 13.46% 13.09% 12.62% 11.68% 400
convb6_2 512 13.77% 13.20% 12.61% 11.64% 400
convs_3 512 36.07% 13.35%  13.10% 12.01% 1 x 10®
fc6 4096 15.08% 15.17%  12.31% 11.71% 2 x 10®
fc7 4096 15.73% 14.07% 11.98% 11.09% 1 x 10%

Table 3: Test errors, number of shared neurons, and retraining iterations of adaptively zipping two
well-trained VGG-16 networks for ImageNet and CelebA.

~ ImageNet (Top-5 Error) CelebA (Error)

Layer N, IA N; # re-iter
w/o-re-err ¢ re-err¢ w/o-re-errc re-err¢
convi_1 64 64 10.28% 10.37%  8.39% 8.33% 50
convi_2 64 64 10.93% 10.50%  8.77% 8.54% 100
conv2_1 128 96 10.74% 10.57%  8.62% 8.46% 100
conv2_2 128 96 10.87% 10.79%  8.56% 8.47% 100
conv3_1 256 192 10.83% 10.76%  8.62% 8.48% 100
convd_2 256 192 10.92% 10.71%  8.52% 8.44% 100
conv3_3 256 192 10.86% 10.71%  8.83% 8.63% 100
convé_1 512 384 10.69% 10.51%  9.39% 8.71% 400
convé_2 512 320 10.43% 10.46%  9.06% 8.80% 400
conv4d_3 512 320 10.56% 10.36%  9.36% 8.93% 400
convb_1 512 436 10.42% 10.51%  9.54% 9.15% 400
convb_2 512 436 10.47% 10.49%  9.43% 9.16% 400
convb_3 512 436 10.49% 10.24%  9.61% 9.07% 1x 10°
fc6 4096 1792 11.46% 11.33%  9.37% 9.18% 2 x 10°
fc7 4096 4096 11.45% 10.75%  9.15% 8.95% 1.5 x 10%

4.2 Performance to Zip Two Networks (VGG-16) Pre-trained for Different Tasks

This experiment evaluates the performance of MTZ to automatically share information among two
neural networks for different tasks. We investigate: (i) what the accuracy loss is when all hidden
layers of two models for different tasks are fully shared (in purpose of maximal size reduction); (ii)
how much neurons and parameters can be shared between the two models by MTZ with at most 0.5%
increase in test errors allowed (in purpose of minimal accuracy loss).

Dataset and Settings. We explore to merge two VGG-16 networks trained on the ImageNet ILSVRC-
2012 dataset [24] for object classification and the CelabA dataset [16] for facial attribute classification.
The ImageNet dataset contains images of 1, 000 object categories. The CelebA dataset consists of
200 thousand celebrity face images labelled with 40 attribute classes. VGG-16 is a deep convolutional
network with 13 convolutional layers and 3 fully connected layers. We directly adopt the pre-trained
weights from the original VGG-16 model [25] for the object classification task, which has a 10.31%
error in our evaluation. For the facial attribute classification task, we train a second VGG-16 model
following a similar process as in [17]. We initialize the convolutional layers of a VGG-16 model
using the pre-trained parameters from imdb-wiki [23], then train the remaining 3 fully connected
layers till the model yields an error of 8.50%, which matches the accuracy of the VGG-16 model
used in [17] on CelebA. We conduct two experiments with the two VGG-16 models. (i) All hidden
layers in the two models are 100% merged using MTZ. (ii) Each pair of layers in the two models are
adaptively merged using MTZ allowing an increase (< 0.5%) in test errors on the two datasets.



Table 4: Test errors of pre-trained single ResNets and the joint network merged by MTZ. 1x is the
number of parameters of one single ResNet excluding the last classification layer.

#par. C100 GTSR OGlt SVHN UCF mean
5% Single model ~ 5Xx 29.19%  1.48%  14.40% 6.86%  37.83% 17.95%
Joint model 1.5%x 29.13% 0.09% 15.65% 7.08% 39.04% 18.20%

Results. Table 2 summarizes the performance when each pair of hidden layers are 100% merged.
The test errors of both tasks gradually increase during the zipping procedure from layer conv1_1
to conv5_2 and then the error on ImageNet surges when conv5_3 are 100% shared. After 1,000
iterations of retraining, the accuracies of both tasks are resumed. When 100% parameters of all
hidden layers are shared between the two models, the joint model yields test errors of 14.07% on
ImageNet and 11.09% on CelebA, i.e., increases of 3.76% and 2.59% in the original test errors.

Table 3 shows the performance when each pair of hidden layers are adaptively merged. Ultimately,
MTZ achieves an increase in test errors of 0.44% on ImageNet and 0.45% on CelebA. Approximately
39.61% of the parameters in the two models are shared (56.94% in the 13 convolutional layers
and 38.17% in the 2 fully connected layers). The zipping procedure involves 20, 650 iterations of
retraining. For comparison, at least 3.7 x 10° iterations are needed to train a VGG-16 network from
scratch [25]. That is, MTZ is able to inherit information from the pre-trained models and construct a
combined model with an increase in test errors of less than 0.5%. And the process requires at least
17.9x fewer (re)training iterations than training a joint network from scratch.

For comparison, we also trained a fully shared multi-task VGG-16 with two split classification layers
jointly on both tasks. The test errors are 14.88% on ImageNet and 13.29% on CelebA. This model
has exactly the same topology and amount of parameters as our model constructed by MTZ, but
performs slightly worse on both tasks.

4.3 Performance to Zip Multiple Networks (ResNets) Pre-trained for Different Tasks

This experiment shows the performance of MTZ to merge more than two neural networks for different
tasks, where the model for each task is pre-trained using deeper architectures such as ResNets.

Dataset and Settings. We adopt the experiment settings similar to [21], a recent work on multi-task
learning with ResNets. Specifically, five ResNet28 networks [30] are trained for diverse recognition
tasks, including CIFAR100 (C100) [12], German Traffic Sign Recognition (GTSR) Benchmark [27],
Omniglot (OGlt) [13], Street View House Numbers (SVHN) [20] and UCF101 (UCF) [26]. We set
the same 90% compression ratio for the five models and evaluate the performance of MTZ by the
accuracy of the joint model on each task.

Results. Table 4 shows the accuracy of each individual pre-trained model and the joint model on the
five tasks. The average accuracy decrease is a negligible 0.25%. Although ResNets are much deeper
and have more complex topology compared to VGG-16, MTZ is still able to effectively reduce the
overall number of parameters, while retaining the accuracy on each task.

5 Conclusion

We propose MTZ, a framework to automatically merge multiple correlated, well-trained deep neural
networks for cross-model compression via neuron sharing. It selectively shares neurons and optimally
updates their incoming weights on a layer basis to minimize the errors induced to each individual task.
Only light retraining is necessary to resume the accuracy of the joint model on each task. Evaluations
show that MTZ can fully merge two VGG-16 networks with an error increase of 3.76% and 2.59% on
ImageNet for object classification and on CelebA for facial attribute classification, or share 39.61%
parameters between the two models with < 0.5% error increase. The number of iterations to retrain
the combined model is 17.9x lower than that of training a single VGG-16 network. Meanwhile,
MTZ is able to share 90% of the parameters among five ResNets on five different visual recognition
tasks while inducing negligible loss on accuracy. Preliminary experiments also show that MTZ is
applicable to sparse networks. We plan to further investigate the integration of MTZ with weight
pruning in the future.
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