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Abstract

In this paper, we show that SVRG and SARAH can be modified to be
fundamentally faster than all of the other standard algorithms that minimize
the sum of n smooth functions, such as SAGA, SAG, SDCA, and SDCA
without duality. Most finite sum algorithms follow what we call the “span
assumption”: Their updates are in the span of a sequence of component
gradients chosen in a random IID fashion. In the big data regime, where the
condition number k = O(n), the span assumption prevents algorithms from
converging to an approximate solution of accuracy € in less than nln(1/€)
iterations. SVRG and SARAH do not follow the span assumption since
they are updated with a hybrid of full-gradient and component-gradient
information. We show that because of this, they can be up to (1 +
(In(n/k))+) times faster. In particular, to obtain an accuracy € = 1/n® for
x=n" and o, B € (0,1), modified SVRG requires O(n) iterations, whereas
algorithms that follow the span assumption require O(nln(n)) iterations.
Moreover, we present lower bound results that show this speedup is optimal,
and provide analysis to help explain why this speedup exists. With the
understanding that the span assumption is a point of weakness of finite
sum algorithms, future work may purposefully exploit this to yield faster
algorithms in the big data regime.

1 Introduction

Finite sum minimization is an important class of optimization problem that appears in many
applications in machine learning and other areas. We consider the problem of finding an
approximation & to the minimizer z* of functions F : R? — R of the form:

1 n
F(z) = f(z) + () & EZfi(x)er(w)- (1.1)
i=1
We assume each function f; is smooth®, and possibly nonconvex; v is proper, closed, and

convex; and the sum F is strongly convex and smooth. It has become well-known that under
a variety of assumptions, functions of this form can be minimized much faster with variance
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reduction (VR) algorithms that specifically exploit the finite-sum structure. When each f;
is p-strongly convex and L-smooth, and ¢ = 0, SAGA [1], SAG [2], Finito/Miso [3], [4],
SVRG [5], SARAH [6], SDCA [7], and SDCA without duality [8] can find a vector & with
expected suboptimality E(f(2) — f(z*)) = O(e) with only O((n + L/u)In(1/€)) calculations
of component gradients V f;(x). This can be up to n times faster than (full) gradient descent,
which takes O(nL/pIn(1/¢)) gradients. These algorithms exhibit sublinear convergence for
non-strongly convex problems’. Various results also exist for nonzero convex 1.

Accelerated VR algorithms have also been proposed. Katyusha [9] is a primal-only Nesterov-
accelerated VR algorithm that uses only component gradients. It is based on SVRG and
has complexity O((n + v/nk)1In(1/€))) for condition number k£ which is defined as L/u. In
[10], the author devises an accelerated SAGA algorithm that attains the same complexity
using component proximal steps. In [11], the author devises an accelerated primal-dual VR
algorithm. There also exist “catalyst” [12] accelerated methods [13], [14]. However, catalyst
methods appear to have a logarithmic complexity penalty over Nesterov-accelerated methods,
a defect that researchers have been able to correct.

In [15], authors show that a class of algorithms that includes SAGA, SAG, Finito (with
replacement), Miso, SDCA without duality, etc. have complexity K (e) lower bounded by
Q((n+ +v/nx)In(1/€)) for problem dimension d > 2K (e). More precisely, the lower bound
applies to algorithms that satisfy what we will call the span condition. That is

ot e 0+ Span{Vin (mo),Vfil (xl), oo, Vi (mk)} (1.2)

for some fixed IID random variable i, over the indices {1,...,n}. Later, [16] and [17] extend
lower bound results to algorithms that do not follow the span assumption: SDCA, SVRG,
SARAH, accelerated SAGA, etc.; but with a weaker lower bound of Q(n + v/nkln(1/e)).
The difference in these two expressions was thought to be a proof artifact that would later
be resolved.

However we show a surprising result in Section 2, that SVRG, and SARAH can be funda-
mentally faster than methods that satisfy the span assumption, with the full gradient steps
playing a critical role in their speedup. More precisely, for Kk = O(n), SVRG and SARAH

can be modified to reach an accuracy of € in O((7ii7my) In(1/€)) gradient calculations®,

instead of the ©(nln(1/¢)) iterations required for algorithms that follow the span condition.

We also improve the lower bound of [17] to Q(n + (m + v/nk)In(1/€)) in Section
I+

2.1. That is, we show that the complexity K (e) of a very general class of algorithm that
includes all of the above algorithms satisfies the lower bound:

K(e) Q(n + /nrln(l/e)), for n = O(k), (1.3)

€) = .
Q(n—&-mln(l/e)), for/{:O(n).

Hence when k = O(n) our modified SVRG has optimal complexity, and when n = O(k),

Katyusha is optimal.

SDCA doesn’t quite follow the span assumption. Also the dimension n of the dual space on
which the algorithm runs is inherently small in comparison to k, the number of iterations.
We complete the picture using different arguments, by showing that its complexity is lower
bounded by ©(n1n(1/e€)) in Section 2.2. Hence SDCA doesn’t attain this logarithmic speedup.
We leave the analysis of accelerated SAGA, accelerated SDCA, and other algorithms to
future work.

Our results identify a significant obstacle to high performance when n > k. The speedup
that SVRG and SARAH can be modified to attain in this scenario is somewhat accidental
since their original purpose was to minimize memory overhead. However, with the knowledge
that this assumption is a point of weakness for VR algorithms, future work may more
purposefully exploit this to yield better speedups than SVRG and SARAH can currently
attain. Though the complexity of SVRG and SARAH can be made optimal to within a

"SDCA must be modified however with a dummy regularizer.
8We define (a)+ as max{a, 0} for a € R.



constant factor, this factor is somewhat large, and could potentially be reduced substantially.
Though it is unclear how much of a speedup is possible.

Having n > k, which has been referred to as the “big data condition”, is rather common,
especially in regularized empirical risk minimization (ERM). For instance [2] remarks that
Kk = y/n is a nearly optimal choice for regularization for empirical risk minimization in the
low dimensional setting. In the high-dimensional setting, the authors of [2] claim there is no
analysis that they are aware that doesn’t imply that we should set the regularization term
to ensure n = O(k). In [18], authors consider regularized ERM for minimizing a stochastic
objective. They argue that the optimal choice of regularization parameter A corresponds to
Kk = v/n. [19] considers regularized SVM with x = n” for 8 < 1.

Hence our results have wide application. In the settings described above, we have the
following corollary that implies a complexity improvement from O(nln(n)) to O(n). This
will follow from Corollary 2 ahead.

Corollary 1. To obtain accuracy € = 1/n® for k = n® and some o, 3 € (0,1), modified
SVRG requires O(n) iterations, whereas algorithms that follow the span assumption require
O(nln(n)) dterations [11] for sufficiently large problem dimension d.

For large-scale problems, this In(n) factor can be rather large: For instance in the KDD
Cup 2012 dataset (n = 149,639,105 and In(n) ~ 18), Criteo’s Terabyte Click Logs (n =
4,195,197,692 and In(n) =~ 22), etc. Non-public internal company datasets can be far larger,
with n potentially larger than 10'°.

We also analyze Prox-SVRG in the case where f; are smooth and potentially nonconvex, but
the sum F is strongly convex. We build on the work of [20], which proves state-of-the-art
complexity bounds for this setting, and show that we can attain a similar logarithmic speedup
without modification. Lower bounds for this context are lacking, so it is unclear if this result
can be further improved.

2 Optimal Convex SVRG

In this section, we show that the Prox-SVRG algorithm proposed in [21] for problem (1.1)
can be sped up by a factor of Q(1+ (In(n/k))+) when k = O(n). A similar speedup is clearly
possible for vanilla SVRG and SARAH, which have similar rate expressions. We then refine
the lower bound analysis of [17] to show that the complexity is optimal® when x = O(n).
Katyusha is optimal in the other scenario when n = O(k) by [22].

Assumption 1. f; is L;—Lipschitz differentiable for i = 1,2, ...,n. That is,
IV fi(x) = Vfi()ll < Lillz —y|| for all z,y € R™.
f is L—Lipschitz differentiable. F'is py—strongly convex. That is,

F(y) > F(z) + (VF(z),y — z) + %Hy —z||* forall z,y € RY and VF(z) € OF (x).

Assumption 2. fi is convex for i = 1,2, ...,n; and v is proper, closed, and convex.

9I.e. the complexity cannot be improved among a very broad class of finite-sum algorithms.



Algorithm 1 Prox-SVRG(F, 2,1, m)

Input: F(z) = ¢(z)+ = > 1, fi(z), initial vector 2, step size > 0, number of epochs K,
probability distribution P = {p1,...,pn}
Output: vector 2%

1: M* ~ Geom(L);
2: for k< 0,..., K —1do
wy < @5 p = Vf(aF);
for t < 0, ..., M* do
pick i; € {1,2,...,n} ~ P randomly;
Ve =p+ (Vi (we) = Vi, (wo))/(nps,);
Wi = argmingega {9 (y) + 55 1ly — wel* + (Ve 9) }5
end for
2P wpry;
end for

[

We make Assumption 1 throughout the paper, and Assumption 2 in this section. Recall
the Prox-SVRG algorithm of [21], which we reproduce in Algorithm 1. The algorithm is
organized into a series of K epochs of size M*, where MF is a geometric random variable
with success probability 1/m. Hence epochs have an expected length of m. At the start
of each epoch, a snapshot p = Vf(2*) of the gradient is taken. Then for MF* steps, a
random component gradient V;, f(w;) is calculated, for an IID random variable i; with fixed
distribution P given by P[i; = i] = p;. This component gradient is used to calculate an
unbiased estimate V; of the true gradient V f(w;). Each time, this estimate is then used to
perform a proximal-gradient-like step with step size 7. At the end of these MP* steps, a new
epoch of size M**1 is started, and the process continues.

We first recall a modified Theorem 1 from [21]. The difference is that in [21], the authors
used an epoch length of m, whereas we use a random epoch length M* with expectation
EM* = m. The proof and theorem statement only require only trivial modifications to
account for this. This modification is only to unify the different version of SVRG in [21] and
[20], and makes no difference to the result.

It becomes useful to define the effective Lipschitz constant Ly = max;L;/(p;n), and the
effective condition number xg = Lg/p for this algorithm. These reduce to the standard
Lipschitz constant L, and the standard condition number & in the standard uniform scenario
where L; = L,Vi, and P is uniform.

Theorem 1. Complexity of Prox-SVRG. Let Assumptions 1 and 2 hold. Then Prox-
SVRG defined in Algorithm 1 satisfies

1+ pn(1 + 4mLgn)
pnm(l —4Lgn)

E[F(z*) — F(z*)] < p*[F(2°) — F(z*)] (2.1)  forp= (2.2)

In previous work, the optimal parameters were not really explored in much detail. In the
original paper [5], the author suggest n = 0.1/L, which results in linear convergence rate
1/4 < p <1/2 for m > 50k. In [21], authors also suggest n = 0.1/L for m = 100x, which
yields p ~ 5/6. However, they observe that n = 0.01/L works nearly as well. In [6], authors
obtain a similar rate expression for SARAH and suggest 7 = 0.5/L and m = 4.5k which
yields p = 7/9. In the following corollary, we propose a choice of n and m that leads to an
optimal complexity to within a constant factor for kK = O(n). This result helps explain why
the optimal step size observed in prior work appears to be much smaller than the “standard”
gradient descent step of 1/L.

Corollary 2. Let the conditions of Theorem 1 hold, and let m = n + 121kg, and n =

1 1
kgm~2/(2Lq). The Proz-SVRG in Algorithm 1 has convergence rate p < ’/ﬁr?/m)’
and hence it needs:

K(e)z@((H(thm+ﬁQ>ln1+n+mQ> (2.3)



iterations in expectation to obtain a point () such that E[f(acK(e)) — f(x*)] < e.

This result is proven in Appendix A. The n + kg term is needed because we assume that at

least one epoch is completed. For n = O(kg), we have a similar convergence rate (p ~ %)

and complexity to algorithms that follow the span assumption. For n > kg, we have a
convergence rate p ~ \/rkg/n — 0, and complexity O(m In(1/ e)), which can can

be much better than nln(1/€). See also Corollary 1. The corresponding result and proof for
SARAH is nearly identical, and we do not include this.

In order to obtain this speedup, some estimate of the condition number must be known.
However this is often not a problem. In the case of a regularization term for empirical risk
minimization, the strong convexity modulus is hand-picked based on the number of examples
n. In other cases, we can simply tune an estimate of the parameter x with the assurance
that this can yield a logarithmic speedup.

Remark 1. In Theorem 1 and Corollary 2, the optimal choice of the probability distribution
P =A{p1,p2,..c;pnton {1,2 ... n}is p; = z:”LiL fori=1,2,...,n,and Lg = %
i=1"7

2.1 Optimality

The major difference between SAGA, SAG, Miso/Finito, and SDCA without duality, and
SVRG and SARAH, is that the former satisfy what we call the span condition (1.2). SVRG,
and SARAH, do not, since they also involve full-gradient steps. We refer to SVRG, and
SARAH as hybrid methods, since they use full-gradient and partial gradient information
to calculate their iterations. We assume for simplicity that L; = L, for all 4, and that ¥ = 0.
We now present a rewording of Corollary 3 from [11].

Corollary 3. For every € and randomized algorithm on (1.1) that follows the span as-

sumption, there are a dimension d, and L-smooth, u-strongly convex functions f; on RY
such that the algorithm takes at least Q((n+ v/kn)In(1/e€)) steps to reach sub-optimality

Ef(z*) — f(z*) <e.

The above algorithms that satisfy the span condition all have known upper complexity
bounds of O((n + x)1In(1/¢)), and hence for kK = O(n) we have a sharp convergence rate.

However, it turns out that the span assumption is an obstacle to faster convergence when
n > rk (at least for sufficiently high dimension). In the following theorem, we improve'? the
analysis of [17], to show that the complexity of SVRG obtained in Corollary 2 is optimal
to within a constant factor without fundamentally different assumptions on the class of
algorithms that are allowed. Clearly this also applies to SARAH. The theorem is actually far
more general, and applies to a general class of algorithms called p— CLI oblivious algorithms
introduced in [17]. This class contains all VR algorithms mentioned in this paper. In
Appendix B, we recall the definition of p—CLI oblivious algorithms, as well as providing the
proof of a more general version of Theorem 2.

Theorem 2. Lower complexity bound of Prox-SVRG and SARAH. For all u, L,
there exist L-smooth, and p-strongly convex functions f; such that at least!!

- n 1
K(e)—Q((%+\/nn> 1n€+n> (24)
iterations are needed for SVRG or SARAH to obtain expected suboptimality
E[f(K(e) — f(z")] <e.

2.2 SDCA

To complete the picture, in the following proposition, which we prove in Appendix C, we show
that SDCA has a complexity lower bound of Q(n1n(1/€)). Hence it attains no logarithmic

108 pecifically, we improve the analysis of Theorem 2 from this paper.
11We absorb some smaller low-accuracy terms (high €) as is common practice. Exact lower bound
expressions appear in the proof.



speedup. SDCA aims to solve the following problem:
min F(x Zf *lzn: ¢ z’ Yi) é||IH2)
IeRd 7 n pot 7 K2 2 b

where each y; € R?, ¢; : R — R is convex and smooth. It does so with coordinate
minimization steps on the corresponding dual problem:

o{reukr}LD Zqﬁ 2” Zazyz\lrz

Here ¢} (u) == max, (zu - ¢Z(z)) is the convex conjugate of ¢;. Let i; be an IID sequence of
uniform random variables on {1 .,n}. SDCA updates a dual point a*, while maintaining a
corresponding primal vector z* SDCA can be written as:

k . . .
k+1 )@y, if ¢ # Tk, (2 5)
Q; in_ D( k k k k) ifi = :
argmin, D(af, ..., a7 1,2, 05, ,...,ap), if i =i,

1 n
k41 _ kt1,
= g:l oy, (2.6)

Since SDCA doesn’t follow the span assumption, and the number of iterations k is much
greater than the dual problem dimension n, different arguments to the ones used in [11]
must be used. Motivated by the analysis in [23], which only proves a lower bound for dual
suboptimality, we have the following lower complexity bound, which matches the upper
complexity bound given in [7] for K = O(n).

Proposition 1. Lower complexity bound of SDCA. For all pu,L,n > 2, there exist n
functions f; that are L—smooth, and pu—strongly convex such that

K(e) =Q(nln %) (2.7)

iterations are needed for SDCA to obtain expected suboptimality B[F (x%(9)) — F(z*)] <e.

3 Why are hybrid methods faster?

In this section, we explain why SVRG and SARAH, which are a hybrid between full-gradient
and VR methods, are fundamentally faster than other VR algorithms. We consider the
performance of these algorithms on a variation of the adversarial function example from
[11], [24]. The key insight is that the span condition makes this adversarial example hard to
minimize, but that the full gradient steps of SVRG and SARAH make it easy when n > k.

We conduct the analysis in £2, for simplicity'?, since the argument readily applies to R?.
Consider the function introduced in [24] that we introduce for the case n = 1:
2 -1
-1 2 -1
o(x) = 1 <2<x,Ax> — (el,x>>, for A= 1 9

The function ¢(x)+ %(TH:Z?”Q is L-smooth and o-strongly convex. Its minimizer z* is given by
(q1.43,43,...) forq1 = (/@1/2 - 1)/(/@1/2 + 1). We assume that 2° = 0 with no loss in general-
ity. Let N(z) be position of the last nonzero in the vector. E.g. N(0,2,3,0,4,0,0,0,...) =5.
N(z) is a control on how close = can be to the solution. If N(z) = N, then clearly:

IIw—x*IIQZy Jmin ly — 2|2 = [|(0,...,0,a g2, )| = 2V 2/ (1 - ¢2)

12This is the Hilbert space of sequences (z;)52; with Zzl x? < 00



Because of the tridiagonal pattern of nonzeros in the Hessian V2 (¢(x) + %0||:c||2) (y) =

L22 A+ 01, the last nonzero N (z*) of 2* can only increase by 1 per iteration by any algorithm
that satisfies that span condition (e.g. gradient descent, accelerated gradient descent, etc.).
2

> gi*.

Hence since we have N(xo) =0, we have ka

For the case n > 1, let the solution vector © = (z1,...,x,) be split into n coordinate blocks,
and hence define:

3 (6w) + golal?) (3.1)

(L T (;@; Az;) — (e, m) + % (“”)”””2>

((L — o +on)—on (1@1-, Az;) — (e, :m) + ;(Un)||xi||2>- (3.2)

s
I
—

I

=1

|

4 2

i=1

f is clearly the sum of n convex L-smooth functions ¢(x;) + %O’HQB”2, that are o-
strongly convex. (3.2) shows it is on-strongly convex and L — o + on-smooth with
respect to coordinate x;. Hence the minimizer is given by z; = (qn,¢2,q5,...) for
Gn = ((57—1 + 1)1/2 = 1)/(("7_1 +1) Y2y 1) for all 4. Similar to before, (N(z1), ..., N(zy))

controls how close x can be to z*:

112
|z — 2| _ ZLH% - (‘quna e > Zqu(zl
[|z*||* ng; /(1
Let Ik ; be the number of times that i, = ¢ for £k = 0,1,..., K — 1. For algorithms that

satisfy the span assumption, we have N (z¥) < I, ;. If we assume that i is uniform, then
Ik ; is a binomial random variable of probablhty 1/n and size k. Hence:

>E2qn /n>IEZq21'“

Eka — x*| 2

—Eg i —(1-n(1 —qn))k (3.3)
> <1—4n—1/<(“; ! 1)1/2+1>>
> (1 -2 )"

for n > k. the second equality in (3.3) follows from the fact that I; j is a binomial random
variable. Hence after 1 epoch, IEHx’€ —z* H2 decreases by a factor of at most ~ €2, whereas

for SVRG it decreases by at least a factor of ~ (n/n)l/z, which is > €2 for n > k. To help
understand why, consider trying the above analysis on SVRG for 1 epoch of size n. Because
of the full-gradient step, we actually have N(w]') <1+ I,, ;, and hence:

Ellw" — 2*|*/[]a® — 2*||* 2 E Y 21D > g2 (1-2n71)" ~ (i — 1) e

i=1

Hence attempting the above results in a much weaker lower bound.

What it comes down to is that when n > &, we have EY " | @l n > EZ @ .
The interpretation is that for this objective, the progress towards a solution is hmlted by
the component function f; that is minimized the least. The full gradient step ensures that
at least some progress is made toward minimizing every f;. For algorithms that follow
the span assumption, there will invariably be many indices ¢ for which no gradient Vf;
is calculated, and hence xf can make no progress towards the minimum. This may be

related to the observation that sampling without replacement can often speed up randomized



algorithms. However, on the other hand, it is well known that full gradient methods fail to
achieve a good convergence rate for other objectives with the same parameters u, L, n (e.g.

f(x) = 237 ¢(x) + Lullz|?). Hence we conclude that it is because SVRG is a hybrid

method, that combines both full-gradient and VR elements, that it is able to outperform
both VR and full-gradient algorithms.

4 Prox-SVRG for strongly convex sum of smooth nonconvex
function

In this section we show that this logarithmic speedup is still possible if we relax Assumption
2: that each f; is convex. By Assumption 1, the functions f; are still smooth, though possibly
nonconvex. The sum F' though is strongly convex, and smooth. This is based on the analysis
of Prox-SVRG found in [20]. The proof of Theorem 3 can be found in Appendix D.

L? |1 L

Theorem 3. Under Assumption 1, let 2* = argmin, F(z), L = >on, nT;)i)E’ K= and
n = $min{{, (fglm )z}. Then the Prox-SVRG in Algorithm 1 satisfies
1
ky _ * k 0y _ * forp= ——75——. 4.2
E[F(a") - F(a*)] < O(M)[F (")~ Fla™)]. (4.1 A e Rl

Hence for m = min{n, 2}, in order to obtain an e-optimal solution in terms of function value,
the SVRG in Algorithm 1 needs at most

n n L 1
K=0 + Z +k+vn—)In-)+2n 4.3
((ln(l—i—ﬁ) 1n(1+(%)1/2) \FM) 6) (4.3)

gradient evaluations in expectation.

The complexity of nonconvex SVRG using the original analysis of [9] would have been

K:O((n+n+\/ﬁi)1n1) (4.4)

Hence we have obtained a similar logarithmic speedup as we obtained in Corollary 2. There
are no known nontrivial lower bounds in this regime, and so it is not immediately clear
whether our complexity is optimal.

Remark 2. In Theorem 3, the optimal choice of the probability distribution P =
2 _ moor2
{phpz7 7pn} on {1,27 7n} is p; = ﬁ fori=1,2,....,n,and L = (%)%

5 Experiments

In this section we compare the performance of SVRG, and SARAH to SAGA to verify our
conclusions. We solve the regularized least squares problem

o 1 A
minimize %||Aa:—b||§+§||x||§ (5.1)

The matrix A and vector b are generated randomly with entries uniformly distributed between
0 and 1. In this experiment, A has n = 16000 rows and 20 columns. The parameter A
is chosen to control the condition number k = L/u of the problem. Figure 5.1 compares
SAGA, SVRG, and SARAH for three instances of problem (5.1) with conditions numbers
k = 5,k = 10, and k = 20. In order to provide a fair comparison, step sizes were tuned
individually for each algorithm and each problem instance.

There does appear to be a small but noticeable effect when n/k is large. In all our experiments,
SAGA appears to converge very quickly initially, but slows significantly after a few iterations.
To compensate for this, we compare the convergence speed of the three algorithms after the
first few iterations in terms of decibels per epoch!®. For x = 5, we obtain convergence speeds

3Decibels are a logarithmic scale. 10 decibels corresponds to a 10-fold increase, 100 decibels
corresponds to a 100-fold increase. This is the natural way to compare speeds for linearly converging
erTor.



—SAGA ' —SAGA —SAGA
—SVRG o
SARAH

fah)-f*
fla)-1

" Number of matrixcvector products T 7 Numberof mavicvectorproducts " Number of matrix-vector products
(a) k=5 (b) k=10 (c) k=20
Figure 5.1: Comparison of SAGA, SVRG, and SARAH for various values of the condition number k.

of 2.1, 4.9, 6.3 decibels/epoch for SAGA, SARAH, and SVRG respectively. For k = 10 these
values are 2.3, 5.0, and 6.2 respectively; and for k = 20 these values are 2.1, 4.3, and 6.0. So
SVRG converges above 3x faster than SAGA in the long term, even though SVRG iterations
are twice as expensive as SAGA’s.

It is not yet clear whether this effect will have practical impact. However we see a few
obvious future directions. Firstly, SVRG and SARAH were never intentionally designed to
exploit this logarithmic speedup. It’s possible that designing an algorithm with this in mind
will yield greater speedup. Secondly, it should be investigating whether the initial speed
burst of SAGA can be incorporated into an SVRG-like algorithm. This will make it more
competitive. Thirdly, SVRG and SARAH have iterations that are twice as expensive as
SAGA’s because of the full gradient steps. It should be investigated whether there is a way
of retaining this logarithmic speedup while reducing the iteration cost. Perhaps large batch
gradients instead of full gradient will be sufficient to yield this speedup, and avoid the high
cost of full gradient steps.
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