
Supplementary Material

A Additional Background Information

A.1 Differential Privacy

In the offline setting, a dataset D is a n-tuple of elements from some universeU. Two datasets are
called neighbors if they differ just on a single element. An algorithm A is said to be (ε, δ)-differentially
private if for any pair of neighboring datasets D and D′ and any subset of possible outputs S we have
that P{A(D) ∈ S} ≤ eεP{A(D′) ∈ S} + δ. A common technique [16] for approximating the value
of a query f on dataset D is to first find its L2-sensitivity, GS2 B maxD,D′ neighboring‖ f (D) − f (D′)‖2,
and then add zero-mean Gaussian noise of variance 2GS2

2 ln(2/δ)/ε2.

A.2 The Tree-Based Mechanism

Assume for simplicity that n = 2i for some positive integer i. Let T be a complete binary tree with its
leaf nodes being l1, . . . , ln. Each internal node x ∈ T stores the sum of all the leaf nodes in the tree
rooted at x. First notice that one can compute any partial sum

∑i
j=1 li using at most m B dlog2(n)+ 1e

nodes of T . Second, notice that for any two neighboring data sequences D and D′ the partial sums
stored in T differ on at most m nodes. Thus, if the count in each node preserves (ε0, δ0)-differential
privacy, using the advanced composition of Dwork et al. [14] we get that the entire algorithm is(
O(mε2

0 + ε0
√

2m ln(1/δ′)),mδ0 + δ
′
)
-differentially private. Alternatively, to make sure the entire tree

is (ε, δ)-differentially private, it suffices to set ε0 = ε/
√

8m ln(2/δ) and δ0 = δ/2m (with δ′ = δ/2).

A.3 Useful Facts.

In this work, we repeatedly apply the following facts about PSD matrices, the Gaussian distribution,
the χ2 distribution and the Wishart distribution.

Claim 16 (36, Theorem 7.8). If A � B � 0, then

1. rank(A) ≥ rank(B)
2. det A ≥ det B
3. B−1 � A−1 if A and B are nonsingular.

Claim 17 (Corollary to Lemma 1, 25, p. 1325). If U ∼ χ2(d) and α ∈ (0,1),

P

(
U ≥ d + 2

√
d ln 1

α + 2 ln 1
α

)
≤ α, P

(
U ≤ d − 2

√
d ln 1

α

)
≤ α.

Claim 18 (Adaptation of 35, Corollary 5.35). Let A be an n× d matrix whose entries are independent
standard normal variables. Then for every α ∈ (0,1), with probability at least 1 − α it holds that

σmin(A), σmax(A) ∈
√

n ± (
√

d +
√

2 ln(2/α))
with σmin(A) and σmax(A) denoting the smallest- and largest singular values of A resp.

Claim 19 (30, Lemma A.3). Fix α ∈ (0,1/e) and let W ∼ Wd(V , k) with
√

m >
√

d +
√

2 ln(2/α).
Then, denoting the j-t largest eigenvalue of W as σj(W ), with probability at least 1 − α it holds that
for every j = 1,2, . . . , d:

σj(W ) ∈
(√

m ±
(√

d +
√

2 ln(2/α)
))2

σj(V ).

Claim 20. For any matrix H � ρI � 0, vector v, and constant c ≥ 0 satisfying H − cI � 0,

‖v‖(H−cI )−1 ≤ ‖v‖H−1

√
ρ

ρ − c
.
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Proof. Since 0 ≺ ρI � H , an application of Claim 16 gives
cI � (c/ρ)H multiplying by c/ρ ≥ 0

H − cI � H − (c/ρ)H =
(
ρ − c
ρ

)
H

(H − cI )−1 �

(
ρ

ρ − c

)
H−1.

The result follows from the definition of ‖v‖H−1 . �

B Discussion and Proofs from Section 3

The proofs in this section are based on those of Abbasi-Yadkori et al. [1], who analyze the LinUCB
algorithm with a constant regularizer. The main difference from that work is that, in our case,
quantities involving the regularizer must be bounded above or below (as appropriate) by the constants
ρmax and ρmin, respectively. We will make extensive use of Claim 16, which shows that for any two
matrices 0 � V � U , we have detV ≤ detU and V−1 � U−1. We start by proving the following
proposition about the sizes of the confidence ellipsoids, which illustrates this general idea.
Proposition 4 (Calculating βt ). Suppose Assumptions 3 to 5 hold and let ρmin, ρmax, and γ be
(α/2n)-accurate for some α ∈ (0,1) and horizon n. Then (βt )nt=1 is (α,n)-accurate where

βt B σ
√

2 log(2/α) + log(detVt ) − d log(ρmin) + S
√
ρmax + γ

≤ σ

√
2 log(2/α) + d log

(
ρmax
ρmin
+ tL2

dρmin

)
+ S
√
ρmax + γ. (if Assumption 1 also holds)

Proof. By definition, θ̃t = V−1
t ũt , ũt = ut + ht , and ut = XË<t y<t , so that

θ∗ − θ̃t = θ∗ − V−1
t (X

Ë
<t y<t + ht )

= θ∗ − V−1
t (X

Ë
<tX<tθ

∗ + XË<tηt−1 + ht ) since y<t = X<tθ
∗ + ηt−1

= θ∗ − V−1
t (Vtθ

∗ − Htθ
∗ + zt + ht ) defining zt B XË<tηt−1

= V−1
t (Htθ

∗ − zt − ht )

Multiplying both sides by V 1/2
t gives

V 1/2
t (θ

∗ − θ̃t ) = V−1/2
t (Htθ

∗ − zt − ht )

‖θ∗ − θ̃t ‖Vt = ‖Htθ
∗ − zt − ht ‖V−1

t
applying ‖ · ‖ to both sides

≤ ‖Htθ
∗‖V−1

t
+ ‖zt ‖V−1

t
+ ‖ht ‖V−1

t
triangle inequality

≤ ‖ zt ‖V−1
t
+ ‖Htθ

∗‖H−1
t
+ ‖ht ‖H−1

t
by Claim 16 since Vt � Ht

= ‖ zt ‖(Gt+ρminI )−1 + ‖θ∗‖Ht + ‖ht ‖H−1
t
, since Vt � Gt + ρminI .

We use a union bound over all n rounds to bound ‖θ∗‖Ht ≤
√
‖Ht ‖‖θ

∗‖ ≤ S
√
ρmax and ‖ht ‖H−1

t
≤ γ

with probability at least 1−α/2. Finally, by the “self-normalized bound for vector-valued martingales”
of Abbasi-Yadkori et al. [1, Theorem 1], with probability 1 − α/2 for all rounds simultaneously

‖ zt ‖(Gt+ρminI )−1 ≤ σ

√
2 log

2
α
+ log

det(Gt + ρminI )

det ρminI
≤ σ

√
2 log

2
α
+ log detVt − d log ρmin.

It only remains to show the upper-bound on each βt . By Claim 16, we have detVt = det(Gt + Ht ) ≤

det(Gt + ρmaxI ) and
log detVt ≤ log det(Gt + ρmaxI ) ≤ d log(ρmax + tL2/d).

using the trace-determinant inequality as in the proof of Lemma 22. All the βt are therefore bounded
by the constants

β̄t B σ

√
2 log

2
α
+ d log

(
ρmax
ρmin

+
tL2

dρmin

)
+ S
√
ρmax + γ. �
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We now take our first steps towards a regret bound by giving a “generic” version that depends only
on LinUCB taking “optimistic” actions, the sizes of the confidence sets, and the rewards being
bounded. We rely upon the upper bound for each βt shown in the previous proposition. We use
the Cauchy-Schwarz inequality to bound the sum of per-round regrets rt by

∑
r2
t ; this results in the

leading O(
√

n) factor in the regret bound. Our gap-dependent analysis later avoids this, but has other
trade-offs.
Lemma 21 (Generic LinUCB Regret). Suppose Assumptions 2 and 4 hold (i.e. |〈θ∗, x〉| ≤ B and all
Ht � 0) and β̄n ≥ max{β1, . . . , βn,1}; also assume that B = 1. If all the confidence sets Et contain
θ∗ (i.e., ‖θ∗ − θ̃t ‖Vt ≤ βt ), then the pseudo-regret of Algorithm 1 is bounded by

R̂n ≤ β̄n

√√
4n

n∑
t=1

min{1, ‖xt ‖2V−1
t

}.

Remark 2 (On the quantity B appearing in Assumption 2). For the following proofs, we assume (as in
this lemma) that Assumption 2 holds with B = 1. Eventually, however, our regret bounds end up
with a factor B; we now explain how. First note that B is trivially at most LS by Cauchy-Schwarz:
|〈θ∗, xt〉| ≤ ‖θ

∗‖‖xt ‖ ≤ LS. The case where B < 1 yet is some constant is trivial: clearly we can
take B = 1 without violating the assumption. The case where B = o(1) is actually quite intricate
and somewhat “unnatural”: while a-priori we know the mean-reward can be as large as LS, it is in
fact much smaller. This means we have to scale down actions, and shrink the entire problem by a
sub-constant; and as a result the noise σ is actually now far larger (it is like σ/B in the original
setting). While this can be a mere technicality in general, since our leading application is privacy this
also means that the bounds on the actual reward we use in Section 4 needs to be scaled by a very large
factor. Thus, allowing for ridiculously small B turns into an unnecessary nuisance, and we simply
assume that our upper-bound B is not tiny — namely, we assume B ≥ 1.
It remains to deal with the situation where B > 1. In this case, we can pre-process the rewards to the
algorithm, scaling them down by a factor of B. If we also scale down all the actions x ∈ Dt , then
the rest of the assumptions remain inviolate and the regret bound for B = 1 applies. However, this
bounds the regret in the scaled problem: in the original problem the rewards and hence regret must be
scaled up by a factor of B. Note that by only scaling theDt , we are not modifying any quantities used
in the actual algorithm, just the regret bound; this would not be true if we scaled θ∗ (whose maximum
norm appears in the βt ), which is the other possibility to maintain the linearity of rewards.
Indeed, in the scaled-down problem the regret is somewhat lower than the bound because both L and
σ can be scaled down by B (the noise variance scales proportionally to the reward). For simplicity,
however, we refrain from replacing L and σ in the upper bound with L/B and σ/B, respectively.

Proof of Lemma 21. At every round t, Algorithm 1 selects an “optimistic” action xt satisfying
(xt, θ̄t ) ∈ arg max

(x,θ)∈Dt×Et

〈θ, x〉. (5)

Let x∗t ∈ arg maxx∈Dt
〈θ∗, x〉 be an optimal action and rt = 〈θ∗, x∗t − xt〉 be the immediate pseudo-

regret suffered for round t:
rt = 〈θ∗, x∗t 〉 − 〈θ

∗, xt〉

≤ 〈θ̄t, xt〉 − 〈θ
∗, xt〉 from (5) since (x∗t ,θ∗) ∈ Dt × Et

= 〈θ̄t − θ
∗, xt〉

= 〈V 1/2
t (θ̄t − θ

∗),V−1/2
t xt〉 since Vt � Ht � 0

≤ ‖θ̄t − θ
∗‖Vt ‖xt ‖V−1

t
by Cauchy-Schwarz

≤
(
‖θ̄t − θ̃t ‖Vt + ‖θ

∗ − θ̃t ‖Vt

)
‖xt ‖V−1

t
by the triangle inequality

≤ 2βt ‖xt ‖V−1
t

since θ̄t,θ∗ ∈ Et
≤ 2β̄n‖xt ‖V−1

t
since β̄n ≥ βt .

From our assumptions that the mean absolute reward is at most 1 and β̄n ≥ 1, we also get that
rt ≤ 2 ≤ 2β̄n. Putting these together,

rt ≤ 2β̄n min{1, ‖xt ‖V−1
t
} (6)
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Now we apply the Cauchy-Schwarz inequality, since R̂n = 〈1n, r/n〉, where 1n is the all-ones vector
and r is the vector of per-round regrets:

R̂2
n = n2

( n∑
t=1

rt
n

)2
≤ n2

n∑
t=1

r2
t

n
= n

n∑
t=1

rt2 ≤ 4nβ̄2
n

n∑
t=1

min{1, ‖xt ‖2V−1
t
}.

Taking square roots completes the proof. �

The following technical lemma relates the quantity from the previous result to the volume (i.e.
determinant) of the Vn matrix. We will see shortly that the Ut are all lower bounds on the Vt .
Lemma 22 (Elliptical Potential). Let x1, . . . , xn ∈ R

d be vectors with each ‖xt ‖ ≤ L. Given a
positive definite matrix U1 ∈ R

d×d , define Ut+1 B Ut + xt x
Ë
t for all t. Then

n∑
t=1

min{1, ‖xt ‖2U−1
t
} ≤ 2 log

det Un+1
det U1

≤ 2d log
tr U1 + nL2

d det1/d U1
.

Proof. We use the fact that min{1,u} ≤ 2 log(1 + u) for any u ≥ 0:
n∑
t=1

min{1, ‖xt ‖2U−1
t
} ≤ 2

n∑
t=1

log(1 + ‖xt ‖2U−1
t
).

We will show that this last summation is 2 log(det Un+1/det Un). For all t, we have
Ut+1 = Ut + xt x

Ë
t = U1/2

t

(
I +U−1/2

t xt x
Ë
tU
−1/2
t

)
U1/2
t

det Ut+1 = det Ut det
(
I +U−1/2

t xt x
Ë
tU
−1/2
t

)
.

Consider the eigenvectors of the matrix I + y yË for an arbitrary vector y ∈ Rd . We know that y itself
is an eigenvector with eigenvalue 1 + ‖y‖2:

(I + y yË)y = y + y〈y, y〉 = (1 + ‖y‖2)y.
Moreover, since I + y yË is symmetric, every other eigenvector u is orthogonal to y, so that

(I + y yË)u = u + u〈y, u〉 = u.

Therefore the only eigenvalues of I + y yË are 1 + ‖y‖2 (with eigenvector y) and 1. In our case
y = U−1/2

t xt and ‖y‖2 = xËtU
−1
t xt = ‖xt ‖

2
U−1

t

, so we get our first inequality:

det Un+1 = det U1

n∏
t=1
(1 + ‖xt ‖2U−1

t
)

2 log
det Un+1
det U1

= 2
n∑
t=1

log(1 + ‖xt ‖2U−1
t
).

To get the second inequality, we apply the arithmetic-geometric mean inequality to the eigenvalues λi
of Un:

det Un =

d∏
i=1

λi ≤
( 1

d

d∑
i=1

λi

)d
= ((1/d) tr Un)

d ≤ ((tr U1 + nL2)/d)d

2 log
det Un

det U1
≤ 2d log

tr U1 + nL2

d det1/d U1
�

We are finally in a position to prove the main regret theorem. The proof is straightforward and
essentially comes down to plugging in our preceding results.
Theorem 5 (Regret of Algorithm 1). Suppose Assumptions 1 to 5 hold and the βt are as given by
Proposition 4. Then with probability at least 1 − α the pseudo-regret of Algorithm 1 is bounded by

R̂n ≤ B
√

8n
[
σ

(
2 log( 2

α ) + d log
(
ρmax
ρmin
+ nL2

dρmin

))
+ (S
√
ρmax + γ)

√
d log

(
1 + nL2

dρmin

)]
(2)

Proof. We restrict ourselves to the event that all the confidence ellipsoids contain θ∗ and all
ρminI � Ht � ρmaxI . Proposition 4 assures us that this happens with probability at least 1 − α, and
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furthermore gives us the bound βt ≤ β̄n:

β̄n B σ

√
2 log

2
α
+ d log

(
ρmax
ρmin

+
nL2

dρmin

)
+ S
√
ρmax + γ.

Next, we have ‖xt ‖V−1
t
≤ ‖xt ‖(Gt+ρminI )−1 , which applied to the result of Lemma 21 gives, using

Lemma 22

R̂n ≤ β̄n

√
8dn log

(
1 +

nL2

dρmin

)
≤
√

8n
σ

(
2 log

2
α
+ d log

(
ρmax
ρmin

+
nL2

dρmin

))
+ (S
√
ρmax + γ)

√
d log

(
1 +

nL2

dρmin

) .
The argument outlined in Remark 2 preceding the proof of Lemma 21 tells us how to reintroduce the
missing factor of B in this regret bound. �

The proof of the gap-dependent regret bound diverges from the previous proof in only one major way:
the gap is used to bound each rt by r2

t /∆. Then the sum of r2
t is bounded as before; this avoids the

√
n

factor introduced by the use of the Cauchy-Schwarz inequality.
Theorem 6 (Gap-Dependent Regret of Algorithm 1). Suppose Assumptions 1 to 5 hold and the βt
are as given by Proposition 4. If the optimal actions in every decision set Dt are separated from the
sub-optimal actions by a reward gap of at least ∆, then with probability at least 1−α the pseudo-regret
of Algorithm 1 satisfies

R̂n ≤
8B
∆

[
σ

(
2 log( 2

α ) + d log
(
ρmax
ρmin
+ nL2

dρmin

))
+ (S
√
ρmax + γ)

√
d log

(
1 + nL2

dρmin

)]2
(3)

Proof. Because of the gap assumption, for every round t if the per-round pseudo-regret rt , 0 then
rt ≥ ∆. We use this fact to decompose the regret in a different way than we did in Lemma 21. The
rest of the proof is similar to that of Theorem 5. As before, see Remark 2 preceding the proof of
Lemma 21 to introduce the missing B factor.

R̂n =
∑
t∈Bn

rt ≤
∑
t∈Bn

r2
t

∆

≤
4
∆
β̄2
n

∑
t∈Bn

min{1, ‖xt ‖2V−1
t
} from (6)

≤
8
∆
β̄2
nd log

(
1 +

nL2

dρmin

)
≤

8
∆

σ
(
2 log

2
α
+ d log

(
ρmax
ρmin

+
nL2

dρmin

))
+ (S
√
ρmax + γ)

√
d log

(
1 +

nL2

dρmin

)
2

�

B.1 Regret Bounds Open Problem

The first conclusion from these regret bounds is that allowing changing regularizers does not incur
significant additional regret, as long as they are bounded both above and below. Broadly speaking,
these bounds for contextual linear bandits match those for standard MAB algorithms in terms of
their dependence on n and ∆— just like with UCB, for example, the minimax bound is O(

√
n) and

the gap-dependent bound is O(log(n)/∆). However, the dependence on d (which corresponds to
the number of arms for the MAB) is much worse, with O(d) in the minimax case and O(d2) in the
gap-dependent case.
It is an interesting open question whether the O(d2) dependence on d is necessary to achieve O(log n)
gap-dependent regret bounds. As we were unable to prove a lower bound of Ω(d2), we resorted to
empirically checking the performance of the (non-private) LinUCB on such ∆-gap instances; the
results can be found in Section D.1.
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C Privacy Proofs

We now provide the missing privacy proofs from the main body of the paper. First, we give the
omitted proof from Section 4.1.
Proposition 9. Fix any α > 0. If for each t the Ht and ht are generated by the tree-based algorithm
with Wishart noiseWd+1(L̃2I, k), then the following are (α/2n)-accurate bounds:

ρmin = L̃2 (√mk −
√

d −
√

2 ln(8n/α)
)2
,

ρmax = L̃2 (√mk +
√

d +
√

2 ln(8n/α)
)2
,

γ = L̃
(√

d +
√

2 ln(2n/α)
)
.

Moreover, if we use the shifted regularizer H ′t B Ht − cI with c as given in Eq. (4), then the following
are (α/2n)-accurate bounds:

ρ′min = 4L̃2√mk
(√

d +
√

2 ln(8n/α)
)
,

ρ′max = 8L̃2√mk
(√

d +
√

2 ln(8n/α)
)
,

γ′ = L̃
√
√

mk
(√

d +
√

2 ln(2n/α)
)
.

Proof. Seeing as Ht ∼ Wd(L̃2I,mk), straight-forward bounds on the eigenvalues of the Wishart
distribution (e.g. [30], Lemma A.3) give that w.p. ≥ 1 − α/2n all of the eigenvalues of Ht lie in the
interval L̃2 (√mk ±

(√
d +

√
2 ln(8n/α)

) )2. To bound ‖ht ‖H−1
t

we draw back to the definition of the
Wishart distribution as the Gram matrix of samples from a multivariate Gaussian N(0, L̃2I ). Denote
this matrix of Gaussians as [Z; z] where Z ∈ Rmk×d and z ∈ Rmk , and we have that Ht = ZËZ

and ht = ZË z, thus ‖ht ‖H−1
t
=

√
zËZ(ZËZ)−1ZË z. The matrix Z(ZËZ)−1ZË is a projection matrix

onto a d-dimensional space, and projecting the spherical Gaussian z onto this subspace results in a
d-dimensional spherical Gaussian. Using concentration bounds on the χ2-distribution (Claim 17) we
have that w.p. ≥ 1 − α/2n it holds that ‖ht ‖H−1

t
≤ γ B L̃

(√
d +

√
2 ln(2n/α)

)
.

It is straightforward to modify these bounds for the shifted regularizer matrix H ′t B Ht − cI ; the
minimum and maximum eigenvalues are bounded as ρ′min = ρmin−c and ρ′max = ρmax−c, respectively.
The value of c in Eq. (4) is chosen so that ρ′min = ρmin−c = ρmax− ρmin = 4L̃2√mk(

√
d+

√
2 ln(8n/α)).

It follows that ρ′max = ρmax − c = ρ′min + ρmax − ρmin = 2ρ′min. Finally, Claim 20 gives

‖ht ‖H′−1
t
≤ ‖ht ‖H−1

t

√
ρmin/ρ

′
min ≤ γ

√
ρmin/ρ

′
min

= L̃
(√

d +
√

2 ln(2n/α)
)√√√ L̃2 (√mk −

√
d −

√
2 ln(8n/α)

)2

4L̃2
√

mk
(√

d +
√

2 ln(8n/α)
)

≤ L̃

(√
mk −

√
d −

√
2 ln(8n/α)

)√√
d +

√
2 ln(2n/α)

4(mk)1/4

≤ L̃
√
√

mk
(√

d +
√

2 ln(2n/α)
)
C γ′ �

Theorem 23 (30, Theorem 4.1). Fix ε ∈ (0,1) and δ ∈ (0,1/e). Let A ∈ Rn×p be a matrix whose
rows have l2-norm bounded by L̃. Let W be a matrix sampled from the d-dimensional Wishart
distribution with k degrees of freedom using the scale matrix L̃2Ip (i.e. W ∼ Wp(L̃2Ip, k)) for
k ≥ p +

⌊ 14
ε2 · 2 log(4/δ)

⌋
. Then outputting AËA + N is (ε, δ)-differentially private with respect to

changing a single row of A.

We now give the proof of the lower bound of any private algorithm under the standard notion of
differential privacy under continual observation, as discussed in Section 5. First, of course, we need to
define this notion. Formally, two sequences S = 〈(c1, y1), . . . , (cn, yn)〉 and S′ = 〈(c′1, y

′
1), . . . , (c

′
n, y
′
n)〉

are called neighbors if there exists a single t such that for any t ′ , t we have (ct′, yt′) = (c′t′, y
′
t′); and

an algorithm A is (ε, δ)-differentially private if for any two neighboring sequences S and S′ and any
subsets of sequences of actions S ⊂ An it holds that P[A(S) ∈ S] ≤ eεP[A(S′) ∈ S] + δ. We now
prove the following.
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Claim 13. For any ε < ln(2) and δ < 0.25, any (ε, δ)-differentially private algorithm A for the
contextual bandit problem must incur pseudo-regret of Ω(n).

Proof. We consider a setting with two arms A = {a1,a2} and two possible contexts: c1 which maps
a1 7→ θ∗ and a2 7→ −θ∗; and c2 which flips the mapping. Assuming ‖θ∗‖ = 1 it is evident we incur a
pseudo-regret of 2 when pulling arm a1 is under context c2 or pulling arm a2 under c1. Fix a day t and
a history of previous inputs and arm pulls Ht−1. Consider a pair of neighboring sequences that agree
on the history Ht−1 and differ just on day t — in S the context ct = c1 whereas in S′ it is set as ct = c2.
Denote S as the subset of action sequences that are fixed on the first t − 1 days according to Ht−1, have
the t-th action be a1 and on days > t may have any action. Thus, applying the guarantee of differential
privacy w.r.t to S we get that P[at = a1 | S] = P[A(S) ∈ S] ≤ eεP[at = a1 | S′] + δ. Consider an
adversary that sets the context of day t to be either c1 or c2 uniformly at random and independently
of other days. The pseudo-regret incurred on day t is thus: 2 · 1

2
(
P[at = a2 | S] + P[at = a1 | S′]

)
≥

(1−P[at = a1 | S])+ e−ε(P[at = a1 | S] − δ) = 1+ (e−ε −1)P[at = a2 | S] − δ > 1−1 · 1
2 −

1
4 =

1
4 . As

the above applies to any day t, the algorithm’s pseudo-regret is ≥ n
4 against such random adversary. �

D Experiments

We performed some experiments with synthetic data to characterize the performance of the algorithms
in this paper.

Setting. We first describe the common setting used for all the experiments: Given a dimension d,
we first select θ∗ to be a random unit vector in Rd (distributed uniformly on the hyper-sphere, so that
S = 1). Then we construct decision sets of size K (K = d2 in our experiments), consisting of one
optimal action and K − 1 suboptimal actions, all of unit length (so L = 1). The optimal action is
chosen uniformly at random from the (d−2)-dimensional set {x ∈ Rd | ‖x‖ = 1, 〈x,θ∗〉 = 0.75}. The
suboptimal actions are chosen independently and uniformly at random from the (d − 1)-dimensional
set {x ∈ Rd | ‖x‖ = 1, 〈x,θ∗〉 ∈ [−0.75,0.65]}. This results in a suboptimality gap of ∆ = 0.1,
since the optimal arm has mean reward 0.75 and the suboptimal arms have mean rewards in the
[−0.75,0.65] interval. To simulate the contextual bandit setting, a new decision set is sampled before
each round.
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Figure 1: An example decision set in R3 with K = 1000 actions.

The rewards are either −1 or +1, with probabilities chosen so that E[yt ] = 〈xt,θ∗〉. Therefore B̃ = 1
and, being bounded in the [−1,1] interval, the reward distribution is subgaussian with σ2 = 1.
The experiments below measure the expected regret in each case; the confidence parameter is α = 1/n,
which is the usual choice when one wishes to minimize expected regret.
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Figure 2: Experiment 1 — Regret over time for varying dimensions.
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Figure 3: Experiment 1 — Regret vs. dimension with log–log axes and best-fit line.

D.1 The Dependency of the Pseudo-Regret on the Dimension for Gap Instances

The first experiment was aimed at the open question of Section B.1, namely whether the gap-dependent
regret is Ω(d2) in the dimension of the problem. Thus privacy wasn’t a concern in this particular
setting; rather, our goal was to determine the performance of our general recipe algorithm in a
contextual setting with a clear-cut gap. We measured the pseudo-regret of the non-private LinUCB
algorithm as a function of the dimension over n = 105 rounds with the regularizer ρ = Id×d and
K = d2 arms. The values of d were logarithmically spaced in the interval [4,64]. The results of the
experiment are plotted in Fig. 2. The two sub-experiments differ only in the reward noise distribution
used. In the first, the reward noise is truly a Gaussian with σ2 = 1, whereas in the second the reward
is ±1 as described above (subgaussian with σ2 = 1). In the latter case, the actual variance in the
reward depends on its expectation, and is somewhat lower than 1. This is perhaps why the regret is
somewhat lower than with gaussian reward noise.
Figure 3 shows the same results with total accumulated regret plotted against dimension using a
log–log scale. The best-fit line on this plot has a slope of roughly 2, clearly pointing to a super-linear
dependency on d. We conjecture that, in general, the dependency on d is indeed quadratic.

D.2 Empirical Performance of the Privacy-Preserving Algorithms over Time

This experiment compares the expected regret of the various algorithm variants presented in this
paper. The two major privacy-preserving algorithms are based on Wishart noise (Section 4.1) and
Gaussian noise (Section 4.2); both were run with privacy parameters ε = 1.0 and δ = 0.1 over a
horizon of n = 5 × 107 rounds and dimension d = 5 and K = d2 = 25. The results are shown in
Fig. 4; the curves are truncated after 2 × 107 rounds because they are essentially flat after this point.
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Figure 4: Experiment 2 — Regret over time, with and without forced sub-optimality gaps.

The sub-figures of Fig. 4 show two settings that differ in the sub-optimality gap ∆ between the
rewards of the optimal and sub-optimal arms. In the left sub-figure, the algorithms are run in a
setting without a structured gap (∆ = 0), where we have not forced all arms to be strictly separated
from the optimal arm by a large reward gap. Here, all sub-optimal arms are distributed uniformly
on the set {x ∈ Rd | ‖x‖ = 1, 〈x,θ∗〉 ∈ [−0.75,0.75]} (and not from [−0.75,0.65] as in the previous
experiment). Note that while we cannot guarantee that in all rounds there exists a gap between the
optimal and sub-optimal arms, it is still true that in expectation we should observe a gap of Θ(1/K)
between the optimal arm and the second-best arm (and as K = 25 this expected gap is, still, a constant
in comparison to n). In the right sub-figure, however, the sub-optimal arms are indeed separated by a
gap of ∆ = 0.1 from the optimal arms; their rewards lie in the interval [−0.75,0.65] as in the previous
experiment. In both cases there is always an optimal arm with reward 0.75.
The figures show the following algorithm variants:

• The NonPrivate algorithm is LinUCB with regularizer ρ = 1.0. Its regret is too small to
be distinguished from the x-axis in this plot.

• The Gaussian variant is described in Section 4.2.
• The Wishart variant is described in Section 4.1 with the shift given in Eq. (4).
• The WishartUnshifted variant is that of Section 4.1 but with no shift.

Results. It is apparent that, at least for this setting, the Gaussian noise algorithm outperforms
Wishart noise. This shows that while the asymptotic performance of the two algorithms is fairly close,
the constants in the Gaussian version of the algorithm are far better than the ones in the Wishart-noise
based algorithm.
Furthermore, the performance of the WishartUnshifted variant changes significantly between the
two cases — it has the worst regret in the no-gap setting (∆ = 0) but, surprisingly, it is statistically
indistinguishable from the shifted Wishart variant in the large gap instance (∆ = 0.1). We investigate
this relationship between the sub-optimality gap and shifted regularizers in the next experiment.

D.3 Empirical Performance of Shifted Regularizers for Different Suboptimality Gaps

In both the Wishart and Gaussian variants of our algorithm, we use a shifted regularization matrix
Ht ± cI , choosing the shift parameter c to approximately optimize our regret bound in each case.
This optimal shift parameter turns out not to depend on the sub-optimality gap ∆ of the problem
instance. The previous experiment showed, however, that in practice the relative performance of the
shifted and unshifted Wishart variants changes drastically depending on the gap. In this experiment,
we investigate the impact of varying the shift parameter for the Wishart and Gaussian mechanisms
under different sub-optimality gaps ∆.
All the parameters are the same as the previous experiment— the only difference is the shift parameter;
the results are shown in Fig. 5. The two sub-figures show the performance of the Wishart and Gaussian
variants, respectively. The x-axis is a logarithmic scale indicating ρmin, the high-probability lower
bound on the minimum eigenvalue of the shifted regularizer matrix. ρmin serves as a good proxy for
the shift parameter because changing one has the effect of shifting the other by the same amount; it
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Figure 5: Experiment 3 — Varying shift parameters with different sub-optimality gaps.

has the added benefit of being meaningfully comparable amongst the different algorithm variants.
The vertical dotted lines indicate the ρmin values corresponding to the algorithms from Sections 4.1
and 4.2 for the Wishart and Gaussian variants, respectively; these are also the algorithms examined in
the previous experiment. The Gaussian mechanism does not have an unshifted variant.

Results. Tuning the shift parameter appears to significantly affect the performance only for problem
instances with relatively small or zero sub-optimality gaps. In the large-gap settings, on the other
hand, having too much regularization does not seem to increase regret appreciably. The small-gap
settings are exactly those in which exploration is crucial, so we conjecture that large regularizers
inhibit exploration and thereby incur increased regret.
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