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1 The Estimator f ∗

Given the sample size n, define an amplification parameter t > 1, and let N ′′ ∼ Poi(nt) be the
amplified sample size. Generate a sample sequence XN ′′ independently from p, and let N ′′x denote
the number of times symbol x appeared in XN ′′ . The empirical estimate of f(p) with Poi(nt)
samples is then

fE(XN ′′) =
∑
x∈X

fx

(
N ′′x
N ′′

)
.

Our objective is to construct an estimator f∗ that approximates fE(XN ′′) for large t using just
Poi(2n) samples.

Since N ′′ sharply concentrates around nt, Section 4.2 shows that fE(XN ′′) can be approximated by
the modified empirical estimator,

fME(XN ′′)
def
=
∑
x∈X

fx

(
N ′′x
nt

)
,

where fx(p)
def
= fx(1) for all p > 1 and x ∈ X .

Since large probabilities are easier to estimate, it is natural to set a threshold parameter s and rewrite
the modified estimator as a separate sum over small and large probabilities,

fME(XN ′′) =
∑
x∈X

fx

(
N ′′x
nt

)
1px≤s +

∑
x∈X

fx

(
N ′′x
nt

)
1px>s.

Note however that we do not know the exact probabilities. Instead, we draw two independent sample
sequences XN and XN ′ from p, each of an independent Poi(n) size, and let Nx and N ′x be the
number of occurrences of x in the first and second sample sequence respectively. We then set a
small/large-probability threshold s0 and classify a probability px as large or small according to N ′x:

fME
S (XN ′′ , XN ′)

def
=
∑
x∈X

fx

(
N ′′x
nt

)
1N ′x≤s0

is the modified small-probability empirical estimator, and

fME
L (XN ′′ , XN ′)

def
=
∑
x∈X

fx

(
N ′′x
nt

)
1N ′x>s0
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is the modified large-probability empirical estimator. We rewrite the modified empirical estimator as

fME(XN ′′) = fME
S (XN ′′ , XN ′) + fME

L (XN ′′ , XN ′).

Correspondingly, we express our estimator f∗ as a combination of small- and large-probability
estimators,

f∗(XN , XN ′)
def
= f∗S(XN , XN ′) + f∗L(XN , XN ′).

The large-probability estimator approximates fME
L (XN ′′ , XN ′) as

f∗L(XN , XN ′)
def
= fME

L (XN , XN ′) =
∑
x∈X

fx

(
Nx
nt

)
1N ′x>s0 .

Note that we replaced the length-Poi(nt) sample sequence XN ′′ by the independent length-Poi(n)
sample sequence XN . We can do so as large probabilities are well estimated from fewer samples.

The small-probability estimator f∗S(XN , XN ′) approximates fME
S (XN ′′ , XN ′) and is more involved.

We outline its construction below and details can be found in Section 8. The expected value of fME

for the small probabilities is

E[fME
S (XN ′′ , XN ′)] =

∑
x∈X

E[1Nx≤s0 ]E
[
fx

(
N ′′x
nt

)]
.

Let λx
def
= npx be the expected number of times symbol x will be observed in XN , and define

gx(v)
def
= fx

( v
nt

)( t

t− 1

)v
.

Then

E
[
fx

(
N ′′x
nt

)]
=

∞∑
v=0

e−λxt
(λxt)

v

v!
fx

( v
nt

)
= e−λx

∞∑
v=1

e−λx(t−1) (λx(t− 1))v

v!
gx (v) .

As explained in Section 8.1, the sum beyond a truncation threshold

umax
def
= 2s0t+ 2s0 − 1

is small, hence it suffices to consider the truncated sum

e−λx

umax∑
v=1

e−λx(t−1) (λx(t− 1))v

v!
gx (v) .

Applying the polynomial smoothing technique in [22], Section 8.2 approximates the above summation
by

e−λx

∞∑
v=1

hx,vλ
v
x,

where

hx,v = (t− 1)v
(umax∧v)∑
u=1

gx(u)(−1)v−u

(v − u)!u!

1− e−r
v+u∑
j=0

rj

j!

 ,

and
r

def
= 10s0t+ 10s0.

Observe that 1− e−r
∑v+u
j=0

rj

j! is the tail probability of a Poi(r) distribution that diminishes rapidly
beyond r. Hence r determines which summation terms will be attenuated, and serves as a smoothing
parameter.

An unbiased estimator of e−λx
∑∞
v=1 hx,vλ

v
x is

∞∑
v=1

hx,vv! · 1Nx=v = hx,Nx
·Nx!.

Finally, the small-probability estimator is

f∗S(XN , XN ′)
def
=
∑
x∈X

hx,Nx
·Nx! · 1N ′x≤s0 .
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2 Smooth properties

Theorem 1 holds for a wide class of properties f . For h ∈ (0, 1], consider the Lipschitz-type
parameter

`f (h)
def
= max

x
max

u,v∈[0,1]:max{u,v}≥h

|fx(u)− fx(v)|
|u− v|

,

and the second-order smoothness parameter, resembling similar approximation-theory terms [17, 18],

ω2
f (h)

def
= max

x
max

u,v∈[0,1]:|u−v|≤2h

{∣∣∣∣fx(u) + fx(v)

2
− fx

(
u+ v

2

)∣∣∣∣} .
We assume that f satisfies the following conditions:

• ∀x ∈ X , fx(0) = 0;

• `f (h) ≤ polylog(1/h) for h ∈ (0, 1];

• ω2
f (h) ≤ Sf · h for some absolute constant Sf .

Note that the first condition, fx(0) = 0, entails no loss of generality. The second condition implies
that fx is continuous over [0, 1], and in particular right continuous at 0 and left-continuous at 1.
It is easy to see that continuity is also essential for consistent estimation. Observe also that these
conditions are more general than assuming that fx is Lipschitz, as can be seen for entropy where
fx = x log x, and that all seven properties described earlier satisfy these three conditions. Finally,
to ensure that L1 distance satisfies these conditions, we let fx(px) = |px − qx| − qx. Observe also
that these conditions are more general than assuming that fx is Lipschitz, as can be seen for entropy
where fx = x log x.

For normalized support size, we modify our estimator f∗ as follows: if k > n, we apply the estimator
f∗, and if k ≤ n, we apply the corresponding min-max estimator [14]. However, for experiments
shown in Section 10, the original estimator f∗ is used without such modification.

Table 1 below summarizes the results on the quantity `f (h) and Sf for different properties. Note that
for a given property, `f (h) is unique while Sf is not.

Table 1: Values of `f (h) and Sf for different properties

Property fx(px) `f (h) Sf

KL divergence px log px
qx

−minx∈X log(hqx) log 2
L1 distance |px − qx| − qx 1 1
Shannon entropy px log 1

px
− log(h) log 2

Power sum (a) pax (a ≥ 1) 1 a

Normalized support coverage 1−e−mpx

m 1 1
Distance to uniformity

∣∣px − 1
k

∣∣− 1
k 1 1

For simplicity, we denote the partial expectation EY [X]
def
= E[X1Y ], and a ∧ b def

= min{a, b}.
To simplify our proofs and expressions, we assume that the number of samples n ≥ 150, the
amplification parameter t > 2.5, and 0 < ε ≤ 0.1. Without loss of generality, we also assume that s0,
umax and r are integers. Finally, set t = c1 log1/2−ε n+ 1 and s0 = c2 log2ε n, where c1 and c2 are
fixed constants such that 1 ≥ c1, c2 > 0 and c1

√
c2 ≤ 1/11.

3 Outline

The rest of the supplemental material is organized as follows.

In Section 4.1, we present a few concentration inequalities for Poisson and Binomial random variables
that will be used in subsequent proofs. In Section 4.2, we analyze the performance of the modified
empirical estimator fME that estimates px by Nx/n instead of Nx/N . We show that fME performs
nearly as well as the original empirical estimator fE , but is significantly easier to analyze.
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In Section 5, we partition the loss of our estimator, Lf∗(p, nt), into three parts: E[A2], E[B2], and
E[C2], corresponding to a quantity which is roughly LfE (p, nt), the loss incurred by f∗L, and the loss
incurred by f∗S , respectively.

In Section 6, we bound E[A2] by roughly LfE (p, nt). In Section 7, we bound E[B2]: in Section 7.1
and 7.2 , we bound the squared bias and variance of f∗L respectively.

In Section 8.1, we partition the series to be estimated in E[C2] into Rf and Kf , and show that it
suffices to estimate the quantity Kf . In Section 8.2, we outline how we construct the linear estimator
f∗S based on Kf . Then, we bound term E[C2]: in Section 8.3 and 8.4, we bound the variance and
squared bias of f∗S respectively. In Section 8.5, we derive a tight bound on E[C2].

In Section 9, we prove Theorem 1 based on our previous results.

In Section 10, we demonstrate the practical advantages of our methods through experiments on
different properties and distributions. We show that our estimator can even match the performance of
the n log n-sample empirical estimator in estimating various properties.

4 Preliminary Results

4.1 Concentration Inequalities for Poisson and Binomial

The following lemma gives tight tail probability bounds for Poisson and Binomial random variables.
Lemma 1. [24] Let X be a Poisson or Binomial random variable with mean µ, then for any δ > 0,

P(X ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)(1+δ)

)µ
≤ e−(δ

2∧δ)µ/3

and for any δ ∈ (0, 1),

P(X ≤ (1− δ)µ) ≤
(

e−δ

(1− δ)(1−δ)

)µ
≤ e−δ

2µ/2.

We have the following corollary by choosing different values of δ.
Lemma 2. Let X be a Poisson or Binomial random variable with mean µ,

P(X ≤ 1

2
µ) ≤ e−0.15µ, P(X ≤ 1

3
µ) ≤ e−0.30µ,

P(X ≤ 1

5
µ) ≤ e−0.478µ, and P(X ≤ 1

16
µ) ≤ e−0.76µ.

Lemma 3. Let N ∼ Poi(n),

E

[√
n

N

∣∣∣∣∣N ≥ 1

]
≤ 1 +

3

n
.

Proof. For N ≥ 1,
n

N
≤ n

N + 1
+

3n

(N + 1)(N + 2)
,

hence,

E

[
n

N

∣∣∣∣∣N ≥ 1

]
≤ E

[
n

N + 1

∣∣∣∣∣N ≥ 1

]
+ E

[
3n

(N + 1)(N + 2)

∣∣∣∣∣N ≥ 1

]

≤ E
[

n

N + 1

]
+ E

[
3n

(N + 1)(N + 2)

]
= P[N ≥ 1] +

3

n
P[N ≥ 2]

≤ 1 +
3

n
,

where the second inequality follows from the fact that 1
N+1 and 3n

(N+1)(N+2) decrease with N and
the equality follows as N ∼ Poi(n).
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4.2 The Modified Empirical Estimator

The modified empirical estimator

fME(XN ) =
∑
x∈X

fx

(
Nx
n

)
estimates the probability of a symbol not by the fraction Nx/N of times it appeared, but by Nx/n,
where n is the parameter of the Poisson sampling distribution.

We show that the original and modified empirical estimators have very similar performance.
Lemma 4. For all n ≥ 1,

E
[(
fE(XN )− fME(XN )

)2] ≤ `2f (1/n)

n
.

Proof. By the definition of `f (h), if Nx ≥ 1,∣∣∣∣fx(Nxn
)
− fx

(
Nx
N

)∣∣∣∣ ≤ `f ( 1

n

) ∣∣∣∣Nxn − Nx
N

∣∣∣∣ = `f

(
1

n

)
Nx
N

|N − n|
n

,

and if Nx = 0, ∣∣∣∣fx(Nxn
)
− fx

(
Nx
N

)∣∣∣∣ = 0 ≤ `f
(

1

n

)
Nx
N

|N − n|
n

.

Therefore,

E

(∑
x∈X

fx

(
Nx
n

)
− fx

(
Nx
N

))2
 ≤ E

(∑
x∈X

`f

(
1

n

)
Nx
N

|N − n|
n

)2


≤ E

[(
`f

(
1

n

)
|N − n|

n

)2
]

=
`2f (1/n)

n2
E
[
(N − n)2

]
=
`2f (1/n)

n
,

where the last step follows as N ∼ Poi(n) and E
[
(N − n)2

]
= Var[N ] = n.

5 Large and Small Probabilities

Recall that f∗ has the following form

f∗(XN , XN ′) = f∗S(XN , XN ′) + f∗L(XN , XN ′).

We can rewrite the property as follows

f(p) = f(p)− E[fME(XN ′′)] + E[fME
S (XN ′′ , XN ′)] + E[fME

L (XN ′′ , XN ′)].

The difference between f∗(XN , XN ′) and the actual value f(p) can be partitioned into three terms

f∗(XN , XN ′)− f(p) = A+B + C,

where
A

def
= E[fME(XN ′′)− f(p)]

is the bias of the modified empirical estimator with Poi(nt) samples,

B
def
= f∗L(XN , XN ′)− E[fME

L (XN ′′ , XN ′)]

5



corresponds to the loss incurred by the large-probability estimator f∗L, and

C
def
= f∗S(XN , XN ′)− E[fME

S (XN ′′ , XN ′)]

corresponds to the loss incurred by the small-probability estimator f∗S .

By Cauchy-Schwarz inequality, upper bounds on E[A2], E[B2], and E[C2], suffice to also upper
bound the estimation loss Lf∗(p, 2n) = E[(f∗(XN , XN ′)− f(p))2].

In the next section, we bound the squared bias term E[A2]. In Section 6 and Section 7, we bound the
large- and small-probability terms E[B2] and E[C2], respectively.

6 Squared Bias: E[A2]

We relate E[A2] to LfE (p, nt) through the following inequality.
Lemma 5. Let T be a positive function over N,

E[A2] ≤ 1 + T (n)

nt
`2f

(
1

nt

)
+

(
1 +

1

T (n)

)
LfE (p, nt).

Proof. We upper bound E[A2] in terms of LfE (p, nt) using Cauchy-Schwarz inequality and
Lemma 4.

E[A2] =

(∑
x∈X

(
E
[
fx

(
N ′′x
nt

)]
− fx(px)

))2

=

(∑
x∈X

(
E
[
fx

(
N ′′x
nt

)]
− E

[
fx

(
N ′′x
N ′′

)])
+
∑
x∈X

(
E
[
fx

(
N ′′x
N ′′

)]
− fx(px)

))2

≤ (1 + T (n))

(∑
x∈X

(
E
[
fx

(
N ′′x
nt

)]
− E

[
fx

(
N ′′x
N ′′

)]))2

+

(
1 +

1

T (n)

)
LfE (p, nt)

≤ 1 + T (n)

nt
`2f

(
1

nt

)
+

(
1 +

1

T (n)

)
LfE (p, nt).

7 Large Probabilities: E[B2]

Note that
E[B2] = E[(f∗L(XN , XN ′)− E[fME

L (XN ′′ , XN ′)])2]

= Bias(f∗L)2 + V ar(f∗L),

where
Bias(f∗L)

def
= E[f∗L(XN , XN ′)− fME

L (XN ′′ , XN ′)]
and

Var(f∗L)
def
= E[(f∗L(XN , XN ′)− E[f∗L(XN , XN ′)])2]

are the bias and variance of f∗L(XN , XN ′) in estimating E[fME
L (XN ′′ , XN ′)], respectively. We shall

upper bound the absolute bias and variance as

|Bias(f∗L)| ≤

√
(8Sf )2

(
1

s0
∧ k
n

)
+ 6`2f

(
1

nt

)
1

n

and

Var (f∗L) ≤ `2f
(

1

n

)
4s0
n

in Section 7.1 and Section 7.2 respectively. It follows that
Lemma 6. For t > 2.5 and s0 ≥ 1,

E[B2] = Bias(f∗L)2 + Var(f∗L) ≤ (8Sf )2
(

1

s0
∧ k
n

)
+ 10`2f

(
1

nt

)
s0
n
.
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7.1 Bounding the Bias of f∗L

To bound the bias of f∗L, we need the following lemma.

Lemma 7. [25] For any binomial random variable X ∼ B(n, p), continuous function f0, and
p ∈ [0, 1], ∣∣∣∣E [f0(Xn

)]
− f0(p)

∣∣∣∣ ≤ 3ω2
f0

(√
p(1− p)

n

)
.

Recall that ω2
f (h) ≤ Sfh from our assumption.

Lemma 8. For n ≥ 150,∣∣∣∣EN≥1 [fx(Nxn
)
− fx (px)

]∣∣∣∣ ≤ `f ( 1

n

)
px√
n

+ 3.06Sf

√
px
n
.

Proof. Noting n ≥ 150, it follows from Lemma 3 and Lemma 6 that∣∣∣∣EN≥1 [fx(Nxn
)
− fx (px)

]∣∣∣∣ ≤ ∣∣∣∣EN≥1 [fx(Nxn
)
− fx

(
Nx
N

)]∣∣∣∣+

∣∣∣∣EN≥1 [fx(NxN
)
− fx (px)

]∣∣∣∣
≤ `f

(
1

n

)
px
n
E[|N − n|] + E

[
3ω2

f

(√
px(1− px)

N

)∣∣∣∣∣N ≥ 1

]

≤ `f
(

1

n

)
px
n

√
E[(N − n)2] + 3Sf

√
px
n
E

[√
n

N

∣∣∣∣∣N ≥ 1

]

≤ `f
(

1

n

)
px√
n

+ 3.06Sf

√
px
n
.

The next lemma essentially bounds the individual bias term for each symbol x.

Lemma 9. For t > 2.5,∣∣∣∣E [fx(Nxn
)
− fx

(
N ′′x
nt

)]∣∣∣∣ ≤ 5Sf

√
px
n

+ 1.65`f

(
1

nt

)
px√
n
.

Proof. Using Lemma 8,∣∣∣∣E [fx(Nxn
)
− fx

(
N ′′x
nt

)]∣∣∣∣
≤
∣∣∣∣EN,N ′′≥1 [fx(Nxn

)
− fx

(
N ′′x
nt

)]∣∣∣∣+ `f

(
1

n

)
E
[
Nx
n

]
e−n + `f

(
1

nt

)
E
[
N ′′x
nt

]
e−nt

≤
∣∣∣∣EN≥1 [fx(Nxn

)
− fx (px)

]∣∣∣∣+

∣∣∣∣EN ′′≥1 [fx (px)− fx
(
N ′′x
nt

)]∣∣∣∣+ 2`f

(
1

nt

)
pxe
−n

≤ 5Sf

√
px
n

+ 1.65`f

(
1

nt

)
px√
n
,

where the last step follows from `f
(
1
n

)
≤ `f

(
1
nt

)
, e−n ≤

√
n, and t > 2.5.

Finally, the next lemma bounds the absolute bias of f∗L.

Lemma 10. For t > 2.5 and s0 ≥ 1,

|Bias(f∗L)| ≤

√
(8Sf )2

(
1

s0
∧ k
n

)
+ 6`2f

(
1

nt

)
1

n
.

7



Proof.

|Bias(f∗L)| =

∣∣∣∣∣E
[∑
x∈X

fx

(
Nx
n

)
1N ′x>s0 −

∑
x∈X

E[1Nx>s0 ]E
[
fx

(
N ′′x
nt

)]]∣∣∣∣∣
(a)

≤
∑
x∈X

E[1Nx>s0 ]

∣∣∣∣E [fx(Nxn
)
− fx

(
N ′′x
nt

)]∣∣∣∣
(b)

≤
∑
x∈X

E[1Nx>s0 ]

(
5Sf

√
px
n

+ 1.65`f

(
1

nt

)
px√
n

)
(c)

≤
√

1

n
5Sf

∑
x∈X

E[1Nx>s0 ]
√
px + 1.65`f

(
1

nt

)
1√
n

(d)

≤
√

1

n
5Sf

√
(
∑
x∈X

E[1Nx>s0 ])(
∑
x∈X

E[1Nx>s0 ]px) + 1.65`f

(
1

nt

)
1√
n

(e)

≤ 5Sf

√
1

s0
∧ k
n

+ 1.65`f

(
1

nt

)
1√
n

(f)

≤

√
(8Sf )2

(
1

s0
∧ k
n

)
+ 6`2f

(
1

nt

)
1

n
,

where (a) follows from triangle inequality, (b) follows from Lemma 9, (c) follows as
∑
x∈X px =

1 and E[1Nx>s0 ] ≤ 1, (d) follows from Cauchy-Schwarz inequality, (e) follows from Markov
inequality, i.e., E[1Nx>s0 ] = P[Nx > s0] ≤ npx/s0 and

∑
x∈X E[1Nx>s0 ] ≤ k, and (f) follows

from the inequality a+ b ≤
√

2(a2 + b2).

7.2 Bounding the Variance of f∗L

The following lemma exploits independence and bounds the variance of f∗L.

Lemma 11. For s0 ≥ 1,

Var (f∗L) ≤ `2f
(

1

n

)
4s0
n
.

Proof. Due to independence,

Var (f∗L) = Var

(∑
x∈X

fx

(
Nx
n

)
1N ′x>s0

)

=
∑
x∈X

Var

(
fx

(
Nx
n

)
1N ′x>s0

)
=
∑
x∈X

Var(1N ′x>s0)E
[
f2x

(
Nx
n

)]
+
∑
x∈X

(
E[1N ′x>s0 ]

)2
Var

(
fx

(
Nx
n

))
≤
∑
x∈X

V ar(1N ′x>s0)E
[
f2x

(
Nx
n

)]
+
∑
x∈X

Var

(
fx

(
Nx
n

))
.

To bound the first term,

Var(1N ′x>s0)E
[
f2x

(
Nx
n

)]
≤ Var(1N ′x>s0)E

[
`2f

(
1

n

)(
Nx
n

)2
]

≤ `2f
(

1

n

)
px
n

(
1 + npxVar(1N ′x>s0)

)
,

8



where Lemma 2 further bounds the final term by

Var(1N ′x>s0)px ≤ P[N ′x ≤ s0]px

= e−npx
s0∑
i=0

(npx)i+1

(i+ 1)!

i+ 1

n

≤ s0 + 1

n
e−npx

s0∑
i=0

(npx)i+1

(i+ 1)!

=
s0 + 1

n
P(1 ≤ N ′x ≤ s0 + 1)

≤ s0 + 1

n
.

To bound the second term, let N̂x be an i.i.d. copy of Nx for each x,

2Var

(
fx

(
Nx
n

))
= Var

(
fx

(
Nx
n

)
− fx

(
N̂x
n

))

= E

(fx(Nx
n

)
− fx

(
N̂x
n

))2


≤ E

`2f ( 1

n

)(
Nx
n
− N̂x

n

)2


= 2`2f

(
1

n

)
px
n
.

A simple combination of these bounds yields the lemma.

8 Small Probabilities: E[C2]

As outlined in Section 1, the quantity to be estimated in C is

E[fME
S (XN ′′ , XN ′)] =

∑
x∈X

E[1Nx≤s0 ]E
[
fx

(
N ′′x
nt

)]
=
∑
x∈X

E[1Nx≤s0 ]

∞∑
v=1

e−λxt
(λxt)

v

v!
fx

( v
nt

)
.

We truncate the inner summation according to the threshold umax = 2s0t+ 2s0 − 1 and define

Kf
def
=
∑
x∈X

E[1Nx≤s0 ]

umax∑
v=1

e−λxt
(λxt)

v

v!
fx

( v
nt

)
and

Rf
def
=
∑
x∈X

E[1Nx≤s0 ]

∞∑
v=umax+1

e−λxt
(λxt)

v

v!
fx

( v
nt

)
,

then,
E[fME

S (XN ′′ , XN ′)] = Kf +Rf .

The truncation threshold umax is calibrated such that for each symbol x,
umax∑
v=1

e−λxt
(λxt)

v

v!
fx

( v
nt

)
contains only roughly log(n) terms and R2

f is sufficiently small and contributes only to the slack
term in Theorem 1, as shown in Lemma 13. In Section 8.2, we shall thus construct f∗S(XN , XN ′) to
estimate Kf instead of E[fME

S (XN ′′ , XN ′)].

9



Analogous to Section 7, define

Bias(f∗S)
def
= E[f∗S(XN , XN ′)−Kf ]

and
Var(f∗S)

def
= E[(f∗S(XN , XN ′)− E[f∗S(XN , XN ′)])2]

as the bias and variance of f∗S(XN , XN ′) in estimating Kf , respectively, it follows that

E[C2] = E[(f∗S(XN , XN ′)− E[fME
L (XN ′′ , XN ′)])2]

= E
[(
f∗S(XN , XN ′)− (Kf +Rf )

)2]
= Var(f∗S) + (Bias(f∗S)−Rf )

2

≤ Var(f∗S) + (1 + log n) (Bias(f∗S))
2

+

(
1 +

1

log n

)
R2
f .

We shall upper bound the variance and squared bias as

Var(f∗S) ≤ (n ∧ k)

(
`f

(
1

nt

)
umax

nt

)2

e4r(t−1).

and

Bias(f∗S)2 ≤
(

1 ∧ k
2

n2

)
e−4s0t`2f

(
1

nt

)
in Section 8.3 and Section 8.4 respectively. It follows by simple algebraic manipulation that
Lemma 12. For the set of parameters specified in Section 2, if c1

√
c2 ≤ 1/11, t > 2.5, n ≥ 150,

and 1 ≤ s0 ≤ log0.2(n),

E[C2] ≤ 132
(

1 ∧ k
n

)
`2f

(
1

nt

)(
log2 n

e0.6s0

)
.

8.1 Bounding the Last Few Terms

We now show that R2
f is sufficiently small and only contributes to the slack term in Theorem 1. The

key is to divide the sum into two parts and apply Lemma 2 seperately.

Lemma 13. For n ≥ 150, 1 ≤ s0 ≤ log0.2 n, and t > 2.5,

R2
f ≤

(
7.1

(
1 ∧ k

n

)
`f

(
1

n

)
e−0.3s0 log(n)

)2

+

(
7.1

n3.8
`f

(
1

n

))2

.

Proof. Recall that umax = 2s0t+ 2s0, we upper bound the absolute value of Rf as

|Rf | =

∣∣∣∣∣∑
x∈X

s0∑
u=0

∞∑
v=2s0t+2s0

e−λx
λux
u!
e−λxt

(λxt)
v

v!
fx

( v
nt

)∣∣∣∣∣
≤
∑
x∈X

∞∑
u+v=2s0t+2s0

e−λx(t+1) (λx(t+ 1))u+v

(u+ v)!
·

(
`f

(
2s0t+ 2s0

nt

)
u+ v

nt

) s0∑
u=0

(
u+ v

u

)(
1

t+ 1

)u(
t

t+ 1

)v
=
∑
x∈X

∞∑
u+v=2s0t+2s0

e−λx(t+1) (λx(t+ 1))u+v

(u+ v)!
·(

`f

(
2s0t+ 2s0

nt

)
u+ v

nt

)
P
(
B

(
u+ v,

1

t+ 1

)
≤ s0

)
≤ `f

(
1

n

)∑
x∈X

∞∑
u+v=2s0t+2s0

e−λx(t+1) (λx(t+ 1))u+v

(u+ v)!

u+ v

nt
P
(
B

(
u+ v,

1

t+ 1

)
≤ s0

)
.

10



For u+ v ≥ 2s0t+ 2s0, Lemma 2 yields

P
(
B

(
u+ v,

1

t+ 1

)
≤ s0

)
≤ e−0.15(u+v)/(t+1) ≤ e−0.3s0 .

Truncate the inner summation at u+ v = 5(t+ 1) log n and apply the above inequality,

∑
x∈X

5(t+1) logn∑
u+v=2s0t+2s0

e−λx(t+1) (λx(t+ 1))u+v

(u+ v)!

u+ v

nt
P
(
B

(
u+ v,

1

t+ 1

)
≤ s0

)

≤ 5(t+ 1) log n

nt
e−0.3s0

∑
x∈X

5(t+1) logn∑
u+v=2s0t+2s0

e−λx(t+1) (λx(t+ 1))u+v

(u+ v)!

≤ 5(t+ 1) log n

nt
e−0.3s0

∑
x∈X

P (Poi(λx(t+ 1)) ≥ 2s0t+ 2s0)

≤ 5(t+ 1) log n

nt
e−0.3s0

∑
x∈X

(1 ∧ λx)

≤ 7

(
1 ∧ k

n

)
e−0.3s0 log n,

where the second last inequality follows from the Markov’s inequality and the last one follows from∑
x∈X λx = n and |X | = k.

For u+ v ≥ 5(t+ 1) log n+ 1, Lemma 2, 1 ≤ s0 ≤ log0.2 n, and n ≥ 150 together yield

u+ v

t+ 1
≥ 5 log n ≥ 16 log0.2 n ≥ 16s0

and

P
(
B

(
u+ v,

1

t+ 1

)
≤ s0

)
≤ e−0.76×5 logn ≤ 1

n3.8
.

It remains to consider the following partial sum.∑
x∈X

∞∑
u+v=5(t+1) logn+1

e−λx(t+1) (λx(t+ 1))u+v

(u+ v)!

u+ v

nt
P
(
B

(
u+ v,

1

t+ 1

)
≤ s0

)

≤ 1

n3.8
1

nt

∑
x∈X

∞∑
u+v=5(t+1) logn+1

e−λx(t+1) (λx(t+ 1))u+v

(u+ v)!
(u+ v)

≤ 1

n3.8
1

nt

∑
x∈X

λx(t+ 1)

≤ 1.4

n3.8
,

where the last inequality comes from
∑
x∈X λx = n and t > 2.5. The lemma follows from

Cauchy-Schwarz inequality.

8.2 Estimator Construction for Small Probabilities: f∗S

According to Lemma 13, it suffices to estimate

Kf =
∑
x∈X

E[1Nx≤s0 ]

umax∑
u=1

e−λxt
(λxt)

u

u!
fx

( u
nt

)
.

Recall that

gx(u) = fx

( u
nt

)( t

t− 1

)u
,

11



we can rewrite Kf as

Kf =
∑
x∈X

E[1Nx≤s0 ]e−λx

umax∑
u=1

e−λx(t−1) (λx(t− 1))u

u!
gx(u).

Let

fu(y)
def
= J2u(2

√
y) =

∞∑
i=0

(−1)iyi+u

i!(i+ 2u)!
,

where J2u is the Bessel function of the first kind with parameter 2u. Our estimator is motivated by
the following equality.
Lemma 14. For any u ∈ Z+ and y ≥ 0,∫ ∞

0

e−ααufu(αy)dα = e−yyu.

Proof. By Fubini’s theorem and the series expansion of fu,∫ ∞
0

e−ααufu(αy)dα =

∫ ∞
0

e−ααu
∞∑
i=0

(−1)i(αy)i+u

(i!)(i+ 2u)!
dα

=

∞∑
i=0

(−1)i(y)i+u

(i!)(i+ 2u)!

∫ ∞
0

e−ααi+2udα.

Observe that the integral is actually Γ(i+ 2u+ 1) and equals to (i+ 2u)!,
∞∑
i=0

(−1)i(y)i+u

(i!)(i+ 2u)!

∫ ∞
0

e−ααi+2udα =

∞∑
i=0

(−1)i(y)i+u

(i!)(i+ 2u)!
(i+ 2u)!

=

∞∑
i=0

(−1)i(y)i+u

i!

= e−yyu.

Therefore, let

hx(λx)
def
= e−λx

umax∑
u=1

gx(u)

u!

(∫ ∞
0

e−ααufu(αλx(t− 1))dα

)
,

we can rewrite
Kf =

∑
x∈X

E[1Nx≤s0 ]hx(λx).

We apply the polynomial smoothing technique in [22] and approximate hx(y) by

ĥx(λx)
def
= e−λx

umax∑
u=1

gx(u)

u!

(∫ r

0

e−ααufu(αλx(t− 1))dα

)
,

where r is the polynomial smoothing parameter defined in Section 1.

We now expand ĥx(λx) as a product of e−λx and a power series of λx.
Lemma 15. For t > 2.5,

ĥx(λx) = e−λx

∞∑
v=1

hx,vλ
v
x,

where

hx,v = (t− 1)v
(umax∧v)∑
u=1

gx(u)(−1)v−u

(v − u)!u!

1− e−r
v+u∑
j=0

rj

j!

 .
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Proof. By Fubini’s theorem and the series expansion of fu,∫ r

0

e−ααufu(αλx(t− 1))dα =

∫ r

0

e−ααu
∞∑
i=0

(−1)i(αλx(t− 1))i+u

(i!)(i+ 2u)!
dα

=

∞∑
i=0

(−1)i(λx(t− 1))i+u

(i!)(i+ 2u)!

∫ r

0

e−ααi+2udα

=

∞∑
i=0

(−1)i(λx(t− 1))i+u

i!

1− e−r
i+2u∑
j=0

rj

j!

 .

Hence,

ĥx(λx) = e−λx

umax∑
u=1

gx(u)

u!

(∫ r

0

e−ααufu(αλx(t− 1))dα

)

= e−λx

umax∑
u=1

gx(u)

u!

∞∑
i=0

(−1)i(λx(t− 1))i+u

i!

1− e−r
i+2u∑
j=0

rj

j!


= e−λx

∞∑
v=1

(t− 1)v
(umax∧v)∑
u=1

gx(u)(−1)v−u

(v − u)!u!

1− e−r
v+u∑
j=0

rj

j!

λvx
= e−λx

∞∑
v=1

hx,vλ
v
x

An unbiased estimator of ĥx(λx) = e−λx
∑∞
v=1 hx,vλ

v
x is

∞∑
v=1

hx,vv! · 1Nx=v = hx,Nx
·Nx!.

Our small-probability estimator is thus

f∗S(XN , XN ′) =
∑
x∈X

hx,Nx ·Nx! · 1N ′x≤s0 .

In the next section, we show that the connection between hx(λ) and ĥx(λ) leads to a small expected
squared loss of f∗S .

8.3 Bounding the Variance of f∗S

First we upper bound the variance of f∗S in terms of the coefficients hx,v .
Lemma 16. The variance of f∗S is bounded by

Var(f∗S) ≤ (n ∧ k) max
x∈X

max
v

h2x,vv!2.

Proof. First observe that independence and Var[X] ≤ E[X2] imply

Var(f∗S) = Var(
∑
x∈X

∞∑
v=1

hx,vv!1Nx=v1N ′x≤s0)

=
∑
x∈X

Var(

∞∑
v=1

hx,vv!1Nx=v1N ′x≤s0)

≤
∑
x∈X

E[(

∞∑
v=1

hx,vv!1Nx=v1N ′x≤s0)2].
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Note that 1Nx=u1Nx=v = 0 for any u 6= v, we can rewrite the last summation as∑
x∈X

E[

∞∑
v=1

(hx,vv!)21Nx=v1N ′x≤s0 ] ≤ max
x∈X

max
v

h2x,vv!2E[
∑
x∈X

∞∑
v=1

1Nx=v1N ′x≤s0 ]

≤ max
x∈X

max
v

h2x,vv!2E[
∑
x∈X

∞∑
v=1

1Nx=v]

≤ (n ∧ k) max
x∈X

max
v

h2x,vv!2,

where the last inequality follows from
∑
x∈X

∑∞
v=1 1Nx=v ≤ N ∧ k and E[N ] = n.

The following lemma provides a uniform bound on |hx,vv!|, which, by Lemma 16, is sufficient to
bound the variance of f∗S .
Lemma 17. For t > 2.5,

|hx,vv!| ≤ `f
(

1

nt

)
umax

nt
e2r(t−1).

Proof. From the definition of gx(u),

|hx,vv!| ≤ (t− 1)ve−r
(umax∧v)∑
u=1

|gx(u)|v!

(v − u)!u!

∞∑
j=v+u+1

rj

j!

= e−r
(umax∧v)∑
u=1

∣∣∣fx ( u
nt

)∣∣∣ tu(t− 1)v−u
(
v

u

) ∞∑
j=v+u+1

rj

j!

≤ `f
(

1

nt

)
umax

nt
e−r

(umax∧v)∑
u=1

tu(t− 1)v−u
(
v

u

) ∞∑
j=v+u+1

rj

j!

≤ `f
(

1

nt

)
umax

nt
e−r

∞∑
j=v+2

rj

j!

(umax∧v)∑
u=1

(
v

u

)
tu(t− 1)v−u.

For t > 2.5, the binomial expansion theorem yields
(umax∧v)∑
u=1

(
v

u

)
tu(t− 1)v−u ≤ (2t− 1)v.

Combining the above inequality with the previous upper bound,

|hx,vv!| ≤ `f
(

1

nt

)
umax

nt
e−r

∞∑
j=v+2

rj

j!
(2t− 1)v

≤ `f
(

1

nt

)
umax

nt
e−r

∞∑
j=v+2

((2t− 1)r)j

j!

≤ `f
(

1

nt

)
umax

nt
e−r

∞∑
j=0

((2t− 1)r)j

j!

= `f

(
1

nt

)
umax

nt
e2r(t−1),

where the last equality follows from the Taylor expansion of ey .

The above results yield the following upper bound on Var(f∗S).
Lemma 18. For the set of parameters specified in Section 2, if c1

√
c2 ≤ 1/11 and t > 2.5, then

Var(f∗S) ≤
(

1 ∧ k
n

)
9s20
n0.22

`2f

(
1

nt

)
.
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Proof. By Lemma 16 and Lemma 17,

Var(f∗S) ≤ (n ∧ k)

(
`f

(
1

nt

)
umax

nt

)2

e4r(t−1).

Note that t > 2.5,
umax

nt
=

2s0t+ 2s0 − 1

nt
≤ 2s0t+ 2s0

nt
≤ 3s0

n
,

and since c1
√
c2 ≤ 0.1,

4r(t− 1) = 40s0(t+ 1)(t− 1) ≤ 94s0(t− 1)2 = 94c21c2 log n ≤ 0.78 log n.

Hence, (
`f

(
1

nt

)
umax

nt

)2

e4r(t−1) ≤
(

3s0
n

)2

`2f

(
1

nt

)
n0.78 ≤ 1

n

9s20
n0.22

`2f

(
1

nt

)
,

which implies that

Var(f∗S) ≤
(

1 ∧ k
n

)
9s20
n0.22

`2f

(
1

nt

)
.

8.4 Bounding the Bias of f∗S

Recall that

Bias(f∗S) = E[f∗S(XN , XN ′)−Kf ]

= E[
∑
x∈X

hx,Nx ·Nx! · 1N ′x≤s0 −
∑
x∈X

hx(λx)E[1Nx≤s0 ]]

=
∑
x∈X

(ĥx(λx)− hx(λx))E[1Nx≤s0 ],

which yields

|Bias(f∗S)| ≤
∑
x∈X

∣∣∣ĥx(λx)− hx(λx)
∣∣∣

=
∑
x∈X

∣∣∣∣∣
umax∑
u=1

gx(u)

u!

(∫ ∞
r

e−ααufu(αλx(t− 1))dα

)∣∣∣∣∣
The following lemma bounds |fu(y)| by simple functions and allows us to deal with the integral.
Lemma 19. For u ≥ 1 and y ≥ 0,

|fu(y)| ≤ 1 ∧ y

u+ 1
.

Proof. For u ≥ 1 and y ≥ 0, we have the following well-known upper bound [26] for the Bessel
function of the first kind.

Ju(y) ≤ 1 ∧ (y/2)u

u!
,

which implies

fu(y) = J2u(2
√
y) ≤ 1 ∧ (y)u

(2u)!
.

If y ≥ u+ 1, then

fu(y) ≤ 1 ∧ (y)u

(2u)!
≤ 1 ≤ y

u+ 1
.

If u+ 1 > y ≥ 0, then

fu(y) ≤ 1 ∧ (y)u

(2u)!
≤ (y)u

(2u)!
≤ (u+ 1)u

(2u)!

y

u+ 1
≤ y

u+ 1
≤ 1.
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To bound |Bias(f∗S)|, it suffices to bound |ĥx(λx) − hx(λx)|. The lemma below follows from the
first half of Lemma 19, i.e., |fu(y)| ≤ y/(u+ 1).
Lemma 20. For t > 2.5 and s0 ≥ 1,

|ĥx(λx)− hx(λx)| ≤ λx
n
`f

(
1

nt

)
e−2s0t.

Proof. Since |fu(y)| ≤ y/(u+ 1),

|ĥx(λx)− hx(λx)| ≤
umax∑
u=1

|gx(u)|
(u+ 1)!

y(t− 1)

∫ ∞
r

e−ααu+1dα.

Note that the integral is actually the incomplete Gamma function, we can rewrite the last term as

λx(t− 1)

umax∑
u=1

|gx(u)|
(u+ 1)!

(u+ 1)!e−r
u+1∑
i=0

ri

i!
= λx(t− 1)

umax∑
u=1

|gx(u)|e−r
u+1∑
i=0

ri

i!
.

Consider each term in the summation, by Lemma 2, r = 10s0t+ 10s0, and umax = 2s0t+ 2s0 − 1,
for 1 ≤ u ≤ umax,

|gx(u)|e−r
u+1∑
i=0

ri

i!
=

(
t

t− 1

)u
Pr(Poi(r) ≤ u+ 1)

∣∣∣f ( u
nt

)∣∣∣
≤
(

t

t− 1

)u
Pr(Poi(r) ≤ 2s0t+ 2s0)

3s0
n
`f

(
1

nt

)
≤
(

t

t− 1

)u
e−4.78(s0t+s0)

3s0
n
`f

(
1

nt

)
.

Hence,

λx(t− 1)

umax∑
u=1

|gx(u)|e−r
u+1∑
i=0

ri

i!
≤ λx(t− 1)e−4.78(s0t+s0)

3s0
n
`f

(
1

nt

) umax∑
u=1

(
t

t− 1

)u
≤ λx

n
`f

(
1

nt

)(
(t− 1)23s0

)
e−4.78(s0t+s0)

(
t

t− 1

)2s0t+2s0

.

Note that t > 2.5 yields t
t−1 ≤ e

0.64 and thus

e−4.78(s0t+s0)
(

t

t− 1

)2s0t+2s0

≤ e−4.78(s0t+s0)e1.28(s0t+s0)

= e−3.5(s0t+s0).

Furthermore, (
(t− 1)23s0

)
e−3.5(s0t+s0) =

(
e−1.5s0t(t− 1)2

) (
e−3.5s03s0

)
e−2s0t

≤ e−2s0t,
which completes the proof.

Analogously, applying the second half of Lemma 19, i.e., |fu(y)| ≤ 1, we get the following alternative
upper bound.
Lemma 21. For t > 2.5 and s0 ≥ 1,

|ĥx(λx)− hx(λx)| ≤ 1

n
`f

(
1

nt

)
e−2s0t.

Lemma 20 and Lemma 21 together yield the following upper bound.
Lemma 22. For t > 2.5 and s0 ≥ 1,

Bias(f∗S)2 ≤
(

1 ∧ k
2

n2

)
e−4s0t`2f

(
1

nt

)
.
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8.5 Bounding E[C2]

Combining all the previous results, for the set of parameters specified in Section 2, if c1
√
c2 ≤ 1/11,

t > 2.5, n ≥ 150, and 1 ≤ s0 ≤ log0.2 n,

E[C2] ≤ Var(f∗S) + (1 + log n) Bias(f∗S)2 +

(
1 +

1

log n

)
R2
f

≤
(

1 ∧ k
n

)
9s20
n0.22

`2f

(
1

nt

)
+ (1 + log n)

(
1 ∧ k

2

n2

)
e−4s0t`2f

(
1

nt

)
+

(
1 +

1

log n

)((
7.1

(
1 ∧ k

n

)
`f

(
1

n

)
e−0.3s0 log n

)2

+

(
7.1

n3.8
`f

(
1

n

))2
)

≤ 82
(

1 ∧ k
n

)
`2f

(
1

nt

)
log2 n

(
1

e0.6s0
+

1

n0.22

)
+

(
8

n3.8
`f

(
1

n

))2

≤ 132
(

1 ∧ k
n

)
`2f

(
1

nt

)(
log2 n

e0.6s0

)

9 Main Results

To summarize, for properly chosen parameters and sufficiently large n,

E[A2] ≤ 1 + T (n)

nt
`2f

(
1

nt

)
+

(
1 +

1

T (n)

)
LfE (p, nt),

E[B2] ≤ (8Sf )2
(

1

s0
∧ k
n

)
+ 10`2f

(
1

nt

)
s0
n
,

and

E[C2] ≤ 132
(

1 ∧ k
n

)
`2f

(
1

nt

)(
log2 n

e0.6s0

)
,

where T is an arbitrary positive function over N. Furthermore, Cauchy-Schwarz inequality implies

(f∗(XN , XN ′)− f(p))2 = (A+B + C)2 ≤ (T (n)(C +B)2 +A2)

(
1 +

1

T (n)

)
.

Choosing T (n) = logε n, the estimation loss of f∗ is thus bounded by

Lf∗(p, 2n) = E[(f∗(XN , XN ′)− f(p))2]

≤ E
[
(logε n(C +B)2 +A2)

(
1 +

1

logε n

)]
≤ 2(1 + logε n)(E[C2] + E[B2]) +

(
1 +

1

logε n

)
E[A2]

≤ 2(1 + logε n)

(
E[C2] + E[B2] +

1 + logε n

2nt logε n
`2f

(
1

nt

))
+

(
1 +

1

logε n

)
LfE (p, nt).

For any property f and set of parameters that satisfy the assumptions in Section 2,

E[C2] + E[B2] +
1 + logε n

2nt logε n
`2f

(
1

nt

)
≤ C ′f min

{
k

n
+ Õ

(
1

n

)
,

1

log2ε n

}
,

where C ′f is a fixed constant that only depends on f .

Setting c1 = 1 yields Theorem 1 with Cf = 4C ′f .
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In Theorem 1, for fixed n, as ε → 0, the final slack term 1/ logε n approaches a constant. For
certain properties it can be improved. For normalized support size, normalized support coverage, and
distance to uniformity, a more involved estimator improves this term to

Cf,γ min

{
k

n log1−ε n
+

1

n1−γ
,

1

log1+ε n

}
,

for any fixed constant γ ∈ (0, 1/2).

For Shannon entropy, correcting the bias of f∗L and further dividing the probability regions, reduces
the slack term even more, to

Cf,γ min

{
k2

n2 log2−ε n
+

1

n1−γ
,

1

log2+2ε n

}
.

10 Experiments

We demonstrate the new estimator’s efficacy by applying it to several properties and distributions, and
comparing its performance to that of several recent estimators [13–15, 22, 27]. As outlined below,
the new estimator was essentially the best in almost all experiments. It was out-performed, essentially
only by PML, and only when the distribution is close to uniform.

10.1 Preliminaries

We tested five of the properties outlined in the introduction section: Shannon entropy, normalized
support size, normalized support coverage, power sums or equivalently Rényi entropy, and distance to
uniformity. For each of the five properties, we tested the estimator on the following six distributions.
a distribution randomly generated from Dirichlet prior with parameter 2; uniform distribution;
Binomial distribution with success probability 0.3; geometric distribution with success probability
0.99; Poisson distribution with mean 3,000; Zipf distribution with power 1.5. All distributions had
support size k = 10,000. The Geometric, Poisson, and Zipf distributions were truncated at k and
re-normalized. Note that the parameters of the Geometric and Poisson distributions were chosen so
that the expected value would be fairly large.

We compared the estimator’s performance with n samples to that of four other recent estimators as
well as the empirical estimator with n, n

√
log n, and n log n samples.

The graphs denotes NEW by f∗, fE with n samples by Empirical, fE with n
√

log n samples by
Empirical+, fE with n log n samples by Empirical++, the pattern maximum likelihood estimator
in [15] by PML, the Shannon-entropy estimator in [27] by JVHW, the normalized-support-size
estimator in [14] and the entropy estimator in [13] by WY, and the smoothed Good-Toulmin Estimator
for normalized support coverage estimation [22], slightly modified to account for previously-observed
elements that may appear in the subsequent sample, by SGT.

While the empirical estimator and the new estimator have the same form for all properties, as noted
in the introduction, the recent estimators are property-specific, and each was derived for a subset of
the properties. In the experiments we applied these estimators to the properties for which they were
derived. Also, additional estimators [28–34] for various properties were compared in [13, 14, 22, 27]
and found to perform similarly to or worse than recent estimators, hence we do not test them here.

As outlined in Section 1, the new estimator f∗ uses two key parameters t and s0 that determine and
all other parameters. To avoid over-fitting, the data sets used to determine t and s0 was disjoint from
the one used to generate the results shown.

Table 2: Values of t and s0 for different properties

Property t s0

Shannon Entropy 2 log0.8 n+ 1 16 log0.2 n
Normalized Support Size log0.7 n+ 1 16 log0.2 n
Normalized Support Coverage log0.8 n+ 1 8 log0.2 n
Power Sum (0.75) log1.0 n+ 1 4 log0.2 n
Distance to Uniformity log0.7 n+ 1 4 log0.2 n
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Due to the nature of our worst-case analysis and the universality of our results over all possible
distributions, we only proved that f∗ with n samples works as well as fE with n

√
log n samples. In

practice, we chose the amplification parameter t as log1−α n+ 1, where α ∈ {0.0, 0.1, 0.2, ..., 0.6}
was selected based on independent data, and similarly for s0. Since f∗ performed even better than
Theorem 1 guarantees, α ended up between 0 and 0.3 for all properties, indicating amplification even
beyond n

√
log n. Finally, to compensate the increase of t, in the computation of each coefficient hx,v

we substituted t by max
{
t/1.5v−1, 1.5

}
.

10.2 Experimental Results

With the exception of normalized support coverage, all other properties were tested on distributions
of support size k = 10,000 and number of samples, n, ranging from 1,000 to 100,000. Each
experiment was repeated 100 times and the reported results reflect their mean squared error (MSE).
The distributions shown in the graphs below are arranged in decreasing order of uniformity. In all
graphs, the vertical axis is the MSE over the 100 experiments, and the horizontal axis is log(n).

Shannon Entropy

For the Dirichlet-drawn and uniform distributions, all recent estimators outperformed the empirical
estimator, even when it was used with n log n samples. The best estimator depended on the distribu-
tion, but the new estimator f∗ performed best or essentially as well as the best for all six distributions.

Figure 1: Shannon Entropy
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Normalized Support Size

For the Dirichlet-drawn and uniform distributions, PML and the empirical estimators were best for
small n, with the new estimator next. For the remaining four distributions, empirical with n log n
samples was best, but among all estimators using n samples and even empirical with n

√
log n

samples, the new estimator was best.

Figure 2: Normalized Support Size
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Normalized Support Coverage

For this property the parameter m was set to 5,000. All the distributions have support size k = 1,000
and n, the number of samples, ranges from 1,000 to 3,000. The new estimator was essentially best
for all distributions.

Figure 3: Normalized Support Coverage
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Power Sum (0.75), or equivalently Rényi entropy with parameter 0.75

Again PML was best for the Dirichlet-drawn and uniform distributions, however, its performance was
not as stable as f∗. The new estimator performed as well as fE with n

√
log n samples in all cases

and matched fE with nlog n samples for half of the distributions.

Figure 4: Power Sum (0.75)
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Distance to Uniformity

The new estimator performed as well as fE with n log n samples in all cases. PML was the best
estimator for the Dirichlet-drawn and uniform distributions, but provided no improvement over the
n-sample empirical estimator for half of the distributions.

Figure 5: Distance to Uniformity
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