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Abstract

We study the problem of finding clusters in random bipartite graphs. We present a
simple two-step algorithm which provably finds even tiny clusters of size O(nε),
where n is the number of vertices in the graph and ε > 0. Previous algorithms
were only able to identify clusters of size Ω(

√
n). We evaluate the algorithm on

synthetic and on real-world data; the experiments show that the algorithm can find
extremely small clusters even in presence of high destructive noise.

1 Introduction

Finding clusters in bipartite graphs is a fundamental problem and has many applications. In practice,
the two parts of the bipartite graph usually correspond to objects from different domains and an edge
corresponds to an interaction between the objects. For example, paleontologists use biclustering to
find co-occurrences of localities (left side of the graph) and mammals (right side of the graph) [13];
bioinformaticians want to relate biological samples and gene expression levels [10]; in an online shop
setting, one wants to find clusters of customers and products.

Discovering clusters in bipartite graphs has been researched in many different settings. However,
most of these algorithms were heuristics and do not provide theoretical guarantees for the quality
of their results. This was recently addressed by Xu et al. [27] and Lim et al. [17] who initiated the
study of biclustering algorithms with formal guarantees. They considered random bipartite graphs
and proved under which conditions their algorithms can recover the ground-truth clusters.

In this paper, we consider a standard random graph model and propose a simple two-step algorithm
which provably discovers the ground-truth clusters in bipartite graphs: (1) Cluster the vertices on the
left side of the graph based on the similarity of their neighborhoods (Section 3). (2) Infer the right
side clusters based on the previously discovered left clusters using degree-thresholding (Section 4).

Our algorithm allows to recover even tiny clusters of size O(nε), where n is the number of vertices
on the right side of the graph and ε > 0. Previously, existing algorithms could only discover clusters
of size Ω(

√
n). Note that finding tiny clusters is of high practical importance. For example, in an

online shop with millions of products (n ≥ 106), finding only clusters of at least a thousand products
(
√
n ≥ 103) is not very interesting. One would want the product clusters to be much smaller.

The formal guarantees of our algorithm are provided at the end of this section. From a high-level
point of view, the algorithm can be seen as a way to leverage formal guarantees for mixture models
and clustering algorithms into biclustering algorithms with formal guarantees. This partially explains
why heuristics such as “apply k-means to both sides of the graph” are very successful in practice.

Finally, we implement a version of the proposed algorithm (Section 5) and we evaluate it on synthetic
and on real-world data. The experiments show that in practice the algorithm can find extremely small
clusters and it outperforms all algorithms we compare with (Section 6).
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Bipartite Stochastic Block Models. We now introduce bipartite stochastic block models (SBMs)
which we will be using throughout the paper. Let G = (U ∪ V,E) be a bipartite graph with m
vertices in U and n vertices in V ; we call U the left side of G and V the right side of G.

The left side U is partitioned into clusters U1, . . . , Uk, i.e., Ui ∩ Uj = ∅ for i 6= j and
⋃

i Ui = U .
For V there are clusters V1, . . . , Vk with Vi ⊆ V ; we do not assume that the Vj are disjoint or that
their union equals V . The Ui are the left clusters of G and the Vj are the right clusters of G.

Fix two probabilities p > q ≥ 0. For any two vertices u ∈ Ui and v ∈ Vi, insert an edge with
probability p; for u ∈ Ui and v 6∈ Vi, insert an edge with probability q.

The algorithmic task for bipartite SBMs is as follows. Given parameters k, p, q and a graph G
generated in the previously described way, recover all clusters Ui and Vj .

Main Theoretical Results. We propose the following simple algorithm:

1. Recover the clusters Ui by clustering the vertices in U according to the similarity of their
neighborhoods (see Section 3).

2. For each recovered Ui, set Vi to all vertices with “many” neighbors in Ui (see Section 4).

To state the formal guarantees of the proposed algorithm we require two parameters. We let ` be the
size of the smallest cluster on the left side, i.e., ` = mini |Ui|. Furthermore, let δ denote the smallest
difference between any two clusters on the right side; more formally, δ = mini 6=j |Vi∆Vj |, where
Vi∆Vj = (Vi \ Vj) ∪ (Vj \ Vi) is the symmetric difference of Vi and Vj .

We now state the main result of this paper. In the theorem, D(p || q) denotes the Kullback–
Leibler divergence of Bernoulli random variables with parameters p, q ∈ [0, 1], i.e., D(p || q) =
p lg(p

q ) + (1− p) lg(1−p
1−q ).

Theorem 1. Suppose σ2 = max{p(1− p), q(1− q)} ≥ lg6 n/n. There exist constants C1, C2 such
that if ` ≥ C1 lg n/D(p || q) and

(p− q)2

σ2
> C2k

n+m lgm

`δ
, (1)

then there exists an algorithm which on input G, k, p and q returns all clusters Ui and Vi. The
algorithm succeeds with high probability.

To give a better interpretability of the theorem, consider its two main assumptions: (1) The condition
` ≥ C1 lg n/D(p || q) is necessary so that the vertices in Vi have sufficiently many neighbors in Ui.
(2) To get a better understanding of Equation 1, consider the case where m = Θ(n), k = O(1), and
p, q are constants. Also, ignore logarithmic factors. We obtain a smooth tradeoff between δ and `:
The inequality in Equation 1 is satisfied if δ = Θ(nε) and ` = Θ(n1−ε). That is, if the right clusters
are very small or similar (δ is small), the algorithm requires larger clusters on the left side (` must be
large). On the other hand, if the right clusters are very large and dissimilar (large δ), the algorithm
requires only very small left clusters (small ` suffices). More generally, if p − q = Θ(n−C) and
p� q, the algorithm requires `δ = Θ(n1+C).

The fact that the algorithm can recover clusters of size O(nε) is interesting since previous algorithms
required min{`, δ} = Ω(

√
n) (see Section 2). Furthermore, the lower bounds of Hajek, Wu and

Xu [15] show that breaking the Ω(
√
n) barrier is impossible in general graphs. Hajek et al. also

provide lower bounds in the bipartite setting which show that one cannot find biclusters of size k × k
for k = o(

√
n). We bypass this lower bound through the previously discussed smooth tradeoff

between ` and δ. We conjecture that the tradeoff we obtain is asymptotically optimal.

As a side result we also study the setting in which the algorithm only obtains an approximate
clustering of the left side of the graph. We show that when the approximation of the left clusters is
of good enough quality, then the right clusters can still be recovered exactly. We also observe this
behavior in our experiments in Section 6. We provide the result in the supplementary material.

Experimental Evaluation. We implemented a version of the algorithm from Theorem 1 and
present the practical details in Section 5. The experimental results are reported in Section 6. In the
experiments, our main focus will be to verify whether, in practice, the algorithm can find the small
clusters that the theoretical analysis promised.
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On synthetic data, the experiments show that, indeed, the algorithm finds tiny clusters even in the
presence of high destructive noise and it outperforms all methods that we compare against.

The algorithm is also qualitatively evaluated on real-world datasets. On these datasets it finds clusters
which are interesting and which have natural interpretations.

2 Related Work

Stochastic Block Models (SBMs). During the last years, many papers on SBMs have been pub-
lished. We only discuss bipartite SBMs here and refer to the survey by Abbe [1] for other settings.

Lim, Chen and Xu [17] study the biclustering of observations with general labels. When constrained
to only two labels, their results provide a bipartite SBM. However, in the bipartite SBM case, [17]
has two drawbacks compared to the results presented here: (1) The data-generating process in [17]
rules out certain nested structures of the sets Vi. E.g., [17] does not allow to have clusters V1, V2, V3
such that V3 = V1 ∪ V2. (2) The main result of [17] relies on a notion of coherence, which measures
how difficult the structure of the clusters is to infer. Due to this dependency on coherence, the results
of this paper and [17] are only partially comparable. In case of a constant number of clusters or
“worst-case coherence”, though, the algorithm of [17] only works if both ` and δ are Ω(

√
n).

Zhou and Amini [28] study spectral methods for bipartite SBMs. [28] considers a more general
connectivity structure and obtains sharper bounds for the recovery rates than in this paper. However,
in [28] the clusters Vi cannot overlap and, hence, the results of this paper and [28] are incomparable.

Abbe and Sandon [2, 3] and Gao et al. [14] study optimal recovery for SBMs in general graphs. Their
results apply to bipartite graphs with a constant number of overlapping communities of linear size.
Zhou and Amini [29] improve these results for bipartite SBMs under a broader range of parameters.

One can use the result of McSherry [18] to recover the clusters of a bipartite graph but this has two
caveats: (1) It does not allow the Vi to overlap. (2) Both ` and δ must be of size Ω(

√
n).

Florescu and Perkins [11] provided an SBM for bipartite graphs with two linear-size communities on
each side of the graph. Xu et al. [27] consider a biclustering setting with clusters of size Ω(n).

Boolean Matrix Factorization (BMF). Another way to find clusters in bipartite graphs is BMF.
BMF takes the biadjacency matrix D ∈ {0, 1}m×n of a bipartite graph and finds factor matrices
L ∈ {0, 1}m×k and R ∈ {0, 1}k×n such that D ≈ L ◦ R, where ◦ is the Boolean matrix-matrix-
product. In other words, BMF tries to approximateD with a Boolean-rank k matrix. The interpretation
is that the columns of L contain the left clusters and the rows of R contain the right clusters. This
setting is more general than the one presented in this paper as it allows the clusters Ui to overlap.

BMF was studied from applied [20, 21, 24–26] and also from theoretical [5, 7, 12] perspectives.
Section 6 provides an experimental comparison of BMF algorithms and the algorithm from this paper.

3 Recovering the Left Clusters

We describe how the clusters Ui can be recovered. Our approach is to cluster the vertices u ∈ U
according to the similarity of their neighborhoods in V . The intuition is that if two vertices u and u′
are in the same cluster Ui, they should have relatively many neighbors in common (those in Vi). On
the other hand, if u and u′ are from different clusters Ui and Uj , their neighbors should be relatively
different (as Vi∆Vj is supposed to be large).

Technically, we will apply mixture models. We use the result by Mitra [22] since it is simple
to state. We could as well use other mixture models such as the one by Dasgupta et al. [9] or
clustering algorithms such as Kumar and Kannan [16], Bilu and Linial [6] or Cohen-Addad and
Schwiegelshohn [8]. The different methods come with different assumptions on the data.

3.1 Mixture Models and Mitra’s Algorithm

Mixture Models on the Hypercube. From a high-level point of view, the question of mixture
models is as follows: Given samples from different distributions, cluster the samples according to
which distributions they were sampled from. We will now present the formal details behind this.
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Let there be k probability distributions D1, . . . , Dk in {0, 1}n and denote the mean of Dr as µr ∈
[0, 1]n. Let σ2 be an entry-wise upper bound on all µr, i.e., µr(i) ≤ σ2 for all r = 1, . . . , k and
i = 1, . . . , n. For each distribution Dr define a weight wr > 0 such that

∑
r wr = 1.

From each distribution Dr, create wrm samples and denote the set of these samples as Tr. In total
we obtain m samples and denote the set containing all samples as T , i.e., T =

⋃
r Tr.

The algorithmic problem in mixture models is as follows. Given T and k, find a partition P1, . . . , Pk

of the samples in T such that {T1, . . . , Tk} = {P1, . . . , Pk}.

Mitra’s Algorithm. We state the result by Mitra [22] and refer to the supplementary material for
more details on the algorithm. We define a matrix A ∈ {0, 1}m×n which has the samples from T in
its rows. Thus, by clustering the rows of A we obtain a clustering of T . The formal guarantees are
stated in the following lemma, where ||v||2 = (

∑
i v

2
i )1/2.

Lemma 2 (Mitra [22]). Suppose σ2 ≥ lg6 n/n. Let ζ = min{||µr − µs||22 : r 6= s} and wmin =
minr wr. Then there exists a constant c such that if

ζ > ckσ2 1

wmin

(
m+ n

m
+ lgm

)
,

then on input A and k, the output {P1, . . . , Pk} of Mitra’s algorithm satisfies {P1, . . . , Pk} =
{T1, . . . , Tk} with high probability. That is, the algorithm recovers the clusters Tr.

3.2 Proposition and Analysis

Let us come back to our original problem of recovering the left clusters of G. To find the left
clusters Ui, we apply Mitra’s algorithm to the rows of the biadjacency matrix D of G. Formally,
the biadjacency matrix D ∈ {0, 1}m×n of G is the matrix with Duv = 1 iff there exists an edge
(u, v) ∈ G.

Proposition 3 states under which conditions this approach succeeds.

Proposition 3. Let all variables be as in Section 1. Let δ = mini 6=j |Vi∆Vj | and ` = mini |Ui|.
Suppose σ2 = max{p(1− p), q(1− q)} ≥ lg6 n/n. There exists a constant C such that if

(p− q)2

σ2
> Ck

n+m lgm

`δ
, (2)

then applying Mitra’s algorithm on D returns a partition {Ũ1, . . . , Ũr} of D’s rows such that
{Ũ1, . . . , Ũr} = {U1, . . . , Ur} with high probability. That is, the algorithm recovers the left clusters
Ui of G.

Proof. Observe that D is a matrix arising from a mixture model as discussed earlier: Consider a
vertex u ∈ Ui and its corresponding row Du in D. Then the probability that entry Duv = 1 is p if
v ∈ Vi and q if v 6∈ Vi. Furthermore, for two vertices u, u′ ∈ Ui these distributions are exactly the
same.

Hence, we view the rows of D as samples from k distributions Di with distribution Di corresponding
to cluster Ui. For each cluster Ui, we have |Ui| samples from Di. For the mean µi of Di, we have
component-wise µi(v) = p, if v ∈ Vi, and µi(v) = q, if v 6∈ Vi. Thus, partitioning the rows of D
with a mixture model is exactly the same as recovering the clusters Ui of G.

It is left to check that the conditions of Lemma 2 are satisfied. By assumption on the Vj , ||µi − µj ||22 ≥
(p − q)2δ for i 6= j. Since we have |Ui| samples from distribution Di, the mixing weights are
wi = |Ui|/m and wmin = `/m. To apply Lemma 2, we must satisfy the inequality

(p− q)2δ > ckσ2m

`

(
m+ n+m lgm

m

)
= ckσ2

(
m+ n+m lgm

`

)
.

By rearranging terms and noticing that Cm lgm ≥ c(m+m lgm) for large enough C, this is the
inequality we required in the proposition (Equation 2).
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4 Recovering the Right Clusters

This section presents an algorithm to recover the right clusters Vj given the left clusters Ui. The
algorithm is very simple: For each cluster Ui, Ṽi consists of all vertices from V which have “many”
neighbors in Ui. We will show that the algorithm succeeds with high probability.

High-Degree Thresholding Algorithm. The input for the algorithm are p, q and the clusters
U1, . . . , Uk. For each cluster Ui, the algorithm constructs Ṽi by adding all vertices v ∈ V which have
at least θ|Ui| neighbors in Ui, where we set

θ = lg

(
1− q
1− p

)(
lg

(
p(1− q)
q(1− p)

))−1
. (3)

Proposition and Analysis. We prove in Proposition 4 that for a fixed cluster Ui of sufficiently
large size, Vi = Ṽi with probability 1 − O(n−2). A union bound implies that Ṽi = Vi for all
i = 1, . . . , k with high probability. In the proposition, we use the notation D(p || q) to denote
the Kullback–Leibler divergence of Bernoulli random variables with parameters p, q ∈ [0, 1], i.e.,
D(p || q) = p lg(p

q ) + (1− p) lg( 1−p
1−q ).

Proposition 4. There exists a constant C such that if |Ui| ≥ C lg n/D(p || q), then Ṽi returned by
the high-degree thresholding algorithm satisfies Vi = Ṽi with probability at least 1−O(1/n2). The
algorithm runs in time O(|Ui|n).

Proof. Consider a vertex v ∈ V . The vertex v has an edge to u ∈ Ui with probability p, if v ∈ Vi,
and with probability q, if v 6∈ Vi. Let Zv be the random variable denoting the number of edges from
v to vertices in Ui; Zv is binomially distributed with |Ui| trials and success probability p (if v ∈ Vi)
or q (if v 6∈ Vi). To find out whether v ∈ Vi, we must decide whether Zv is distributed with parameter
p or q. If we decide for the correct parameter then the decision to include v into Ṽi is correct.

We make the decision for the parameter based on the likelihood of observing Zv edges incident
upon v. Parameter p is more likely if:(|Ui|

Zv

)
pZv (1− p)|Ui|−Zv(|Ui|

Zv

)
qZv (1− q)|Ui|−Zv

=

(
p

q

)Zv
(

1− p
1− q

)|Ui|−Zv

≥ 1.

Solving this inequality for Zv gives that one should decide for parameter p if Zv ≥ θ|Ui|, where θ is
as in Equation 3.

The maximum likelihood approach above succeeds with probability at least 1−O(1/n3); this follows
from [4, Theorem 6] if |Ui| ≥ C lg n/D(p || q), where C is a sufficiently large constant. The
probability for obtaining a correct result for all vertices v ∈ V is at least 1−O(1/n2); this follows
from a union bound. Conditioning on this event we obtain Vi = Ṽi.

5 Implementation

While so far we have been concerned with theory, we will now consider practice. The pseudocode
of the algorithm we implemented is presented in Algorithm 1. As stated in Section 1, the algorithm
performs two steps: (1) Recover the clusters Ũ1, . . . , Ũk in U . (2) Recover the clusters Ṽ1, . . . , Ṽk in
V based on the Ũi. We call the algorithm pcv, which is short for project, cluster, vote.

While for step (2) we use exactly the algorithm discussed in Section 4, we made some changes for
step (1). The main reason is that Mitra’s algorithm discussed in Section 3 was developed in a way to
give theoretical guarantees and not necessarily to give the best results in practice.

Instead, for step (1) we use an even simpler algorithm for recovering the clusters Ũi: Project the
biadjacency of G on its first k left singular vectors and then run k-means. This delivers better results
and is conjectured to give the same theoretical guarantees as Mitra’s algorithm (see [18] or [22]).

We implemented Algorithm 1 in Python. To compute the truncated SVD we used scikit-learn [23].
The source code is available in the supplementary material.
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Algorithm 1 The pcv algorithm
Input: G a bipartite m× n graph, k, p, q

1: procedure pcv(G, k, p, q)
2: D ← the m× n biadjacency matrix of G
3: A← rank k SVD of D . Step (1)
4: Ũ1, . . . , Ũk ← the clusters obtained by running k-means on the rows of A
5: for i = 1, . . . , k do . Step (2)
6: Ṽi ← all vertices in V with at least θ|Ui| neighbors in Ui, where θ is as in Equation 3

When developing the algorithm, we also tried using other clustering methods than k-means. However,
none of them delivered consistently better results than k-means and the differences in the outputs
were mostly minor. Hence, we do not study this further here.

We note that due to k-means, pcv is a randomized algorithm. On the synthetic graphs we will consider,
this had almost no influence on the quality of the results. On real-world graphs, this randomness
resulted in different clusterings in each run of the algorithm. However, some “prominent clusters”
were always there and the computed clusters always had an interpretable structure.

Parameters. The parameters p and q are only used to compute the parameter θ from Section 4. We
note that in practice it might be reasonable to pick a different threshold θ for each cluster depending
on its sparsity; however, this was not done in this paper. In the supplementary material we present
and evaluate a heuristic for how p and q (and, hence, θ) can be estimated.

It suffices if k is a sufficiently tight upper bound on its true value. pcv will not necessarily output
exactly k clusters; if k-means outputs less than k clusters, then pcv will do the same. In practice it is
sometimes handy to use different values for k in the SVD and in k-means.

We further added a parameter L ∈ N. In practice, often some of the Ũi returned by pcv are tiny (e.g.,
containing less than five vertices). To avoid creating too much output, we use the parameter L to
ignore all clusters Ũi of size less than L. In the experiments we always set L = 10.

6 Experiments

In this section, we practically evaluate the performance of pcv. Throughout the experiments our main
objective will be to understand how well pcv can recover small clusters on the right side of the graph.
In the synthetic experiments, we will be most interested in how small p can be so that pcv can still
recover clusters of size less than 10 on the right side of the graph. We picked real-world datasets from
which we expect that they contain only very small clusters on the right side.

The experiments were done on a MacBook Air with a 1.6 GHz Intel Core i5 and 8 GB RAM. The
source code and the synthetic data are provided in the supplementary materials.

Algorithms. pcv was compared with the lim algorithm by Lim, Wu and Xu [17], message by
Ravanbakhsh, Póczos and Greiner [24], and the lfm algorithm by Rukat, Holmes and Yau [26]. For
each of the algorithms, implementations provided by the authors were used. message and lfm are
BMF algorithms (see Section 2).

When we report the running times of the algorithms, note that the quality of the implementations is
incomparable. For example, lim is implemented in Matlab, message and pcv are purely implemented
in Python and lfm is programmed in Python with certain subroutines precompiled using Numba.

6.1 Synthetic Data

Let us start by considering the performance of the algorithms on synthetically generated graphs. The
graphs were generated as described in Section 1.

The ground-truth clusters Ui and Vi were picked in the following way. For each Ui, ` vertices were
added to the (initially empty) left side of the graph. On the right side of the graph, we inserted
n vertices. Each of the Vj consists of r vertices which were picked uniformly at random from the
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n vertices. Due to the randomness in the graph generation, some of the Vj will overlap and most of
them will not. By size of a cluster we mean the number of vertices contained in the cluster.

When not mentioned otherwise, the parameters were set to n = 1000, k = 8, ` = 70, and m = ` · k
(i.e., 1000 vertices on the right, 8 ground-truth clusters on both sides and left-side clusters of size 70).
The size of the right-side clusters was set to r = 8. The parameters p and q were set depending on
the dataset.

For each of the reported parameter settings, five random graphs were generated. The results that are
reported in the following are averages over these datasets. When an algorithm was run multiple times
on the same dataset, we report the best result on the right clusters of the graph.

During the experiments, all algorithms were given the correct parameters for k, p and q whenever
the algorithms allowed this. For lim and lfm we optimized their parameters; we report this in the
supplementary material.

Quality Measure. Consider the k ground-truth clusters U1, . . . , Uk and let Ũ1, . . . , Ũs be the s
clusters returned by an algorithm. The quality Q of the solution Ũj is computed as follows. For each
ground-truth cluster Ui, find the cluster Ũj which maximizes the Jaccard coefficient of Ui and Ũj .
Then sum over the Jaccard coefficients for all ground-truth clusters Ui and normalize by k. Formally,

Q =
1

k

k∑
i=1

max
j=1,...,s

J(Ui, Ũj) ∈ [0, 1],

where J(A,B) = |A ∩ B|/|A ∪ B| is the Jaccard coefficient. Higher values for Q imply a better
quality of the solution. E.g., if Q = 1 then the clusters Ũj match exactly the ground-truth clusters Ui.

We used the same quality measure for the clusters Vi. In the supplementary material we explain why
decided against using the reconstruction error of the biadjacency matrix of G as a quality measure.

Varying p. We start by studying how much the results of the algorithms are affected by destructive
noise. To this end, we use varying values for p = 0.2, 0.25, 0.3, 0.5, 0.75, 0.95 and fix q = 0.03. The
results are presented in Figures 1(a)–1(c).

We see that on both sides of the graph, pcv and message outperform lfm and lim for p ≤ 0.3; for
p ≥ 0.5, lim picks up and delivers very good results.

In Figure 1(a) we see that on the left clusters, pcv and message deliver similar performances with
pcv picking up the signal better for p ≥ 0.5; the results of lim improve as p increases and they are
perfect for p = 0.75, 0.95; lfm always delivers relatively poor results.

For the right clusters the situation is similar with message having slight advantages over pcv for
p ≤ 0.3; pcv and lim deliver better results than message in settings with less noise (p ≥ 0.75). It is
interesting to observe that pcv already recovers the ground-truth clusters on the right side for p ≥ 0.4
and even for p = 0.3 the results are of good quality.

The running times of the algorithms are reported in Figure 1(c). pcv is the fastest method with lim
and lfm being somewhat slower. message is by far the slowest method and we see that when p is
small, message takes a long time until it converges.

Varying sizes of the right clusters. We now study how small the right clusters Vi can get such that
they can still be recovered by the algorithms. To this end, we vary the size of the right clusters and
note that this corresponds to varying δ (for example, when all clusters are disjoint, δ is exactly twice
the size of the right clusters).

Previously, we saw that pcv, message and lim did well at the recovery of right clusters of size 8
even for p = 0.4. We study this further by fixing p = 0.4, q = 0.03 and varying the size of the right
clusters from 1 to 8. The results are reported in Figures 1(d)–1(f).

The results for clustering the left side of the graph are presented in Figure 1(d). We observe a clear
ranking with pcv being the best algorithm before message; lim is the third-best algorithm and lfm
is the worst.
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(a) Vary p: Left Cluster Quality (b) Vary p: Right Cluster Quality (c) Vary p: Running times (sec)

(d) Vary δ: Left Cluster Quality (e) Vary δ: Right Cluster Quality (f) Vary δ: Running times (sec)

(g) Vary `: Left Cluster Quality (h) Vary `: Right Cluster Quality (i) Vary `: Running times (sec)

Figure 1: Results on synthetic data. Figures 1(a)–1(c) have varying p, Figures 1(d)–1(f) have varying
sizes of the right clusters, Figures 1(g)–1(i) have varying `. Markers are mean values over five
different datasets; error bars are one third of the standard deviation over the five datasets.

For the right side of the graph (Figure 1(e)) we observe that pcv outperforms message for ground-
truth clusters sizes less than 7; even for clusters of sizes 2 and 3, pcv finds good solutions. The
performance of lim improves as the cluster sizes grow.

The running times (Figure 1(f)) are similar to what we have seen before for varying p.

Varying `. We study how `, the size of the left clusters Ui, influences the results of the algorithms.
We used values ` = 20, 30, 40, 50, 70. The other parameters were fixed to p = 0.5, q = 0.03, k = 8
and the size of the right clusters was set to 8. The results are reported in Figures 1(g)–1(i).

On the left clusters, pcv is the best algorithm with message also delivering good results; the results
of lim are of good quality for ` ≥ 40. On the right clusters, message is initially (` ≤ 30) slightly
better than pcv and for ` ≥ 40, pcv and message deliver essentially perfect results; lim finds good
right clusters for ` ≥ 40. The running times are similar to what we have seen in previous experiments.

It is interesting and maybe even a bit surprising that even for ` = 20, pcv and message can find very
good clusters on the right side of the graph which only consist of 8 out of a 1000 vertices.
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Bad Parameters. The supplementary material contains experiments in which we repeat the previ-
ous experiment with varying δ but where we run the algorithms with wrong parameters.

Conclusion. We conclude that pcv was very good at finding tiny clusters even with high destructive
noise. In most cases, pcv delivered the solutions of highest quality and pcv was the fastest algorithm.

6.2 Real-World Data

pcv is qualitatively evaluated on two real-world datasets. Since the parameters required by pcv
are not known, pcv was run with different parameters settings and the quality of the clusters was
manually evaluated; the final setting of the parameters is reported for each dataset.

Datasets. The BookCrossing dataset1 originates from Ziegler et al. [30]. It consists of users on the
left side of the graph and books on the right side of the graph; if a user rated a book, there exists an
edge between the corresponding vertices. The dataset was preprocessed so that all books read by less
than 11 users and all users reading less than 11 books were removed. The resulting graph has 6195
users and 4958 books; the number of edges is 83550.

The 4News dataset is a subset of the 20Newsgroups dataset; it was preprocessed by Ata Kabán
(see [19]). The data contains the occurrences of 800 words (right side of the graph) over 400 posts
(left side of the graph) in four different Usenet newsgroups about cryptography, medicine, outer
space, and christianity; for each newsgroup there are 100 posts. The graph has 11260 edges.

Qualitative Evaluation. BookCrossing. For the BookCrossing dataset, pcv was run with parame-
ters k = 20, θ = 0.2 and L = 10; pcv finished in less than 2 minutes.

pcv returns 12 user-clusters (i.e., on the left side of the graph) with size at least L. Out of these
12 user-clusters, 9 have a non-empty book-side (right side of the graph). The largest user-cluster
contains 4268 vertices and has an empty book-side (right side). We will now discuss some of the
clusters with non-empty right sides. All of those clusters have a natural interpretation.

The returned clusters mostly consist of books written by the same authors (as one would expect).
Two clusters were consisting of the Harry Potter books by Joanne K. Rowling; the first cluster
contained the five Harry Potter books that were published until 2004 (when the dataset was created)
and contains 92 users, the other one consisted of the first three books of the series and contained
60 users. There is one cluster containing four books written by Anne Rice (64 users), one cluster
containing seven books written by John Grisham (67 users), and one clusters containing 46 books
written by Stephen King (12 users). pcv also returns two clusters containing a single book: The Da
Vinci Code by Dan Brown (215 users) and The Lovely Bones by Alice Sebold (261 users).

4News. For this dataset we observe that it is useful to set the parameter k in the SVD and in the call to
k-means to different values. With this, we can obtain more general or more specific clusters: Setting
the value k for k-means to a smaller (larger) value, creates less (more) clusters on the left side of the
graph. This will also make the right-side clusters more general (specific).

We used k = 30 for the SVD and k = 50 for k-means to obtain relatively specific clusters. The value
of k is so large, because the dataset contains many outliers that create a lot of left-side clusters of size
1. Further, we set θ = 0.3, L = 10.

For each of the four newsgroups, pcv finds clusters. In total, pcv finds five clusters of which one has
an empty right side (225 posts). The cluster (18 posts) returned for the cryptography newsgroup is
public, system, govern, encrypt, decrypt, ke(y), secur(ity), person, escrow, clipper, chip (a clipper chip
is an encryption device developed by the NSA). For the medicine newsgroups, pcv finds the cluster
(24 posts) question, stud(y), year, effect, result, ve, call, doctor, patient, medic, read, level, peopl(e),
thing. The cluster (19 posts) concept, system, orbit, space, year, nasa, cost, project, high, launch,
da(y), part, peopl(e) explains the topics of the outer space newsgroup well. For the christian religion
newsgroup we obtain the cluster (24 posts) christian, bibl(e), read, rutger, god, peopl(e), thing.

1http://www2.informatik.uni-freiburg.de/~cziegler/BX/
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