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Abstract

We combine Recurrent Neural Networks with Tensor Product Representations to
learn combinatorial representations of sequential data. This improves symbolic
interpretation and systematic generalisation. Our architecture is trained end-to-end
through gradient descent on a variety of simple natural language reasoning tasks,
significantly outperforming the latest state-of-the-art models in single-task and
all-tasks settings. We also augment a subset of the data such that training and test
data exhibit large systematic differences and show that our approach generalises
better than the previous state-of-the-art.

1 Introduction

Certain connectionist architectures based on Recurrent Neural Networks (RNNs) [[1-3] such as the
Long Short-Term Memory (LSTM) [4}15] are general computers, e.g., [6]. LSTM-based systems
achieved breakthroughs in various speech and Natural Language Processing tasks [[7-9]]. Unlike
humans, however, current RNNs cannot easily extract symbolic rules from experience and apply
them to novel instances in a systematic way [10, |[11]]. They are catastrophically affected by systematic
[L0, [11] differences between training and test data [12H15].

In particular, standard RNNs have performed poorly at natural language reasoning (NLR) [16]] where
systematic generalisation (such as rule-like extrapolation) is essential. Consider a network trained
on a variety of NLR tasks involving short stories about multiple entities. One task could be about
tracking entity locations (/...] Mary went to the office. [...] Where is Mary?), another about tracking
objects that people are holding (/...] Daniel picks up the milk. [...] What is Daniel holding?). If
every person is able to perform every task, this will open up a large number of possible person-task
pairs. Now suppose that during training we only have stories from a small subset of all possible pairs.
More specifically, let us assume Mary is never seen picking up or dropping any item. Unlike during
training, we want to test on tasks such as [...] Mary picks up the milk. [...] What is Mary carrying?.
In this case, the training and test data exhibit systematic differences. Nevertheless, a systematic
model should be able to infer milk because it has adopted a rule-like, entity-independent reasoning
pattern that generalises beyond the training distribution. RNNs, however, tend to fail to learn such
patterns if the train and test data exhibit such differences.

Here we aim at improving systematic generalisation by learning to deconstruct natural language
statements into combinatorial representations [[17]. We propose a new architecture based on the
Tensor Product Representation (TPR) [18]], a general method for embedding symbolic structures in a
vector space.

Previous work already showed that TPRs allow for powerful symbolic processing with distributed
representations [18]], given certain manual assignments of the vector space embedding. However,
TPRs have commonly not been trained from data through gradient descent. Here we combine
gradient-based RNNs with third-order TPRs to learn combinatorial representations from natural
language, training the entire system on NLR tasks via error backpropagation [[19-21]]. We point
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out similarities to systems with Fast Weights [22124], in particular, end-to-end-differentiable Fast
Weight systems [25-27]. In experiments, we achieve state-of-the-art results on the bAbI dataset
[L6], obtaining better systematic generalisation than other methods. We also analyse the emerging
combinatorial and, to some extent, interpretable representations. The code we used to train and
evaluate our models is available at |github.com/ischlag/TPR-RNN.

2 Review of the Tensor Product Representation and Notation

The TPR method is a mechanism to create a vector-space embedding of symbolic structures. To
illustrate, consider the relation implicit in the short sentences "Kitty the cat" and "Mary the person".
In order to store this structure into a TPR of order 2, each sentence has to be decomposed into
two components by choosing a so-called filler symbol f € F and a role symbol r € R. Now a
possible set of fillers and roles for a unique role/filler decomposition could be F = {Kitty, Mary}
and R = {Cat,Person}. The two relations are then described by the set of filler/role bindings:
{Kitty/Cat, Mary/Person}. Let d, n, j, k denote positive integers. A distributed representation is then
achieved by encoding each filler symbol f by a filler vector f in a vector space Vr and each role
symbol r by a role vector r in a vector space V. In this work, every vector space is over R%, d > 1.
The TPR of the symbolic structures is defined as the tensor T in a vector space Vr ® Vg where ®
is the tensor product operator. In this example the tensor is of order 2, a matrix, which allows us to
write the equation of our example using matrix multiplication:

T T
T = fKitty & rea + fMary & Tperson = fKitteral + fMarererson (1)

Here, the tensor product — or generalised outer product — acts as a variable binding operator. The
final TPR representation is a superposition of all bindings via the element-wise addition.

In the TPR method the so-called unbinding operator consists of the tensor inner product which is
used to exactly reconstruct previously stored variables from T using an unbinding vector. Recall that
the algebraic definition of the dot product of two vectors f = (f1; fo;...; fn) and v = (r1;72; ...; 1)
is defined by the sum of the pairwise products of the elements of f and r. Equivalently, the tensor
inner product e;;, can be expressed through the order increasing tensor product followed by the sum
of the pairwise products of the elements of the j-th and k-th order.

n n

f o' = Z(f X r)ii = Z(fI‘T)“‘ = ifzr, =f-r (2)
i=1

i=1 i=1

Given now the unbinding vector uc,, we can then retrieve the stored filler fx;yy. In the simplest case,
if the role vectors are orthonormal, the unbinding vector uc, equals rcy. Again, for a TPR of order 2
the unbinding operation can also be expressed using matrix multiplication.

T ¢33 ucyy = Tucy = fKitty 3)

Note how the dot product and matrix multiplication are special cases of the tensor inner product. We
will later use the tensor inner product 34 which can be used with a tensor of order 3 (a cube) and a
tensor of order 1 (a vector) such that they result in a tensor of order 2 (a matrix). Other aspects of
the TPR method are not essential for this paper. For further details, we refer to Smolensky’s work
(18281 29].

3 The TPR as a Structural Bias for Combinatorial Representations

A drawback of Smolensky’s TPR method is that the decomposition of the symbolic structures into
structural elements — e.g. f and r in our previous example — are not learned but externally defined.
Similarly, the distributed representations f and r are assigned manually instead of being learned from
data, yielding arguments against the TPR as a connectionist theory of cognition [30]].

Here we aim at overcoming these limitations by recognising the TPR as a form of Fast Weight
memory which uses multi-layer perceptron (MLP) based neural networks trained end-to-end by
stochastic gradient descent. Previous outer product-based Fast Weights [26], which share strong
similarities to TPRs of order 2, have shown to be powerful associative memory mechanisms [31}27].
Inspired by this capability, we use a graph interpretation of the memory where the representations of
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a node and an edge allow for the associative retrieval of a neighbouring node. For the context of this
work, we refer to the nodes of such a graph as entities and to the edges as relations. This requires
MLPs which deconstruct an input sentence into the source-entity f, the relation r, and the target-entity
t such that f and t belong to the vector space Vgnity and r to Vreiation. These representations are then
bound together with the binding operator and stored as a TPR of order 3 where we interpret multiple
unbindings as a form of graph traversal.

We’ll use a simple example to illustrate the idea. For instance, consider the following raw input:
"Mary went to the kitchen.". A possible three-way task-specific decomposition could be fiyfary, Fis-ats
and tyichen. At a later point in time, a question like "Where is Mary?" would have to be decomposed
into the vector representations Nnary € Ventity and lyhere-is € VRelation- The vectors Nivary and lynere-is
have to be similar to the true unbinding vectors Nyfary = Umary aNd Lyhere-is /& Uis-ac in Order to retrieve
the previously stored but possibly noisy tichen-

We chose a graph interpretation of the memory due to its generality as it can be found implicitly in
the data of many problems. Another important property of a graph inspired neural memory is the
combinatorial nature of entities and relations in the sense that any entity can be connected through
any relation to any other entity. If the MLPs can disentangle entity-like information from relation-like
information, the TPR will provide a simple mechanism to combine them in arbitrary ways. This
means that if there is enough data for the network to learn specific entity representations such as
fjonn € VEniy then it should not require any more data or training to combine fjo,, with any of the
learned vectors embedded in Vrelation €ven though such examples have never been covered by the
training data. In Section [7] we analyse a trained model and present results which indicate that it
indeed seems to learn representations in line with this perspective.

4 Proposed Method

RNNSs can implement algorithms which map input sequences to output sequences. A traditional
RNN uses one or several tensors of order 1 (i.e. a vector usually referred to as the hidden state) to
encode the information of the past sequence elements necessary to infer the correct current and future
outputs. Our architecture is a non-traditional RNN encoding relevant information from the preceding
sequence elements in a TPR F of order 3.

At discrete time ¢,0 < ¢ < T, in the input sequence of varying length 7', the previous state F;_; is
updated by the element-wise addition of an update representation AF'.

F; < Fi 1+ AF, “4)

The proposed architecture is separated into three parts: an input, update, and inference module. The
update module produces AF,; while the inference module uses F'; as parameters (Fast Weights) to
compute the output g, of the model given a question as input. F is the zero tensor.

Input Module Similar to previous work, our model also iterates over a sequence of sentences and
uses an input module to learn a sentence representation from a sequence of words [32]]. Let the input
to the architecture at time ¢ be a sentence of k£ words with learned embeddings {d1, ..., d;}. The
sequence is then compressed into a vector representation s; by

k
se=>» d; Opi, 5)
i=1

where {p1, ..., px } are learned position vectors that are equivalent for all input sequences and @ is
the Hadamard product. The vectors s, and p are in the vector space Vsympol-

Update Module The TPR update AF; is defined as the element-wise sum of the tensors produced
by a write, move, and backlink function. We abbreviate the respective tensors as W, M, and B and
refer to them as memory operations.

AF, = W, +M, + B, 6)



To this end, two entity and three relation representations are computed from the sentence representa-
tion s; using five separate networks such that

el = fow (4;00), 1 < i < 3 (7)
rf) = feo (s636,00): 1 < j < 4 ®)
where f is an MLP network and 6 its weights.
The write operation allows for the storage of a new node-edge-node association (e,gl), r,gl), e§2>)

(2)

§1) represents the source entity, e,”” represents the target entity,

using the tensor product where e
and rgl) the relation connecting them. To avoid superimposing the new association onto a possibly

already existing association (egl), rgl), W), the previous target entity w; has to be retrieved and

subtracted from the TPR. If no such association exists, then W, will ideally be the zero vector.
Wi = (Frossef)) oy r!) ©)

W, = (et @r) @ W) + (e} @1 @ ) (10)

While the write operation removes the previous target entity representation W, the move operation

allows to rewrite w; back into the TPR with a different relation r§2). Similar to the write operation,

we have to retrieve and remove the previous target entity m; that would otherwise interfere.
1y, = (Fy e3s €)) eng 1y (11)
M, = —(e() @ @) + (el @ rl? @ W) (12)

The final operation is the backlink. It switches source and target entities and connects them with yet

another relation rgs). This allows for the associative retrieval of the neighbouring entity starting from

write operation

—(eMart) w) +(eV @rt) gel)
oW .6(2)
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Figure 1: Illustration of our memory operations for a single time-step given some previous state. Each
arrow is represented by a tensor of order 3. The superposition of multiple tensors defines the current
graph. Red arrows are subtracted from the state while green arrows are added. In this illustration, w
exists but 1 and b do not yet — they are zero vectors. Hence, the two constructed third-order tensors
that are subtracted according to the move and backlink operation will both be zero tensors as well.
Note that the associations are not necessarily as discrete as illustrated. Best viewed in color.



either one but with different relations (e.g. John is left of Mary and Mary is right of John).
b, = (F; 34 e§2)) *23 rﬁ‘” (13)
B; = —(e,(f) ® rg?’) ® Bt) + (e§2) ® rig) ® egl)) (14)

Inference Module One of our experiments requires a single prediction after the last element of an
observed sequence (i.e. the last sentence). This final element is the question sentence representation
sq. Since the inference module does not edit the TPR memory, it is sufficient to compute the
prediction only when necessary. Hence we drop index ¢ in the following equations. Similar to the
update module, first an entity n and a set of relations 1; are extracted from the current sentence using
four different networks.

n— fn(SQ;en) (15)
I = fi,(sq;6h,),1<j<4 (16)

The extracted representations are used to retrieve one or several 33 n
previously stored associations by providing the necessary unbind- '
ing vectors. The values of the TPR can be thought of as context- 1
specific weights which are not trained by gradient descent but
constructed incrementally during inference. They define a func-

k_.\-

tion that takes the entity n and relations 1; as an input. A simple

l(i})
illustration of this process is shown in Figure[2] He)

12 )
The most basic retrieval requires one source entity n and one rela- '/
tion 1; to extract the first target entity. We refer to this retrieval as ®

a one-step inference i) and use the additional extracted relations

to compute multi-step inferences. Here LN refers to layer normal- Figure 2: Illustration of the in-
ization [33]] which includes a learned scaling and shifting scalar. ference procedure. Given an en-
As in other Fast Weight work, LN improves our training proce- tity and three relations (blue) we
dure which is possibly due to making the optimization landscape can extract the inferred represen-

smoother [34]. tations 7(1:3) (yellow).
i) = LN((F; o34 n) 023 11)) 7)
i(Z) = LN((F{» ®34 i(l)) ®953 1(2>> (18)
i) = LN((Fy 034 1) 09313)) (19)

Finally, the output ¥ of our architecture consists of the sum of the three previous inference steps
followed by a linear projection Z into the symbol space Vsymbois Where a softmax transforms the
activations into a probability distribution over all words from the vocabulary of the current task.

3
vy = softmax(Z Z i) (20)

1=1
5 Related Work

To our knowledge, the proposed method is the first Fast Weight architecture with a TPR or tensor
of order 3 trained on raw data by backpropagation [19-21]. It is inspired by an earlier, adaptive,
backpropagation-trained, end-to-end-differentiable, outer product-based, Fast Weight RNN architec-
ture with a tensor of order 2 (1993) [26]. The latter in turn was partially inspired by previous ideas,
most notably Hebbian learning [35]]. Variations of such outer product-based Fast Weights were able
to generalise in a variety of small but complex sequence problems where standard RNNs tend to
perform poorly [31} 127, 136]. Compare also early work on differentiable control of Fast Weights [37].

Previous work also utilised TPRs of order 2 for simpler associations in the context of image-caption
generation [38]], question-answering [39]], and general NLP [40] challenges with a gradient-based
optimizer similar to ours.

Given the sequence of sentences of one sample, our method produces a final tensor of order 3 that
represents the current task-relevant state of the story. Unfolded across time, the MLP representations



can to some extent be related to components of a canonical polyadic decomposition (CPD, [41]]).
Over recent years, CPD and various other tensor decomposition methods have shown to be a powerful
tool for a variety of Machine Learning problems [42]]. Consider, e.g., recent work which applies the
tensor-train decomposition to RNNs [43] 144].

RNNs are popular choices for modelling natural language. Despite ongoing research in RNN
architectures, the good old LSTM [4] has been shown to outperform more recent variants [45] on
standard language modelling datasets. However, such networks do not perform well in NLR tasks
such as question answering [16]]. Recent progress came through the addition of memory and attention
components to RNNs. For the context of question answering, a popular line of research are memory
networks [46H550]. But it remains unclear whether mistakes in trained models arise from imperfect
logical reasoning, knowledge representation, or insufficient data due to the difficulty of interpreting
their internal representations [51]].

Some early memory-augmented RNNs focused primarily on improving the ratio of the number of
trainable parameters to memory size [26]. The Neural Turing Machine [52] was among the first
models with an attention mechanism over external memory that outperformed standard LSTM on
tasks such as copying and sorting. The Differentiable Neural Computer (DNC) further refined this
approach [53},154], yielding strong performance also on question-answering problems.

6 Experiments

We evaluate our architecture on bADbI tasks,
a set of 20 different synthetic question-
answering tasks designed to evaluate NLR
systems such as intelligent dialogue agents
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We experiment with two models. The single-
task model is only trained and tested on the
data from one task but uses the same computa-

Figure 3: Training accuracy on all bAbI tasks over
the first 600k iterations. All our all-tasks models
achieve <5% error in 48 hours (i.e. 250k steps).
We stopped training our own implementation of the
DNC [53] after roughly 7 days (600k steps) and in-
stead compare accuracy in Table[I|using previously

tional graph and hyper-parameters for all. The ~published results.
all-tasks model is a scaled up version trained
and tested on all tasks simultaneously, using only the default hyper-parameters. More details such as

specific hyper-parameters can be found in Appendix

In Table [T] and [2] we compare our model to various state-of-the-art models in the literature. We
added best results for a better comparison to earlier work which did not provide statistics generated
from multiple runs. Our system outperforms the state-of-the-art in both settings. We also seem to
outperform the DNC in convergence speed as shown in Figure 3]

Table 1: Mean and variance of the test error for the all-task setting. We perform early stopping
according to the validation set. Our statistics are generated from 10 runs.

Task REN [55] DNC[53] SDNC [54] TPR-RNN (ours)
AvgError  9.7+26 128+47 64+25 1.34 £ 0.52
Failure (>5%) 5+12 82425 41+16 0.86 + 1.11




Table 2: Mean and variance of the test error for the single-task setting. We perform early stopping
according to the validation set. Statistics are generated from 5 runs. We added best results for
comparison with previous work. Note that only our results for task 19 are unstable where different
seeds either converge with perfect accuracy or fall into a local minimum. It is not clear how much
previous work is affected by such issues.

Task LSTM [48] N2N [48] DMN+ [50] REN [55] TPR-RNN (ours)
best best best best best mean
1 0.0 0.0 0.0 0.0 0.0 0.02 4+ 0.05
2 81.9 0.3 0.3 0.1 0.0 0.06 &+ 0.09
3 83.1 2.1 1.1 4.1 1.2 1.78 £ 0.58
4 0.2 0.0 0.0 0.0 0.0 0.02 & 0.04
5 1.2 0.8 0.5 0.3 0.5 0.61 +0.17
6 51.8 0.1 0.0 0.2 0.0 0.22 +0.19
7 24.9 2.0 2.4 0.0 0.5 2.78 + 1.81
8 34.1 0.9 0.0 0.5 0.1 0.47 £0.45
9 20.2 0.3 0.0 0.1 0.0 0.14 £ 0.13
10 30.1 0.0 0.0 0.6 0.3 1.24 +1.30
11 10.3 0.0 0.0 0.3 0.0 0.14 +0.11
12 234 0.0 0.0 0.0 0.0 0.04 4+ 0.05
13 6.1 0.0 0.0 1.3 0.3 0.42 +0.11
14 81.0 0.2 0.2 0.0 0.0 0.24 +0.29
15 78.7 0.0 0.0 0.0 0.0 0.0 £0.0
16 51.9 51.8 45.3 0.2 0.0 0.02 + 0.045
17 50.1 18.6 4.2 0.5 04 0.9 £+ 0.69
18 6.8 5.3 2.1 0.3 0.1 0.64 +0.33
19 31.9 2.3 0.0 2.3 00 12.64+17.39
20 0.0 0.0 0.0 0.0 0.0 0.0 £ 0.00
Avg Error 36.4 42 2.8 0.5 0.17 .12+ 1.19
Failure (>5%) 16 3 1 0 0 0.4 £0.55

Table 3: Summary results of the ablation experiments. We experimented with 3 variations of memory
operations in order to analyse their necessity with regards to single-task performance. The results
indicate that the move operation is in general less important than the backlink operation.

Operations  Failed tasks (err > 5%)

W 3,6,9,10,12,13,17, 19
W +M 9,10, 13,17
W +B 3

Ablation Study We ran ablation experiments on every task to assess the necessity of the three
memory operations. The experimental results in Table 3|indicate that a majority of the tasks can be
solved by the write operation alone. This is surprising at first because for some of those tasks the
symbolic operations that a person might think of as ideal typically require more complex steps than
what the write operation allows for. However, the optimizer seems to be able to find representations
that overcome the limitations of the architecture. That said, more complex tasks do benefit from the
additional operations without affecting the performance on simpler tasks.

7 Analysis

Here we analyse the representations produced by the MLPs of the update module. We collect
the set of unique sentences across all stories from the validation set of a task and compute their
respective entity and relation representations e(*), ), r() r(2) and r(®. For each representation
we then hierarchically cluster all sentences based on their cosine similarity. In Figure ] we show
such similarity matrices for a model trained on task 3. The image based on e(!) shows 4 distinct
clusters which indicate that learned representations are almost perfectly orthogonal. By comparing the
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Figure 4: The hierarchically clustered similarity matrices of all unique sentences of the validation set
of task 3. We compute one similarity matrix for each representation produced by the update module
using the cosine similarity measure for clustering.

sentences from different clusters it becomes apparent that they represent the four entities independent
of other factors. Note that the dimensionality of this vector space is 15 which seems larger than
necessary for this task.

In the case of r(1) we observe that sentences seem to group into three, albeit less distinct, clusters.
In this task, the structure in the data implies three important events for any entity: moving to any
location, bind with any object, and unbind from a previously bound object; all three represented by
a variety of possible words and phrases. By comparing sentences from different clusters, we can
clearly associate them with the three general types of events.

We observed clusters of similar discreteness in all tasks; often with a semantic mean-
ing that becomes apparent when we compare sentences that belong to different clusters.
We also noticed that even though there are often
clean clusters they are not always perfectly com-

binatorial, e.g., in €® as seen in Figurelé-_ll we 100 E?
found two very orthogonal clusters for the tar- 9

get entity symbols {tiitchen, tBathroom  and

{tGardenv tHallway}- 80
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70

accuracy

Systematic Generalisation We conduct an
additional experiment to empirically analyse the
model’s capability to generalise in a systematic
way [[10} [T1]]. For this purpose, we join together 5

all tasks which use the same four entity names alex glenn jordan mike  logan
with at least one entity appearing in the question

(ie. tasks 1, 6,7,8,9, 11, 12, 13). We then aug- Figure 5: Average accuracy over the generated test
ment this data with five new entities such that sets of each task. The novel entities that we add
the train and test data exhibit systematic differ- to the training data were not trained on all tasks.
ences. The stories for a new entity are generated For a model that generalises systematically, the
by randomly sampling 500 story/question pairs test accuracy should not drop for entities with only
from a task such that in 20% of the generated partial training data.

60 [N REN
N TPR-RNN



stories the new entity is also contained in the question. We then add generated stories from all
possible 40 combinations of new entities and tasks to the test set. To the training set, however, we
only add stories from a subset of all tasks.

More specifically, the new entities are Alex, Glenn, Jordan, Mike, and Logan for which we generate
training set stories from 8/8, 6/8, 4/8, 2/8, 1/8 of the tasks respectively. We summarize the results in
Figure 5| by averaging over tasks. After the network has been trained, we find that our model achieves
high accuracy on entity/task pairs on which it has not been trained. This indicates its systematic
generalisation capability due to the disentanglement of entities and relations.

Our analysis and the additional experiment indicate that the model seems to learn combinatorial
representations resulting in interpretable distributed representations and data efficiency due to rule-like
generalisation.

8 Limitations

To compute the correct gradients, an RNN with external memory trained by backpropagation through
time must store all values of all temporary variables at every time step of a sequence. Since outer
product-based Fast Weights [26, [27] and our TPR system have many more time-varying variables per
learnable parameter than a classic RNN such as LSTM, this makes them less scalable in terms of
memory requirements. The problem can be overcome through RTRL [2} 3]}, but only at the expense
of greater time complexity. Nevertheless, our results illustrate how the advantages of TPRs can
outweigh such disadvantages for problems of combinatorial nature.

One difficulty of our Fast Weight-like memory is the well-known vanishing gradient problem [56].
Due to multiplicative interaction of Fast Weights with RNN activations, forward and backward
propagation is unstable and can result in vanishing or exploding activations and error signals. A
similar effect may affect the forward pass if the values of the activations are not bounded by some
activation function. Nevertheless, in our experiments, we abandoned bounded TPR values as they
significantly slowed down learning with little benefit. Although our current sub-optimal initialization
may occasionally lead to exploding activations and NaN values after the first few iterations of gradient
descent, we did not observe any extreme cases after a few dozen successful steps, and therefore
simply reinitialize the model in such cases.

A direct comparison with the DNC is a bit inconclusive for the following reasons. Our architecture,
uses a sentence encoding layer similar to how many memory networks encode their input. This
slightly facilitates the problem since the network doesn’t have to learn which words belong to the
same sentence. Most memory networks also iterate over sentence representations, which is less
general than iterating over the word level, which is what the DNC does, which is even less general
than iterating over the character level. In preliminary experiments, a word level variation of our
architecture solved many tasks, but it may require non-trivial changes to solve all of them.

9 Conclusion

Our novel RNN-TPR combination learns to decompose natural language sentences into combina-
torial components useful for reasoning. It outperforms previous models on the bAbI tasks through
attentional control of memory. Our approach is related to Fast Weight architectures, another way
of increasing the memory capacity of RNNs. An analysis of a trained model suggests straight-
forward interpretability of the learned representations. Our model generalises better than a previous
state-of-the-art model when there are strong systematic differences between training and test data.
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