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1 Proof of Theorem 1

We prove Theorem 1. By Proposition 3, the clusters Ui can be recovered with high probability. By
Proposition 4 and the statement before the proposition, all Vi can be recovered with high probability
given the correct Ui. Now a union bound implies that both events happen simultaneously with high
probability. Furthermore, the conditions of the propositions are satisfied because they are the same as
those of Theorem 1.

2 Mitra’s Algorithm

We present Mitra’s algorithm [3]. The pseudocode of the algorithm is stated in Algorithm 1.

The main procedure of the algorithm is Cluster(A, k) for which we describe some of its intuition.
First, the algorithm splits A into two parts A1 and A2 (this is a common trick in this line of work
to ensure stochastic independence of the two parts and their projections). Then, for each part, the
rank k singular value decomposition (SVD) is computed (this step is supposed to reduce the noise)
and the centers µ∗i of each part are estimated using a standard clustering algorithm. To obtain the
final clusters, the procedure Project(A,µ∗1, . . . , µ

∗
k) assigns each point v to the closest center that was

computed on the other part of the split matrix.

3 Approximate Left Clusters and Exact Right Clusters

In this section, we show that given a good approximate clustering of the left side of the graph, the
clusters on the right side of the graph can still be recovered exactly.

Here, we are more interested in illustrating that results of the above type are possible; our goal is
not to obtain the tightest possible analysis. Hence, to simplify the analysis, we make the following
simplifying assumptions on the input data. We assume that each cluster Ui contains exactly ` vertices.
Thus, the left side of the graph contains m = k` vertices. Furthermore, we assume that q = Cp for a
constant C < 1, i.e., p and q differ by a constant factor.

We will be working with the following definition of an approximate clustering. Let U1, . . . , Uk be
the ground-truth clusters. Then Ũ1, . . . , Ũk is an ε-approximate clustering of U1, . . . , Uk if there are
at most εm misclassified vertices. More formally, we assume that

k∑
i=1

|Ui∆Ũi|/2 ≤ εm = εk`,

where ∆ denotes the symmetric difference of two sets.
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Algorithm 1 Mitra’s algorithm [3]
Input: A ∈ {0, 1}m×n, k
Output: A clustering {P1, . . . , Pk} for the samples

1: procedure CLUSTER(A, k)
2: Randomly split the rows of A into equal-sized parts A1 and A2

3: (θ1, . . . , θk)← Centers(A1, k)
4: (ν1, . . . , νk)← Centers(A2, k)
5: (P 1

1 , . . . , P
1
k )← Project(A1, ν1, . . . , νk)

6: (P 2
1 , . . . , P

2
k )← Project(A2, θ1, . . . , θk)

7: return {P 1
1 ∪ P 2

1 , . . . , P
1
k ∪ P 2

k }
8: procedure CENTERS(A, k)
9: A(k) ← rank-k-SVD of A

10: Cluster the rows of A(k) into sets P1, . . . , Pk using Euclidean distances (e.g., using k-means)
11: µ∗r ← 1

|Pr|
∑

v∈Pr
v for all r = 1, . . . , k,

12: return (µ∗1, . . . , µ
∗
k)

13: procedure PROJECT(A,µ∗1, . . . , µ
∗
k)

14: Pr ← ∅ for all r = 1, . . . , k
15: for all rows v of A do
16: for all r = 1, . . . , k do
17: if |(v − µ∗r) · (µ∗s − µ∗r)| < |(v − µ∗s) · (µ∗r − µ∗s)| for all s 6= r then Add v to Pr

18: return (P1, . . . , Pk)

We now state our main result which shows that given a good enough approximate clustering of the
left side of the graph, the clusters Vi can still be recovered exactly.

Theorem 1. Suppose Ũ1, . . . , Ũk is an ε-approximate clustering of U1, . . . , Uk and let q = Cp for a
constant C < 1. Then there exist constantsD1, D2 such that if (1) ` ≥ D1 lg n/q and (2) ε ≤ D2p/k,
then there exists an algorithm which returns the clusters V1, . . . , Vk with high probability.

For the proof, we need the following well-known version of the Chernoff bound (see, e.g., Theorem 1.1
in Dubhashi and Panconesi [1]).
Lemma 2. Let X1, . . . , Xn be independent random variables in [0, 1] and set X =

∑
iXi. Then

for ε > 0,

Pr (X > (1 + ε)E [X]) ≤ exp(−ε2E [X] /3),

Pr (X < (1− ε)E [X]) ≤ exp(−ε2E [X] /2).

Proof of Theorem 1. We are going to reuse the high-degree threshold algorithm from Section 4 of
the paper. We will just use a different threshold which we specify later.

Fix any i ∈ {1, . . . , k}. We show that given Ũi, Vi can be recovered with probability at least
1 − O(n−2). Using a union bound for the k clusters, all Vi are recovered with probability at least
1−O(n−1).

To show that Vi can be recovered with the desired probability, we show that with probability at least
1−O(n−3) it can be decided whether v ∈ Vi or v 6∈ Vi for each v ∈ V . A union bound implies that
Vi is recovered exactly with probability at least 1−O(n−2).

Observe that by the definition of an ε-approximate clustering, we have

`− εk` ≤ |Ũi| ≤ `+ εk`.

This implies that if v ∈ Vi, then v has at least `− εk` neighbors in Ũi to which it has an edge with
probability p. Thus, the expected number of neighbors1 of v in Ũi is at least

µ1 = (`− εk`)p.
1 Note that if v ∈ Vi, Ũi might contain vertices to which v has edges with probability q. However, we can

safely ignore these when computing the the lower bound on the expected number of neighbors of v in Ũi.
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On the other hand, if v 6∈ Vi, v has at most ` neighbors in Vi to which it has an edge with probability
q and at most ε`k neighbors to which it has an edge with probability p. Thus, if v 6∈ Vi, its expected
number of neighbors in Ũi is at most

µ2 = `q + ε`kp.

By the assumptions on `, ε, and p and assuming that D2 ≤ 1/2, we obtain that
µ1 = `p(1− εk) ≥ D1 lg n(1− εk) ≥ D1 lg n/2

and
µ2 = `q + ε`kp ≥ `q ≥ D1 lg n.

Let α < 1, β > 1 be constants such that α/β > C. Now setting D1 to a large enough constant
and applying Lemma 2, we obtain that the following two events occur with probability at least
1− exp(−3 lg n) = 1−O(n−3): (1) If v ∈ Vi, then v has at least αµ1 neighbors in Ũi. (2) If v 6∈ Vi,
then v has at most βµ2 neighbors in Ũi.

Now observe that with our choice of parameters we have that αµ1 > βµ2 since:
αµ1 > βµ2

⇐⇒ α`p(1− εk) > β`(q + εkp)

⇐⇒ αp(1− εk) > β(q + εkp)

⇐⇒ αp− (α+ β)εk > βq

⇐⇒ αp− βq > (α+ β)εk

⇐⇒ ε <
αp− βq
(α+ β)k

=
p(α− βC)

(α+ β)k

Observe that α− βC is always positive since we assumed that α/β > C. Furthermore, the above
inequality can be satisfied by making D2 sufficiently small.

We conclude that the following algorithm succeeds with probability at least 1−O(n−3) for each v.
Include v in Vi if v has at least αµ1 neighbors in Ũ1. Otherwise, do not insert v into Vi.

4 Heuristic for Estimating p and q

In this section, we discuss a heuristic for estimating the parameters p and q of pcv. This heuristic was
generously pointed out by one of the anonymous reviewers and we are grateful for this contribution.

Note that the first step (computing SVD and applying k-means) of pcv does not require knowledge
about the parameters p and q. Thus, the recovery of the left clusters does not need to be changed. We
only need to argue how the second step of the algorithm needs to be adjusted when the parameters p
and q are not known.

Consider the second step of the algorithm, i.e., the high-degree thresholding algorithm. Recall that
for a given transaction cluster Ui, the algorithm sets Vi to the set of vertices containing all v ∈ V
with at least θ|Ui| neighbors in Ui. Here, computing θ = θ(p, q) requires knowledge about p and q.

Now suppose we obtain a set Vi which was computed in the previously specified way for parameter
θ = θ(p, q).

By assumption of the SBM model, we know that in a case without noise (i.e., p = 1, q = 0), all
vertices in Vi would have |Ui| edges to vertices in Ui and 0 edges to vertices outside Ui (here, we
assume that the Vi do not overlap). In the noiseless setting, there would be a total of |Vi| · |Ui| edges
from vertices in Vi to vertices in Ui.

Now, we can also compute the number of edges which are present in the random graph. To this end,
let |E(Ui, Vi)| denote the number of edges between vertices in Ui and Vi and let |E(U \ Ui, Vi)|
denote the number of edges between vertices in U \ Ui and Vi.

Now we can estimate the parameters p̂ and q̂ from the cluster Vi that was computed from θ(p, q). For
this purpose, we set

p̂ =
|E(Ui, Vi)|
|Vi| · |Ui|

and q̂ =
|E(U \ Ui, Vi)|
|Vi| · |U \ Ui|

.
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Note that here p̂ (q̂) is simply the fraction of edges which should (not) have been there in the noiseless
setting and which were observed in the random graph.

Obviously, if p and q were the correct parameters for generating Vi, then we should have p ≈ p̂ and
q ≈ q̂. In particular, |p− p̂|+ |q − q̂| should be small.

This gives raise to the following heuristic algorithm for estimating good parameters p and q: Let
P be a set of candidates for p and let Q be a set of candidates for q. Now iterate over all tuples
(p, q) ∈ P ×Q such that p > q. For each such tuple, generate the set Vi with parameter θ(p, q) using
the high-degree thresholding algorithm. Given the set Vi, estimate p̂ and q̂ as described above. Of all
the tuples, pick the one which minimizes the objective function |p− p̂|+ |q − q̂|.
We wish to point out that the above procedure can be optimized using grid search instead of iterating
over all tuples in P ×Q.

We experimentally evaluate the heuristic in Section 5.4.

5 Experiments

5.1 Algorithms

We provide some details of how we executed lim and lfm on the synthetic datasets.

lim takes as input a weight matrix W which is a weighted version of the biadjacency matrix B of the
graph. After a correspondence with the authors of [2], we set

W = lg

(
p

q

)
B + lg

(
1− p
1− q

)
(1−B).

As output, lim returns a denoised version of the data. To obtain the left and right clusters of the
graph, we applied k-means first to the rows of the output and then 2-means to the columns of the
submatrices of the output; this is similar to what was reported in [2]. Further, lim has a parameter
λ which [2] set to

√
2n (this is 44.7 in our setting); we have run the algorithm with parameter

λ = 20, 25, 30, 35, 40, 45 as sometimes this gave better results.

For the lfm algorithm we inverted the data (i.e., we ran the algorithm on the complement graph) to
improve its performance and we fixed the value for λ to 0.5 for the first 100 iterations. Furthermore,
we set the number of latent dimensions to k. This procedure was suggested in a correspondence with
one of the authors of [4].

Since the results of the lfm algorithm depended heavily on the randomness of the algorithm, we ran
the algorithm 10 times on each dataset; all other algorithms were run once.

When the algorithms returned fractional values (i.e., in the interval (0, 1)), we rounded them to 0/1
with threshold 0.5.

5.2 Quality Measure

We wish to further motivate why we used the quality measure Q instead of using the reconstruction
error.

Let us first the define the reconstruction error. Let B be the biadjacency matrix of the input graph G.
Then for the outputs Ũi, Ṽi of an algorithm, define a matrix A by setting Auv = 1 iff there exists an i
such that u ∈ Ũi and v ∈ Ṽi. Now the reconstruction error is given by ||A−B||22.

The main advantage of the reconstruction error is that it does not require knowledge about the
ground-truth clustering. Thus, it can be easily computed also on real-world datasets.

However, it has two major drawbacks for our purposes.

First, the reconstruction error does not allow us to understand how well the the algorithms perform
on each side of the graph. With the quality measure Q, this is possible.

Second, in our experiments we considered scenarios with very high destructive noise. E.g., for
parameter p = 0.4 it is more likely that a edge (u, v) from u ∈ Ui to v ∈ Vi is not present than
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(a) Vary δ: Left Cluster Quality (b) Vary δ: Right Cluster Quality (c) Vary δ: Running times (sec)

Figure 1: Results on synthetic data. Figures 1(a)–1(c) have varying sizes of the right clusters and
the algorithm were executed with wrong parameters. Markers are mean values over five different
datasets; error bars are one third of the standard deviation over the five datasets.

that is this present in the graph. This implies that the reconstruction error of the empty graph has
lower reconstruction error than the ground-truth clustering. Thus, in settings with very small p,
the reconstruction error favors solutions which are very dissimilar from the ground-truth data. The
quality measure Q does not have this drawback.

5.3 More Synthetic Data

We provide more experiments on synthetically generated data.

Varying right cluster sizes with wrong parameters. We repeated the experiment for varying
sizes of the right clusters that we reported in the main text but this time we gave the algorithms
incorrect values for their parameters. This should affect pcv, message and lim since they take the
most parameters. The results can be seen in Figures 1(a)–1(c).

Recall: pcv and lim take as parameters p, q, k. message takes as parameters, p, q, k and the sizes of
the clusters on the left sides and the right sides; we were generous and provided message with the
correct values for the cluster sizes.

The true parameter values were p = 0.4, q = 0.03 and k = 8. We gave the algorithms the incorrect
values p̃ = 0.6, q̃ = 0.01 and k̃ = 12.

For the left clusters we see that for clusters of size 1 and 2, pcv is better than message, for sizes 3
and 4 they are on par and after that message is better. For the right side clusters we observe that until
size 4 pcv is better than message and after that they are on par with perfect or almost perfect results.
For lim we see that its performance improves as the cluster sizes grow.

Compared with the results with the correct parameters from the main text, the performance of
all algorithms was relatively robust. pcv’s performance on the left clusters decayed while on the
right clusters its results were relatively stable. For message the results were very robust and its
performance on the right clusters even slightly improved; the latter might be down to much higher
running times as reported in Figure 1(c) (apparently the algorithm takes a longer time to converge
when run with incorrect parameters). For lim we observe that the change in the parameters has only
a small influence on its results.

The fact that the performance of pcv decayed on the left clusters is down to the following two facts:
(1) Rank 12 SVD picks up more noise than the rank 8 SVD. (2) When clustering the left side into 12
clusters instead of 8, k-means will simply partition the left side into too many sets. Due to (2), each
left cluster is smaller than with the correct value for k. This causes the inference of the right side
clusters of size at least 5 to be slightly less robust than when the algorithm is run with the correct
parameters. However, note that for the right clusters these effects are only minor.

5



(a) Vary p: Right Cluster Quality (b) Vary δ: Right Cluster Quality (c) Vary `: Right Cluster Quality

Figure 2: Results on synthetic data for pcv and pcv with the heuristic from Section 4. All plots report
the quality for the recovery of the right clusters. Figure 2(a) has varying values for p, Figure 2(b) has
varying sizes of the right clusters and Figure 2(c) has varying values for `. Markers are mean values
over five different datasets; error bars are one third of the standard deviation over the five datasets.

5.4 Evaluation of the Heuristic

We evaluate the heuristic which was presented in Section 4 and compare it with the version
of pcv which knows all parameters. For the heuristic, we set the candidates for p to P =
{0.3, 0.35, 0.4, . . . , 0.95} and the set of candidates for q to Q = {0.01, 0.02, 0.03, . . . , 0.1}.
We used the same synthetic datasets that we already discussed in the main text of the paper. We only
report the results on the right clusters since the results on the left are exactly the same (because the
the clustering of the left side of the graph did not change). The results are stated in Figure 2.

We see that (surprisingly) for varying values of p (Figure 2(a)), the heuristic version of pcv is slightly
better than pcv with the correct parameters for very small values of p. For varying sizes of the right
clusters (Figure 2(b)), the heuristic is slightly worse than the version of pcv which knows the correct
parameters. For varying ` (size of the left clusters) in Figure 2(c), the heuristic is visibly worse. The
latter is perhaps to be expected because for smaller left clusters the inference on the right clusters
might overfit easily when the heuristic is used.

Note that in all experiments the standard deviation of the qualities returned by the heuristic is much
higher. This is not surprising since the solution returned by the heuristic heavily depends on the
randomness in the data (whereas pcv with the correct parameters mainly requires a good clustering
of the left side of the graph).

We conclude that when the left clusters and the right clusters are both large enough, then the heuristic
delivers results of good quality.
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