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Abstract

Training a neural network using backpropagation algorithm requires passing error
gradients sequentially through the network. The backward locking prevents us from
updating network layers in parallel and fully leveraging the computing resources.
Recently, there are several works trying to decouple and parallelize the backpropa-
gation algorithm. However, all of them suffer from severe accuracy loss or memory
explosion when the neural network is deep. To address these challenging issues,
we propose a novel parallel-objective formulation for the objective function of the
neural network. After that, we introduce features replay algorithm and prove that
it is guaranteed to converge to critical points for the non-convex problem under
certain conditions. Finally, we apply our method to training deep convolutional
neural networks, and the experimental results show that the proposed method
achieves faster convergence, lower memory consumption, and better generalization
error than compared methods.

1 Introduction

In recent years, the deep convolutional neural networks have made great breakthroughs in computer
vision [8, 10, 19, 20, 32, 33], natural language processing [15, 16, 31, 36], and reinforcement learning
[21, 23, 24, 25]. The growth of the depths of the neural networks is one of the most critical factors
contributing to the success of deep learning, which has been verified both in practice [8, 10] and
in theory [2, 7, 35]. Gradient-based methods are the major methods to train deep neural networks,
such as stochastic gradient descent (SGD) [29], ADAGRAD [6], RMSPROP [9] and ADAM [17].
As long as the loss functions are differentiable, we can compute the gradients of the networks using
backpropagation algorithm [30]. The backpropagation algorithm requires two passes of the neural
network, the forward pass to compute activations and the backward pass to compute gradients. As
shown in Figure 1 (BP), error gradients are repeatedly propagated from the top (output layer) all
the way back to the bottom (input layer) in the backward pass. The sequential propagation of the
error gradients is called backward locking because all layers of the network are locked until their
dependencies have executed. According to the benchmark report in [14], the computational time of
the backward pass is about twice of the computational time of the forward pass. When networks are
quite deep, backward locking becomes the bottleneck of making good use of computing resources,
preventing us from updating layers in parallel.

There are several works trying to break the backward locking in the backpropagation algorithm.
[4] and [34] avoid the backward locking by removing the backpropagation algorithm completely.
In [4], the authors proposed the method of auxiliary coordinates (MAC) and simplified the nested
functions by imposing quadratic penalties. Similarly, [34] used Lagrange multipliers to enforce
equality constraints between auxiliary variables and activations. Both of the reformulated problems
do not require backpropagation algorithm at all and are easy to be parallelized. However, neither of
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Figure 1: Illustrations of the backward pass of the backpropagation algorithm (BP) [30], decoupled
neural interface (DNI) [13] and decoupled parallel backpropagation (DDG) [11]. DNI breaks the
backward locking by synthesizing error gradients. DDG breaks the backward locking by storing stale
gradients.

them have been applied to training convolutional neural networks yet. There are also several works
breaking the dependencies between groups of layers or modules in the backpropagation algorithm.
In [13], the authors proposed to remove the backward locking by employing the decoupled neural
interface to approximate error gradients (Figure 1 DNI). [1, 27] broke the local dependencies between
successive layers and made all hidden layers receive error information from the output layer directly.
In the backward pass, we can use the synthetic gradients or the direct feedbacks to update the weights
of all modules without incurring any delay. However, these methods work poorly when the neural
networks use very deep architecture. In [11], the authors proposed decoupled parallel backpropagation
by using stale gradients, where modules are updated with the gradients from different timestamps
(Figure 1 DDG). However, it requires large amounts of memory to store the stale gradients and suffers
from the loss of accuracy.

In this paper, we propose feature replay algorithm which is free of the above three issues: backward
locking, memory explosion and accuracy loss. The main contributions of our work are summarized
as follows:

• Firstly, we propose a novel parallel-objective formulation for the objective function of the neural
networks in Section 3. Using this new formulation, we break the backward locking by introducing
features replay algorithm, which is easy to be parallelized.

• Secondly, we provide the theoretical analysis in Section 4 and prove that the proposed method is
guaranteed to converge to critical points for the non-convex problem under certain conditions.

• Finally, we validate our method with experiments on training deep convolutional neural net-
works in Section 5. Experimental results demonstrate that the proposed method achieves faster
convergence, lower memory consumption, and better generalization error than compared methods.

2 Background

We assume there is a feedforward neural network with L layers, where w = [w1, w2, ..., wL] ∈ Rd
denotes the weights of all layers. The computation in each layer can be represented as taking an input
hl−1 and producing an activation hl = Fl(hl−1;wl) using weight wl. Given a loss function f and
target y, we can formulate the objective function of the neural network f(w) as follows:

min
w

f(hL, y)

s.t. hl = Fl(hl−1;wl) for all l ∈ {1, 2, ..., L} (1)
where h0 denotes the input data x. By using stochastic gradient descent, the weights of the network
are updated in the direction of their negative gradients of the loss function following:

wt+1
l = wtl − γt · gtl for all l ∈ {1, 2, ..., L} (2)
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Figure 2: Backward pass of Features Replay Algorithm. We divide a 12-layer neural network into
four modules, where each module stores its input history and a stale error gradient from the upper
module. At each iteration, all modules compute the activations by inputting features from the history
and compute the gradients by applying the chain rule. After that, they receive the error gradients
from the upper modules for the next iteration.

where γt denotes the stepsize and gtl :=
∂fxt (w

t)

∂wt
l

denotes the gradient of the loss function (1)
regarding wtl with input samples xt. The backpropagation algorithm [30] is utilized to compute the
gradients for the neural networks. At iteration t, it requires two passes over the network: in the
forward pass, the activations of all layers are computed from the bottom layer l = 1 to the top layer
l = L following: htl = Fl(h

t
l−1;wtl ); in the backward pass, it applies the chain rule and propagates

error gradients through the network from the top layer l = L to the bottom layer l = 1 following:

∂fxt(wt)

∂wtl
=
∂htl
∂wtl

× ∂fxt(wt)

∂htl
and

∂fxt(wt)

∂htl−1
=

∂htl
∂htl−1

× ∂fxt(wt)

∂htl
. (3)

According to (3), computing gradients for the weights wl of the layer l is dependent on the error
gradient ∂fxt (w

t)

∂ht
l

from the layer l+ 1, which is known as backward locking. Therefore, the backward
locking prevents all layers from updating before receiving error gradients from dependent layers.
When the networks are deep, the backward locking becomes the bottleneck in the training process.

3 Features Replay

In this section, we propose a novel parallel-objective formulation for the objective function of the
neural networks. Using our new formulation, we break the backward locking in the backpropagation
algorithm by using features replay algorithm.

3.1 Problem Reformulation

As shown in Figure 2, we assume to divide an L-layer feedforward neural network into K modules
where K � L, such that w = [wG(1), wG(2), ..., wG(K)] ∈ Rd and G(k) denotes the layers in the
module k. Let Lk represent the last layer of the module k, the output of this module can be written
as hLk

. The error gradient variable is denoted as δtk , which is used for the gradient computation of
the module k. We can split the problem (1) into K subproblems. The task of the module k (except

k = K) is minimizing the least square error between the error gradient variable δtk and
∂fht

Lk

(wt)

∂ht
Lk

which is the gradient of the loss function regarding htLk
with input htLk

into the module k + 1, and
the task of the module K is minimizing the loss between the prediction htLK

and the real label yt.
From this point of view, we propose a novel parallel-objective loss function at iteration t as follows:

min
w,δ

K−1∑
k=1

∥∥∥∥∥δtk − ∂fht
Lk

(wt)

∂htLk

∥∥∥∥∥
2

2

+ f
(
htLK

, yt
)

s.t. htLk
= FG(k)(h

t
Lk−1

;wtG(k)) for all k ∈ {1, ...,K}, (4)
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Algorithm 1 Features Replay Algorithm

1: Initialize: weights w0 = [w0
G(1), ..., w

0
G(K)] ∈ Rd and stepsize sequence {γt};

2: for t = 0, 1, 2, . . . , T − 1 do
3: Sample mini-batch (xt, yt) from the dataset and let htL0

= xt;
4: for k = 1, . . . ,K do
5: Store htLk−1

in the memory;

6: Compute htLk
following htLk

= FG(k)

(
htLk−1

;wtG(k)

)
; ← Play


Forward
pass

7: Send htLk
to the module k + 1 if k < K;

8: end for
9: Compute loss f(wt) = f

(
htLK

, yt
)
;

10: for k = 1, . . . ,K in parallel do
11: Compute h̃tLk

following h̃tLk
= FG(k)(h

t+k−K
Lk−1

;wtG(k)); ← Replay
12: Compute gradient gtG(k) following (7);


Backward
pass

13: Update weights: wt+1
G(k) = wtG(k) − γt · g

t
G(k);

14: Send
∂f

h
t+k−K
Lk−1

(wt)

∂ht+k−K
Lk−1

to the module k − 1 if k > 1;

15: end for
16: end for

where htL0
denotes the input data xt. It is obvious that the optimal solution for the left term of the

problem (4) is δtk =
∂fht

Lk

(wt)

∂ht
Lk

, for all k ∈ {1, ...,K − 1}. In other words, the optimal solution of

the module k is dependent on the output of the upper modules. Therefore, minimizing the problem
(1) with the backpropagation algorithm is equivalent to minimizing the problem (4) with the first
K − 1 subproblems obtaining optimal solutions.

3.2 Breaking Dependencies by Replaying Features

Features replay algorithm is introduced in Algorithm 1. In the forward pass, immediate features are
generated and passed through the network, and the module k keeps a history of its input with size
K−k+1. To break the dependencies between modules in the backward pass, we propose to compute
the gradients of the modules using immediate features from different timestamps. Features replay
denotes that immediate feature ht+k−KLk−1

is input into the module k for the first time in the forward
pass at iteration t+ k−K, and it is input into the module k for the second time in the backward pass
at iteration t. If t+ k −K < 0, we set ht+k−KLk−1

= 0 . Therefore, the new problem can be written as:

min
w,δ

K−1∑
k=1

∥∥∥∥∥δtk − ∂fh̃t
Lk

(wt)

∂h̃tLk

∥∥∥∥∥
2

2

+ f(h̃tLK
, yt)

s.t. h̃tLk
= FG(k)(h

t+k−K
Lk−1

;wtG(k)) for all k ∈ {1, ...,K}. (5)

where
∂fh̃t

Lk

(wt)

∂h̃t
Lk

denotes the gradient of the loss f(wt) regarding h̃tLk
with input h̃tLk

into the

module k + 1. It is important to note that it is not necessary to get the optimal solutions for the
first K − 1 subproblems while we do not compute the optimal solution for the last subproblem. To
avoid the tedious computation, we make a trade-off between the error of the left term in (5) and the
computational time by making:

δtk =
∂fht+k−K

Lk

(wt−1)

∂ht+k−KLk

for all k ∈ {1, ...,K − 1}, (6)

where
∂f

h
t+k−K
Lk

(wt−1)

∂ht+k−K
Lk

denotes the gradient of the loss f(wt−1) regarding ht+k−KLk
with in-

put ht+k−KLk
into the module k + 1 at the previous iteration. Assuming the algorithm has
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converged as t → ∞, we have wt ≈ wt−1 ≈ wt+k−K such that h̃tLk
≈ ht+k−KLk

and∥∥∥∥∥∂fht+k−K
Lk

(wt−1)

∂ht+k−K
Lk

−
∂fh̃t

Lk

(wt)

∂h̃t
Lk

∥∥∥∥∥
2

2

≈ 0 for all k ∈ {1, ...,K − 1}. Therefore, (6) is a reasonable

approximation of the optimal solutions to the first K − 1 subproblems in (5). In this way, we break
the backward locking in the backpropagation algorithm because the error gradient variable δtk can
be determined at the previous iteration t− 1 such that all modules are independent of each other at
iteration t. Additionally, we compute the gradients inside each module following:

∂fht+k−K
Lk−1

(wt)

∂wtl
=
∂h̃tLk

∂wtl
× δtk and

∂fht+k−K
Lk−1

(wt)

∂h̃tl
=
∂h̃tLk

∂h̃tl
× δtk, (7)

where l ∈ G(k). At the end of each iteration, the module k sends
∂f

h
t+k−K
Lk−1

(wt)

∂ht+k−K
Lk−1

to module k − 1 for

the computation of the next iteration.

4 Convergence Analysis

In this section, we provide theoretical analysis for Algorithm 1. Analyzing the convergence of the
problem (5) directly is difficult, as it involves the variables of different timestamps. Instead, we solve
this problem by building a connection between the gradients of Algorithm 1 and stochastic gradient
descent in Assumption 1, and prove that the proposed method is guaranteed to converge to critical
points for the non-convex problem (1).

Assumption 1 (Sufficient direction) We assume that the expectation of the descent direction

E
[
K∑
k=1

gtG(k)

]
in Algorithm 1 is a sufficient descent direction of the loss f(wt) regarding wt. Let

∇f(wt) denote the full gradient of the loss, there exists a constant σ > 0 such that,〈
∇f(wt),E

[
K∑
k=1

gtG(k)

]〉
≥ σ‖∇f(wt)‖22. (8)

Sufficient direction assumption guarantees that the model is moving towards the descending direction
of the loss function.

Assumption 2 Throughout this paper, we make two assumptions following [3]:
• (Lipschitz-continuous gradient) The gradient of f is Lipschitz continuous with a constant L > 0,
such that for any w1, w2 ∈ Rd, it is satisfied that ‖∇f(w1)−∇f(w2)‖2 ≤ L‖w1 − w2‖2.
• (Bounded variance) We assume that the second moment of the descent direction in Algorithm 1 is

upper bounded. There exists a constant M ≥ 0 such that E
∥∥∥∥ K∑
k=1

gtG(k)

∥∥∥∥2
2

≤M.

According to the equation regarding variance E ‖ξ − E [ξ]‖22 = E ‖ξ‖22−‖E [ξ]‖22 , the variance of the

descent direction E
∥∥∥∥ K∑
k=1

gtG(k) − E
[
K∑
k=1

gtG(k)

]∥∥∥∥2
2

is guaranteed to be less than M . According to the

above assumptions, we prove the convergence rate for the proposed method under two circumstances
of γt. Firstly, we analyze the convergence for Algorithm 1 when γt is fixed and prove that the
learned model will converge sub-linearly to the neighborhood of the critical points for the non-convex
problem.

Theorem 1 Assume that Assumptions 1 and 2 hold, and the fixed stepsize sequence {γt} satisfies
γt = γ for all t ∈ {0, 1, ..., T − 1}. In addition, we assume w∗ to be the optimal solution to f(w).
Then, the output of Algorithm 1 satisfies that:

1

T

T−1∑
t=0

E
∥∥∇f(wt)

∥∥2
2
≤ f(w0)− f(w∗)

σγT
+
γLM

2σ
. (9)
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Figure 3: Sufficient direction constant σ for ResNet164 and ResNet101 on CIFAR-10.

Therefore, the best solution we can obtain is controlled by γLM
2σ . We also prove that Algorithm 1 can

guarantee the convergence to critical points for the non-convex problem, as long as the diminishing
stepsizes satisfy the requirements in [29] such that:

lim
T→∞

T−1∑
t=0

γt =∞ and lim
T→∞

T−1∑
t=0

γ2t <∞. (10)

Theorem 2 Assume that Assumptions 1 and 2 hold and the diminishing stepsize sequence {γt}

satisfies (10). In addition, we assume w∗ to be the optimal solution to f(w). Setting ΓT =
T−1∑
t=0

γt,

then the output of Algorithm 1 satisfies that:

1

ΓT

T−1∑
t=0

γtE
∥∥∇f(wt)

∥∥2
2
≤ f(w0)− f(w∗)

σΓT
+
LM

2σ

T−1∑
t=0

γ2t

ΓT
. (11)

Remark 1 Suppose ws is chosen randomly from {wt}T−1t=0 with probabilities proportional to
{γt}T−1t=0 . According to Theorem 2, we can prove that Algorithm 1 guarantees convergence to
critical points for the non-convex problem:

lim
s→∞

E‖∇f(ws)‖22 = 0 . (12)

5 Experiments

In this section, we validate our method with experiments training deep convolutional neural networks.
Experimental results show that the proposed method achieves faster convergence, lower memory
consumption and better generalization error than compared methods.

5.1 Experimental Setting

Implementations: We implement our method in PyTorch [28], and evaluate it with ResNet models
[8] on two image classification benchmark datasets: CIFAR-10 and CIFAR-100 [18]. We adopt
the standard data augmentation techniques in [8, 10, 22] for training these two datasets: random
cropping, random horizontal flipping and normalizing. We use SGD with the momentum of 0.9, and
the stepsize is initialized to 0.01. Each model is trained using batch size 128 for 300 epochs and
the stepsize is divided by a factor of 10 at 150 and 225 epochs. The weight decay constant is set to
5× 10−4. In the experiment, a neural network with K modules is sequentially distributed across K
GPUs. All experiments are performed on a server with four Titan X GPUs.

Compared Methods: We compare the performance of four methods in the experiments, including:

• BP: we use the backpropagation algorithm [30] in PyTorch Library.
• DNI: we implement the decoupled neural interface in [13]. Following [13], the synthetic network

6



0 50 100 150 200 250 300

Epoch 

10
-3

10
-2

10
-1

10
0

10
1

L
o

s
s

CIFAR-10 (ResNet164)

BP Train

DDG Train K=4

FR Train K=2

FR Train K=3

FR Train K=4

DNI Train K=4

BP Test

DDG Test K=4

FR Test K=2

FR Test K=3

FR Test K=4

DNI Test K=4

0 50 100 150 200 250 300

Epoch 

10
-3

10
-2

10
-1

10
0

10
1

L
o

s
s

CIFAR-10 (ResNet101)

BP Train

DDG Train K=4

FR Train K=2

FR Train K=3

FR Train K=4

BP Test

DDG Test K=4

FR Test K=2

FR Test K=3

FR Test K=4

0 50 100 150 200 250 300

Epoch 

10
-3

10
-2

10
-1

10
0

10
1

L
o

s
s

CIFAR-10 (ResNet152)

BP Train

DDG Train K=4

FR Train K=2

FR Train K=3

FR Train K=4

BP Test

DDG Test K=4

FR Test K=2

FR Test K=3

FR Test K=4

Figure 4: Training and testing curves for ResNet-164, ResNet101 and ResNet152 on CIFAR-10. Row
1 and row 2 present the convergence of the loss function regrading epochs and computational time
respectively. Because DNI diverges for all models, we only plot the result of DNI for ResNet164.

has two hidden convolutional layers with 5× 5 filters, padding of size 2, batch-normalization [12]
and ReLU [26]. The output layer is a convolutional layer with 5× 5 filters and padding size of 2.
• DDG: we implement the decoupled parallel backpropagation in [11].
• FR: features replay algorithm in Algorithm 1.

5.2 Sufficient Direction

We demonstrate that the proposed method satisfies Assumption 1 empirically. In the experiment,
we divide ResNet164 and ResNet 101 into 4 modules and visualize the variations of the sufficient
direction constant σ during the training period in Figure 3. Firstly, it is obvious that the values of
σ of these modules are larger than 0 all the time. Therefore, Assumption 1 is satisfied such that
Algorithm 1 is guaranteed to converge to the critical points for the non-convex problem. Secondly,
we can observe that the values of σ of the lower modules are relatively small at the first half epochs,
and become close to 1 afterwards. The variation of σ indicates the difference between the descent
direction of FR and the steepest descent direction. Small σ at early epochs can help the method
escape from saddle points and find better local minimum; large σ at the final epochs can prevent the
method from diverging. In the following context, we will show that our method has better generation
error than compared methods.

5.3 Performance Comparisons

To evaluate the performance of the compared methods, we utilize three criterion in the experiment
including convergence speed, memory consumption, and generalization error.

Faster Convergence: In the experiments, we evaluate the compared methods with three ResNet
models: ResNet164 with the basic building block, ResNet101 and ResNet152 with the bottleneck
building block [8]. The performances of the compared methods on CIFAR-10 are shown in Figure
4. There are several nontrivial observations as follows: Firstly, DNI cannot converge for all models.
The synthesizer network in [13] is so small that it cannot learn an accurate approximation of the
error gradient when the network is deep. Secondly, DDG cannot converge for the model ResNet152
when we set K = 4. The stale gradients can impose noise in the optimization and lead to divergence.
Thirdly, our method converges much faster than BP when we increase the number of modules. In the
experiment, the proposed method FR can achieve a speedup of up to 2 times compared to BP. We do
not consider data parallelism for BP in this section. In the supplementary material, we show that our
method also converges faster than BP with data parallelism.
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Figure 5: Memory consumption for
ResNet164, ResNet101 and ResNet152.
We do not report the memory consumption of
DNI because it does not converge. DDG also
diverges when K = 3, 4 for ResNet152.

Algorithm Backward Memory
Locking (Activations)

BP [30] yes O(L)
DNI [13] no O(L+KLs)
DDG [11] no O(LK +K2)

FR no O(L+K2)

Table 1: Comparisons of memory consumption
of the neural network with L layers, which is
divided into K modules and L� K. We use
O(L) to represent the memory consumption
of the activations. For DNI, each gradient syn-
thesizer has Ls layers. From the experiments,
it is reasonable to assume that Ls � K to
make the algorithm converge. The memory
consumed by the weights is negligible com-
pared to the activations.

Lower Memory Consumption: In Figure 5, we present the memory consumption of the compared
methods for three models when we vary the number of modules K. We do not consider DNI because
it does not converge for all models. It is evident that the memory consumptions of FR and BP are
very close. On the contrary, when K = 4, the memory consumption of DDG is more than two times
of the memory consumption of BP. The observations in the experiment are also consistent with the
analysis in Table 1. For DNI, since a three-layer synthesizer network cannot converge, it is reasonable
to assume that Ls should be large if the network is very deep. We do not explore it because it is out
of the scope of this paper. We always set K very small such that K � L and K � Ls. FR can still
obtain a good speedup when K is very small according to the second row in Figure 4.

Model CIFAR [18] BP [30] DDG [11] FR

ResNet164 C-10 6.40 6.45 6.03
C-100 28.53 28.51 27.34

ResNet101 C-10 5.25 5.35 4.97
C-100 23.48 24.25 23.10

ResNet152 C-10 5.26 5.72 4.91
C-100 25.20 26.39 23.61

Table 2: Best testing error rates (%) of the compared methods on
CIFAR-10 and CIFAR-100 datasets. For DDG and FR, we set
K = 2 in the experiment.

Better Generalization Error:
Table 2 shows the best testing er-
ror rates for the compared meth-
ods. We do not report the result
of DNI because it does not con-
verge. We can observe that FR
always obtains better testing error
rates than other two methods BP
and DDG by a large margin. We
think it is related to the variation
of the sufficient descent constant
σ. Small σ at the early epochs
help FR escape saddle points and
find better local minimum, large
σ at the final epochs prevent FR from diverging. DDG usually performs worse than BP because
the stale gradients impose noise in the optimization, which is commonly observed in asynchronous
algorithms with stale gradients [5].

6 Conclusion

In this paper, we proposed a novel parallel-objective formulation for the objective function of the
neural network and broke the backward locking using a new features replay algorithm. Besides
the new algorithms, our theoretical contributions include analyzing the convergence property of
the proposed method and proving that our new algorithm is guaranteed to converge to critical
points for the non-convex problem under certain conditions. We conducted experiments with deep
convolutional neural networks on two image classification datasets, and all experimental results verify
that the proposed method can achieve faster convergence, lower memory consumption, and better
generalization error than compared methods.
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