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Abstract

Many tasks in machine learning and signal processing can be solved by minimizing
a convex function of a measure. This includes sparse spikes deconvolution or
training a neural network with a single hidden layer. For these problems, we study
a simple minimization method: the unknown measure is discretized into a mixture
of particles and a continuous-time gradient descent is performed on their weights
and positions. This is an idealization of the usual way to train neural networks
with a large hidden layer. We show that, when initialized correctly and in the
many-particle limit, this gradient flow, although non-convex, converges to global
minimizers. The proof involves Wasserstein gradient flows, a by-product of optimal
transport theory. Numerical experiments show that this asymptotic behavior is
already at play for a reasonable number of particles, even in high dimension.

1 Introduction

A classical task in machine learning and signal processing is to search for an element in a Hilbert
space F that minimizes a smooth, convex loss function R : F → R+ and that is a linear combination
of a few elements from a large given parameterized set {φ(θ)}θ∈Θ ⊂ F. A general formulation of
this problem is to describe the linear combination through an unknown signed measure µ on the
parameter space and to solve for

J∗ = min
µ∈M(Θ)

J(µ), J(µ) := R

(∫
φdµ

)
+G(µ) (1)

where M(Θ) is the set of signed measures on the parameter space Θ and G : M(Θ) → R is an
optional convex regularizer, typically the total variation norm when sparse solutions are preferred. In
this paper, we consider the infinite-dimensional case where the parameter space Θ is a domain of Rd
and θ 7→ φ(θ) is differentiable. This framework covers:

• Training neural networks with a single hidden layer, where the goal is to select, within a
specific class, a function that maps features in Rd−1 to labels in R, from the observation
of a joint distribution of features and labels. This corresponds to F being the space of
square-integrable real-valued functions on Rd−1, R being, e.g., the quadratic or the logistic
loss function, and φ(θ) : x 7→ σ(

∑d−1
i=1 θixi + θd), with an activation function σ : R→ R.

Common choices are the sigmoid function or the rectified linear unit [18, 14], see more
details in Section 4.2.

• Sparse spikes deconvolution, where one attempts to recover a signal which is a mixture
of impulses on Θ given a noisy and filtered observation y (a square-integrable function
on Θ). This corresponds to F being the space of square-integrable real-valued functions
on Rd, defining φ(θ) : x 7→ ψ(x − θ) the translations of the filter impulse response ψ
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and R(f) = (1/2λ)‖f − y‖2L2 , for some λ > 0 that depends on the estimated noise level.
Solving (1) allows then to reconstruct the mixture of impulses with some guarantees [12, 13].

• Low-rank tensor decomposition [16], recovering mixture models from sketches [26], see [6]
for a detailed list of other applications. For example, with symmetric matrices, F = Rd×d
and Φ(θ) = θθ>, we recover low-rank matrix decompositions [15].

1.1 Review of optimization methods and previous work

While (1) is a convex problem, finding approximate minimizers is hard as the variable is infinite-
dimensional. Several lines of work provide optimization methods but with strong limitations.

Conditional gradient / Frank-Wolfe. This approach tackles a variant of (1) where the regulariza-
tion term is replaced by an upper bound on the total variation norm; the associated constraint set
is the convex hull of all Diracs and negatives of Diracs at elements of θ ∈ Θ, and thus adapted to
conditional gradient algorithms [19]. At each iteration, one adds a new particle by solving a linear
minimization problem over the constraint set (which correspond to finding a particle θ ∈ Θ), and then
updates the weights. The resulting iterates are sparse and there is a guaranteed sublinear convergence
rate of the objective function to its minimum. However, the linear minimization subroutine is hard to
perform in general : it is for instance NP-hard for neural networks with homogeneous activations [4].
One thus generally resorts to space gridding (in low dimension) or to approximate steps, akin to
boosting [36]. The practical behavior is improved with nonconvex updates [6, 7] reminiscent of the
flow studied below.

Semidefinite hierarchy. Another approach is to parameterize the unknown measure by its sequence
of moments. The space of such sequences is characterized by a hierarchy of SDP-representable
necessary conditions. This approach concerns a large class of generalized moment problems [22]
and can be adapted to deal with special instances of (1) [9]. It is however restricted to φ which
are combinations of few polynomial moments, and its complexity explodes exponentially with the
dimension d. For d ≥ 2, convergence to a global minimizer is only guaranteed asymptotically,
similarly to the results of the present paper.

Particle gradient descent. A third approach, which exploits the differentiability of φ, consists in
discretizing the unknown measure µ as a mixture of m particles parameterized by their positions and
weights. This corresponds to the finite-dimensional problem

min
w∈Rm
θ∈Θm

Jm(w,θ) where Jm(w,θ) := J

(
1

m

m∑
i=1

wiδθi

)
, (2)

which can then be solved by classical gradient descent-based algorithms. This method is simple
to implement and is widely used for the task of neural network training but, a priori, we may only
hope to converge to local minima since Jm is non-convex. Our goal is to show that this method also
benefits from the convex structure of (1) and enjoys an asymptotical global optimality guarantee.

There is a recent literature on global optimality results for (2) in the specific task of training neural
networks. It is known that in this context, Jm has less, or no, local minima in an over-parameterization
regime and stochastic gradient descent (SGD) finds a global minimizer under restrictive assump-
tions [34, 35, 33, 23]; see [33] for an account of recent results. Our approach is not directly
comparable to these works: it is more abstract and nonquantitative—we study an ideal dynamics
that one can only hope to approximate—but also much more generic. Our objective, in the space
of measures, has many local minima, but we build gradient flows that avoids them, relying mainly
on the homogeneity properties of Jm (see [16, 20] for other uses of homogeneity in non-convex
optimization). The novelty is to see (2) as a discretization of (1)—a point of view also present in [25]
but not yet exploited for global optimality guarantees.

1.2 Organization of the paper and summary of contributions

Our goal is to explain when and why the non-convex particle gradient descent finds global minima.
We do so by studying the many-particle limit m→∞ of the gradient flow of Jm. More specifically:
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• In Section 2, we introduce a more general class of problems and study the many-particle
limit of the associated particle gradient flow. This limit is characterized as a Wasserstein
gradient flow (Theorem 2.6), an object which is a by-product of optimal transport theory.

• In Section 3, under assumptions on φ and the initialization, we prove that if this Wasserstein
gradient flow converges, then the limit is a global minimizer of J . Under the same conditions,
it follows that if (w(m)(t),θ(m)(t))t≥0 are gradient flows for Jm suitably initialized, then

lim
m,t→∞

J(µm,t) = J∗ where µm,t =
1

m

m∑
i=1

w
(m)
i (t)δ

θ
(m)
i (t)

.

• Two different settings that leverage the structure of φ are treated: the 2-homogeneous and the
partially 1-homogeneous case. In Section 4, we apply these results to sparse deconvolution
and training neural networks with a single hidden layer, with sigmoid or ReLU activation
function. In each case, our result prescribes conditions on the initialization pattern.

• We perform simple numerical experiments that indicate that this asymptotic regime is
already at play for small values of m, even for high-dimensional problems. The method
behaves incomparably better than simply optimizing on the weights with a very large set of
fixed particles.

Our focus on qualitative results might be surprising for an optimization paper, but we believe that
this is an insightful first step given the hardness and the generality of the problem. We suggest to
understand our result as a first consistency principle for practical and a commonly used non-convex
optimization methods. While we focus on the idealistic setting of a continuous-time gradient flow
with exact gradients, this is expected to reflect the behavior of first order descent algorithms, as they
are known to approximate the former: see [31] for (accelerated) gradient descent and [21, Thm. 2.1]
for SGD.

Notation. Scalar products and norms are denoted by · and | · | respectively in Rd, and by 〈·, ·〉 and
‖ · ‖ in the Hilbert space F. Norms of linear operators are also denoted by ‖ · ‖. The differential of a
function f at a point x is denoted dfx. We write M(Rd) for the set of finite signed Borel measures
on Rd, δx is a Dirac mass at a point x and P2(Rd) is the set of probability measures endowed with
the Wasserstein distance W2 (see Appendix A).

Recent related work. Several independent works [24, 28, 32] have studied the many-particle limit
of training a neural network with a single large hidden layer and a quadratic loss R. Their main focus
is on quantifying the convergence of SGD or noisy SGD to the limit trajectory, which is precisely a
mean-field limit in this case. Since in our approach this limit is mostly an intermediate step necessary
to state our global convergence theorems, it is not studied extensively for itself. These papers thus
provide a solid complement to Section 2.4 (a difference is that we do not assume that R is quadratic
nor that V is differentiable). Also, [24] proves a quantitive global convergence result for noisy SGD
to an approximate minimizer: we stress that our results are of a different nature, as they rely on
homogeneity and not on the mixing effect of noise.

2 Particle gradient flows and many-particle limit

2.1 Main problem and assumptions

From now on, we consider the following class of problems on the space of non-negative finite
measures on a domain Ω ⊂ Rd which, as explained below, is more general than (1):

F ∗ = min
µ∈M+(Ω)

F (µ) where F (µ) = R

(∫
Φdµ

)
+

∫
V dµ, (3)

and we make the following assumptions.
Assumptions 2.1. F is a separable Hilbert space, Ω ⊂ Rd is the closure of a convex open set, and

(i) (smooth loss) R : F → R+ is differentiable, with a differential dR that is Lipschitz on bounded
sets and bounded on sublevel sets,
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(ii) (basic regularity) Φ : Ω→ F is (Fréchet) differentiable, V : Ω→ R+ is semiconvex1, and

(iii) (locally Lipschitz derivatives with sublinear growth) there exists a family (Qr)r>0 of nested
nonempty closed convex subsets of Ω such that:

(a) {u ∈ Ω ; dist(u,Qr) ≤ r′} ⊂ Qr+r′ for all r, r′ > 0,
(b) Φ and V are bounded and dΦ is Lipschitz on each Qr, and
(c) there exists C1, C2 > 0 such that supu∈Qr (‖dΦu‖+‖∂V (u)‖) ≤ C1 +C2r for all r > 0,

where ‖∂V (u)‖ stands for the maximal norm of an element in ∂V (u).

Assumption 2.1-(iii) reduces to classical local Lipschitzness and growth assumptions on dΦ and ∂V if
the nested sets (Qr)r are the balls of radius r, but unbounded sets Qr are also allowed. These sets are
a technical tool used later to confine the gradient flows in areas where gradients are well-controlled.
By convention, we set F (µ) = ∞ if µ is not concentrated on Ω. Also, the integral

∫
Φdµ is a

Bochner integral [10, App. E6]. It yields a well-defined value in F whenever Φ is measurable and∫
‖φ‖d|µ| <∞. Otherwise, we also set F (µ) =∞ by convention.

Recovering (1) through lifting. It is shown in Appendix A.2 that, for a class of admissible regu-
larizers G containing the total variation norm, problem (1) admits an equivalent formulation as (3).
Indeed, consider the lifted domain Ω = R×Θ, the function Φ(w, θ) = wφ(θ) and V (w, θ) = |w|.
Then J∗ equals F ∗ and given a minimizer of one of the problems, one can easily build minimizers for
the other. This equivalent lifted formulation removes the asymmetry between weight and position—
weight becomes just another coordinate of a particle’s position. This is the right point of view for our
purpose and this is why F is our central object of study in the following.

Homogeneity. The functions Φ and V obtained through the lifting share the property of being
positively 1-homogeneous in the variable w. A function f between vector spaces is said positively
p-homogeneous when for all λ > 0 and argument x, it holds f(λx) = λpf(x). This property is
central for our global convergence results (but is not needed throughout Section 2).

2.2 Particle gradient flow

We first consider an initial measure which is a mixture of particles—an atomic measure— and define
the initial object in our construction: the particle gradient flow. For a number m ∈ N of particles,
and a vector u ∈ Ωm of positions, this is the gradient flow of

Fm(u) := F

(
1

m

m∑
i=1

δui

)
= R

(
1

m

m∑
i=1

Φ(ui)

)
+

1

m

m∑
i=1

V (ui), (4)

or, more precisely, its subgradient flow because V can be non-smooth. We recall that a subgradient
of a (possibly non-convex) function f : Rd → R̄ at a point u0 ∈ Rd is a p ∈ Rd satisfying
f(u) ≥ f(u0) + p · (u − u0) + o(u − u0) for all u ∈ Rd. The set of subgradients at u is a closed
convex set called the subdifferential of f at u denoted ∂f(u) [27].
Definition 2.2 (Particle gradient flow). A gradient flow for the functional Fm is an absolutely
continuous2 path u : R+ → Ωm which satisfies u′(t) ∈ −m∂Fm(u(t)) for almost every t ≥ 0.

This definition uses a subgradient scaled by m, which is the subgradient relative to the scalar product
on (Rd)m scaled by 1/m: this normalization amounts to assigning a mass 1/m to each particle and
is convenient for taking the many-particle limit m→∞. We now state basic properties of this object.
Proposition 2.3. For any initialization u(0) ∈ Ωm, there exists a unique gradient flow u : R+ → Ωm

for Fm. Moreover, for almost every t > 0, it holds d
dsFm(u(s))|s=t = −|u′(t)|2 and the velocity of

the i-th particle is given by u′i(t) = vt(ui(t)), where for u ∈ Ω and µm,t := (1/m)
∑m
i=1 δui(t),

vt(u) = ṽt(u)− proj∂V (u)(ṽt(u)) with ṽt(u) = −
[〈
R′
(∫

Φdµm,t
)
, ∂jΦ(u)

〉]d
j=1

. (5)
1A function f : Rd → R is semiconvex, or λ-convex, if f +λ| · |2 is convex, for some λ ∈ R. On a compact

domain, any smooth fonction is semiconvex.
2An absolutely continuous function x : R → Rd is almost everywhere differentiable and satisfies x(t)−

x(s) =
∫ t

s
x′(r)dr for all s < t.
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The expression of the velocity involves a projection because gradient flows select subgradients
of minimal norm [29]. We have denoted by R′(f) ∈ F the gradient of R at f ∈ F and by
∂jΦ(u) ∈ F the differential dΦu applied to the j-th vector of the canonical basis of Rd. Note
that [ṽt(ui)]

m
i=1 is (minus) the gradient of the first term in (4) : when V is differentiable, we have

vt(u) = ṽt(u)−∇V (u) and we recover the classical gradient of (4). When V is non-smooth, this
gradient flow can be understood as a continuous-time version of the forward-backward minimization
algorithm [11].

2.3 Wasserstein gradient flow

The fact that the velocity of each particle can be expressed as the evaluation of a velocity field (Eq. (5))
makes it easy, at least formally, to generalize the particle gradient flow to arbitrary measure-valued
initializations—not just atomic ones. On the one hand, the evolution of a time-dependent measure
(µt)t under the action of instantaneous velocity fields (vt)t≥0 can be formalized by a conservation
of mass equation, known as the continuity equation, that reads ∂tµt = −div(vtµt) where div is the
divergence operator3 (see Appendix B). On the other hand, there is a direct link between the velocity
field (5) and the functional F . The differential of F evaluated at µ ∈ M(Ω) is represented by the
function F ′(µ) : Ω→ R defined as

F ′(µ)(u) :=

〈
R′
(∫

Φdµ

)
,Φ(u)

〉
+ V (u).

Thus vt is simply a field of (minus) subgradients of F ′(µm,t)—it is in fact the field of minimal norm
subgradients. We write this relation vt ∈ −∂F ′(µm,t). The set ∂F ′ is called the Wasserstein subdif-
ferential of F , as it can be interpreted as the subdifferential of F relatively to the Wasserstein metric
on P2(Ω) (see Appendix B.2.1). We thus expect that for initializations with arbitrary probability
distributions, the generalization of the gradient flow coindices with the following object.
Definition 2.4 (Wasserstein gradient flow). A Wasserstein gradient flow for the functional F on a time
interval [0, T [ is an absolutely continuous path (µt)t∈[0,T [ in P2(Ω) that satisfies, distributionally on
[0, T [× Ωd,

∂tµt = −div(vtµt) where vt ∈ −∂F ′(µt). (6)

This is a proper generalization of Definition 2.2 since, whenever (u(t))t≥0 is a particle gradient
flow for Fm, then t 7→ µm,t := 1

m

∑m
i=1 δui(t) is a Wasserstein gradient flow for F in the sense of

Definition 2.4 (see Proposition B.1). By leveraging the abstract theory of gradient flows developed
in [3], we show in Appendix B.2.1 that these Wasserstein gradient flows are well-defined.
Proposition 2.5 (Existence and uniqueness). Under Assumptions 2.1, if µ0 ∈ P2(Ω) is concentrated
on a setQr0 ⊂ Ω, then there exists a unique Wasserstein gradient flow (µt)t≥0 for F starting from µ0.
It satisfies the continuity equation with the velocity field defined in (5) (with µt in place of µm,t).

Note that the condition on the initialization is automatically satisfied in Proposition 2.3 because there
the initial measure has a finite discrete support: it is thus contained in any Qr for r > 0 large enough.

2.4 Many-particle limit

We now characterize the many-particle limit of classical gradient flows, under Assumptions 2.1.
Theorem 2.6 (Many-particle limit). Consider (t 7→ um(t))m∈N a sequence of classical gradient
flows for Fm initialized in a set Qr0 ⊂ Ω. If µm,0 converges to some µ0 ∈ P2(Ω) for the Wasserstein
distance W2, then (µm,t)t converges, as m → ∞, to the unique Wasserstein gradient flow of F
starting from µ0.

Given a measure µ0 ∈ P2(Qr0), an example for the sequence um(0) is um(0) = (u1, . . . , um)
where u1, u2, . . . , um are independent samples distributed according to µ0. By the law of large
numbers for empirical distributions, the sequence of empirical distributions µm,0 = 1

m

∑m
i=1 δui

converges (almost surely, for W2) to µ0. In particular, our proof of Theorem 2.6 gives an alternative
proof of the existence claim in Proposition 2.5 (the latter remains necessary for the uniqueness of the
limit).

3For a smooth vector field E = (Ei)
d
i=1 : Rd → Rd, its divergence is given by div(E) =

∑d
i=1 ∂Ei/∂xi.
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3 Convergence to global minimizers

3.1 General idea

As can be seen from Definition 2.4, a probability measure µ ∈ P2(Ω) is a stationary point of a
Wasserstein gradient flow if and only if 0 ∈ ∂F ′(µ)(u) for µ-a.e. u ∈ Ω. It is proved in [25] that
these stationary points are, in some cases, optimal over probabilities that have a smaller support.
However, they are not in general global minimizers of F over M+(Ω), even when R is convex. Such
global minimizers are indeed characterized as follows.
Proposition 3.1 (Minimizers). Assume that R is convex. A measure µ ∈M+(Ω) such that F (µ) <
∞ minimizes F on M+(Ω) iff F ′(µ) ≥ 0 and F ′(µ)(u) = 0 for µ-a.e. u ∈ Ω.

Despite these strong differences between stationarity and global optimality, we show in this section
that Wasserstein gradient flows converge to global minimizers, under two main conditions:

• On the structure: Φ and V must share a homogeneity direction (see Section 2.1 for the
definition of homogeneity), and

• On the initialization: the support of the initialization of the Wasserstein gradient flow
satisfies a “separation” property. This property is preserved throughout the dynamic and,
combined with homogeneity, allows to escape from neighborhoods of non-optimal points.

We turn these general ideas into concrete statements for two cases of interest, that exhibit different
structures and behaviors: (i) when Φ and V are positively 2-homogeneous and (ii) when Φ and V are
positively 1-homogeneous with respect to one variable.

3.2 The 2-homogeneous case

In the 2-homogeneous case a rich structure emerges, where the (d−1)-dimensional sphere Sd−1 ⊂ Rd
plays a special role. This covers the case of lifted problems of Section 2.1 when φ is 1-homogeneous
and neural networks with ReLU activation functions.
Assumptions 3.2. The domain is Ω = Rd with d ≥ 2 and Φ is differentiable with dΦ locally
Lipschitz, V is semiconvex and V and Φ are both positively 2-homogeneous. Moreover,

(i) (smooth convex loss) The loss R is convex, differentiable with differential dR Lipschitz on
bounded sets and bounded on sublevel sets,

(ii) (Sard-type regularity) For all f ∈ F, the set of regular values4 of θ ∈ Sd−1 7→ 〈f,Φ(θ)〉+V (θ)
is dense in its range (it is in fact sufficient that this holds for functions f which are of the form
f = R′(

∫
Φdµ) for some µ ∈M+(Ω)).

Taking the balls of radius r > 0 as the family (Qr)r>0, these assumptions imply Assumptions 2.1.
We believe that Assumption 3.2-(ii) is not of practical importance: it is only used to avoid some
pathological cases in the proof of Theorem 3.3. By applying Morse-Sard’s lemma [1], it is anyways
fulfilled if the function in question is d− 1 times continuously differentiable. We now state our first
global convergence result. It involves a condition on the initialization, a separation property, that can
only be satisfied in the many-particle limit. In an ambient space Ω, we say that a set C separates the
sets A and B if any continuous path in Ω with endpoints in A and B intersects C.
Theorem 3.3. Under Assumptions 3.2, let (µt)t≥0 be a Wasserstein gradient flow of F such that,
for some 0 < ra < rb, the support of µ0 is contained in B(0, rb) and separates the spheres raSd−1

and rbSd−1. If (µt)t converges to µ∞ in W2, then µ∞ is a global minimizer of F over M+(Ω). In
particular, if (um(t))m∈N,t≥0 is a sequence of classical gradient flows initialized in B(0, rb) such
that µm,0 converges weakly to µ0 then (limits can be interchanged)

lim
t,m→∞

F (µm,t) = min
µ∈M+(Ω)

F (µ).

A proof and stronger statements are presented in Appendix C. There, we give a criterion for Wasser-
stein gradient flows to escape neighborhoods of non-optimal measures—also valid in the finite-particle

4For a function g : Θ→ R, a regular value is a real number α in the range of g such that g−1(α) is included
in an open set where g is differentiable and where dg does not vanish.
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setting—and then show that it is always satisfied by the flow defined above. We also weaken the
assumption that µt converges: we only need a certain projection of µt to converge weakly. Finally,
the fact that limits in m and t can be interchanged is not anecdotal: it shows that the convergence is
not conditioned on a relative speed of growth of both parameters.

This result might be easier to understand by drawing an informal distinction between (i) the structural
assumptions which are instrumental and (ii) the technical conditions which have a limited practical
interest. The initialization and the homogeneity assumptions are of the first kind. The Sard-type
regularity is in contrast a purely technical condition: it is generally hard to check and known counter-
examples involve artificial constructions such as the Cantor function [37]. Similarly, when there is
compactness, a gradient flow that does not converge is an unexpected (in some sense adversarial)
behavior, see a counter-example in [2]. We were however not able to exclude this possibility under
interesting assumptions (see a discussion in Appendix C.5).

3.3 The partially 1-homogeneous case

Similar results hold in the partially 1-homogeneous setting, which covers the lifted problems of
Section 2.1 when φ is bounded (e.g., sparse deconvolution and neural networks with sigmoid
activation).
Assumptions 3.4. The domain is Ω = R×Θ with Θ ⊂ Rd−1, Φ(w, θ) = w · φ(θ) and V (w, θ) =

|w|Ṽ (θ) where φ and Ṽ are bounded, differentiable with Lipschitz differential. Moreover,

(i) (smooth convex loss) The loss R is convex, differentiable with differential dR Lipschitz on
bounded sets and bounded on sublevel sets,

(ii) (Sard-type regularity) For all f ∈ F, the set of regular values of gf : θ ∈ Θ 7→ 〈f, φ(θ)〉+ Ṽ (θ)
is dense in its range, and

(iii) (boundary conditions) The function φ behaves nicely at the boundary of the domain: either

(a) Θ = Rd−1 and for all f ∈ F, θ ∈ Sd−2 7→ gf (rθ) converges, uniformly in C1(Sd−2) as
r →∞, to a function satisfying the Sard-type regularity, or

(b) Θ is the closure of an bounded open convex set and for all f ∈ F, gf satisfies Neumann
boundary conditions (i.e., for all θ ∈ ∂Θ, d(gf )θ(~nθ) = 0 where ~nθ ∈ Rd−1 is the normal
to ∂Θ at θ).

With the family of nested sets Qr := [−r, r]×Θ, r > 0, these assumptions imply Assumptions 2.1.
The following theorem mirrors the statement of Theorem 3.3, but with a different condition on the
initialization. The remarks after Theorem 3.3 also apply here.
Theorem 3.5. Under Assumptions 3.4, let (µt)t≥0 be a Wasserstein gradient flow of F such that
for some r0 > 0, the support of µ0 is contained in [−r0, r0] × Θ and separates {−r0} × Θ from
{r0} × Θ. If (µt)t converges to µ∞ in W2, then µ∞ is a global minimizer of F over M+(Ω). In
particular, if (um(t))m∈N,t≥0 is a sequence of classical gradient flows initialized in [−r0, r0]×Θ
such that µm,0 converges to µ0 in W2 then (limits can be interchanged)

lim
t,m→∞

F (µm,t) = min
µ∈M+(Ω)

F (µ).

4 Case studies and numerical illustrations

In this section, we apply the previous abstract statements to specific examples and show on synthetic
experiments that the particle-complexity to reach global optimality is very favorable.

4.1 Sparse deconvolution

For sparse deconvolution, it is typical to consider a signal y ∈ F := L2(Θ) on the d-torus Θ = Rd/Zd.
The loss function is R(f) = (1/2λ)‖y − f‖2L2 for some λ > 0, a parameter that increases with the
noise level and the regularization is V (w, θ) = |w|. Consider a filter impulse responseψ : Θ→ R and
let Φ(w, θ) : x 7→ w · ψ(x− θ). The object sought after is a signed measure on Θ, which is obtained
from a probability measure on R×Θ by applying a operator defined by h1(µ)(B) =

∫
R wdµ(w,B)

for all measurable B ⊂ Θ. We show in Appendix D that Theorem 3.5 applies.
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Proposition 4.1 (Sparse deconvolution). Assume that the filter impulse response ψ is min{2, d}
times continuously differentiable, and that the support of µ0 contains {0} × Θ. If the projection
(h1(µt))t of the Wasserstein gradient flow of F weakly converges to ν ∈M(Θ), then ν is a global
minimizer of

min
µ∈M(Θ)

1

2λ

∥∥y − ∫ψdµ
∥∥2

L2 + |µ|(Θ).

We show an example of such a reconstruction on the 1-torus on Figure 1, where the ground truth
consists of m0 = 5 weighted spikes, ψ is an ideal low pass filter (a Dirichlet kernel of order 7)
and y is a noisy observation of the filtered spikes. The particle gradient flow is integrated with the
forward-backward algorithm [11] and the particles initialized on a uniform grid on {0} ×Θ.
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Figure 1: Particle gradient flow for sparse deconvolution on the 1-torus (horizontal axis shows
positions, vertical axis shows weights). Failure to find a minimizer with 6 particles, success with 10
and 100 particles (an animated plot of this particle gradient flow can be found in Appendix D.5).

4.2 Neural networks with a single hidden layer

We consider a joint distribution of features and labels ρ ∈ P(Rd−2 × R) and ρx ∈ P(Rd−2) the
marginal distribution of features. The loss is the expected risk R(f) =

∫
`(f(x), y)dρ(x, y) defined

on F = L2(ρx), where ` : R× R→ R+ is either the squared loss or the logistic loss. Also, we set
Φ(w, θ) : x 7→ wσ(

∑d−2
i=1 θixi + θd−1) for an activation function σ : R → R. Depending on the

choice of σ, we face two different situations.

Sigmoid activation. If σ is a sigmoid, say σ(s) = (1 + e−s)−1, then Theorem 3.5, with domain
Θ = Rd−1 applies. The natural (optional) regularization term is V (w, θ) = |w|, which amounts to
penalizing the `1 norm of the weights.

Proposition 4.2 (Sigmoid activation). Assume that ρx has finite moments up to order min{4, 2d−2},
that the support of µ0 is {0} ×Θ and that boundary condition 3.4-(iii)-(a) holds. If the Wasserstein
gradient flow of F converges in W2 to µ∞, then µ∞ is a global minimizer of F .

Note that we have to explicitly assume the boundary condition 3.4-(iii)-(a) because the Sard-type
regularity at infinity cannot be checked a priori (this technical detail is discussed in Appendix D.3).

ReLU activation. The activation function σ(s) = max{0, s} is positively 1-homogeneous: this
makes Φ 2-homogeneous and corresponds, at a formal level, to the setting of Theorem 3.3. An
admissible choice of regularizer here would be the (semi-convex) function V (w, θ) = |w| · |θ| [4].
However, as shown in Appendix D.4, the differential dΦ has discontinuities: this prevents altogether
from defining gradient flows, even in the finite-particle regime.

Still, a statement holds for a different parameterization of the same class of functions, which makes Φ
differentiable. To see this, consider a domain Θ which is the disjoint union of 2 copies of Rd. On the
first copy, define Φ(θ) : x 7→ σ(

∑d−1
i=1 s(θi)xi + s(θd)) where s(θi) = θi|θi| is the signed square

function. On the second copy, Φ has the same definition but with a minus sign. This trick allows to
have the same expression power than classical ReLU networks. In practice, it corresponds to simply
putting, say, random signs in front of the activation. The regularizer here can be V (θ) = |θ|2.

Proposition 4.3 (Relu activation). Assume that ρx ∈ P(Rd−1) has finite second moments, that the
support of µ0 is r0Sd−1 for some r0 > 0 (on both copies of Rd) and that the Sard-type regularity
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Assumption 3.2-(ii) holds. If the Wasserstein gradient flow of F converges in W2 to µ∞, then µ∞ is a
global minimizer of F .

We display on Figure 2 particle gradient flows for training a neural network with a single hidden
layer and ReLU activation in the classical (non-differentiable) parameterization, with d = 2 (no
regularization). Features are normally distributed, and the ground truth labels are generated with a
similar network with m0 = 4 neurons. The particle gradient flow is “integrated” with mini-batch
SGD and the particles are initialized on a small centered sphere.
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Figure 2: Training a neural network with ReLU activation. Failure with 5 particles (a.k.a. neurons),
success with 10 and 100 particles. We show the trajectory of |w(t)| · θ(t) ∈ R2 for each particle (an
animated plot of this particle gradient flow can be found in Appendix D.5).

4.3 Empirical particle-complexity

Since our convergence results are non-quantitative, one might argue that similar—and much simpler
to prove—asymptotical results hold for the method of distributing particles on the whole of Θ
and simply optimizing on the weights, which is a convex problem. Yet, the comparison of the
particle-complexity shown in Figure 3 stands strongly in favor of particle gradient flows. While
exponential particle-complexity is unavoidable for the convex approach, we observed on several
synthetic problems that particle gradient descent only needs a slight over-parameterization m > m0

to find global minimizers within optimization error (see details in Appendix D.5).
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Figure 3: Comparison of particle-complexity for particle gradient flow and convex minimization on a
fixed grid: excess loss at convergence vs. number of particles. Simplest minimizer has m0 particles.

5 Conclusion

We have established asymptotic global optimality properties for a family of non-convex gradient
flows. These results were enabled by the study of a Wasserstein gradient flow: this object simplifies
the handling of many-particle regimes, analogously to a mean-field limit. The particle-complexity
to reach global optimality turns out very favorable on synthetic numerical problems. This confirms
the relevance of our qualitative results and calls for quantitative ones that would further exploit the
properties of such particle gradient flows. Multiple layer neural networks are also an interesting
avenue for future research.
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