
Appendix
A Computation of Stochastic Gradients for P-ABC

In this section, we introduce the computation of stochastic gradients under the representations
specified in Section 2. In practice, the stochastic gradients are often computed using a mini-batch
of samples. To avoid further introduction of new notations, we specify the computation of the full
gradients for Φ̂N which easily yields the form of stochastic gradients by substituting the empirical
expectations over the entire set of N samples with the empirical expectations over the minibatch
samples, or (θk, yk, θ̃k) in the k-th iteration for Algorithm 1 when the minibatch size is 1.

We note that for any q ∈ P such that the integral can be interchanged with the gradient operator,
∇qEq[f(X)] = Eq[f(X)∇ log q(X)]. This allows us to take gradient with respect to q and use
stochastic gradients for (9) assuming that a set of synthetic samples {θ̃i}Ni=1 can be drawn from q(θ|y)
given {yi}Ni=1.

Gaussian mixtures. Denote the coefficient vectors for q(θ|y) and u(θ, y) in (7) and (8) as c(q) and
c(u). Then, the gradients of Φ̂N (q, u) with respect to q(θ|y) and u(θ, y) reduce to its gradients with
respect to c(q) and c(u):

∇c(q)Φ̂N = −Êy∼p(y)

Eθ∼q(θ|y)

ν∗(u(θ, y))

q(θ, y)
·

∇
c
(q)
1

q(θ|y)

...
∇
c
(q)
m
q(θ|y)

 ,

∇c(u)Φ̂N = Êp(y|θ)π(θ)[N (µ(u),Σ(u); (θ, y))]− Êq(θ|y)p(y)
[

dν∗(u(θ, y))

du(θ, y)
· N (µ(u),Σ(u); (θ, y))

]
.

where N (µ(u),Σ(u); (θ, y)) denotes a vector containing the values of Gaussian probability density
functions whose means are specified in (7) and evaluated at (θ, y), while

∇
c
(q)
i
q(θ|y) =

m∑
i=1

[1; y] · exp([1, y>] · c(q)i) ·
∑
j 6=i exp([1, y>] · c(q)j)(∑m

j=1 exp([1, y>] · c(q)j)
)2 · N (µ

(q)
i ,Σ(q); θ).

Reparametrization. Consider the reparametrization θ = f(y, ξ) for θ ∼ p(θ|y). The gradients of
Φ̂N (f, u) in (9) can be computed from the chain rule:

∇f Φ̂N = −Ê(y,ξ)∼p(y)p0(ξ)

{
dν∗(u(f(y, ξ), y))

du(f(y, ξ), y)
· ∂u(f(y, ξ), y)

∂f(y, ξ)
· ∇ff(y, ξ)

}
,

∇uΦ̂N = Ê(θ,y)∼p(y|θ)π(θ)∇uu(θ, y)− Ê(y,ξ)∼p(y)p0(ξ)

[
dν∗(u(f(y, ξ), y))

du(f(y, ξ), y)
· ∇uu(f(y, ξ), y)

]
.

When F and U are RKHSs, we have ∇ff(y, ξ) = KF ((y, ξ), ·) and ∇uu(θ, y) = KU ((θ, y), ·)
with KF and KU being the reproducing kernels of F and U , respectively, while ΠF and ΠU denote
the projections onto F and U . When f and u are represented by neural networks,∇f and∇u are the
gradients with respect to the coefficients representing those neural networks, which can be efficiently
calculated through back propagation.

B Proof of Theorem 1

In this proof, we find the concentration bound for the statistical error for (4), which is defined as

εN = Dν(p(y|θ)π(θ), q∗N (θ|y)p(y))− Dν(p(y|θ)π(θ), q∗(θ|y)p(y)),

where q∗N (θ|y) is the distribution that optimizes (9) (for reparametrization q∗N (θ|y) is the distribution
induced by the optimal empirical solution f∗N ∈ F withN samples in (4)), and q∗(θ|y) is the solution

12

to (4). Let û := argmaxu∈U Φ(f∗N , u), we can bound the learning error εN by
εN = max

u∈U
Φ(q∗N , u)−max

u∈U
Φ(q∗, u) = Φ(q∗N , û)− Φ(q∗, u∗)

= Φ(q∗N , û)− Φ(q∗, û) + Φ(q∗, û)− Φ(q∗, u∗)

≤ Φ(q∗N , û)− Φ(q∗, û) ≤ 2 sup
q∈P,u∈U

|Φ̂N (q, u)− Φ(q, u)|.

In the following, we provide a high probability upper bound for supq,u |Φ̂N (q, u)− Φ(q, u)|.

B.1 Technical Lemmas

The concentration bound requires Lemma 5 in Antos et al. [2008]:
Lemma 1 (Lemma 5 [Antos et al., 2008]). Suppose that Z1, . . . , ZN ∈ Z is a sequence that is
stationary and β-mixing, and G is a class of bounded functions, then

P

(
sup
g∈G

∣∣∣∣∣ 1

N

N∑
i=1

g(Zi)− E[g(Z1)]

∣∣∣∣∣ > ε

)
≤ 16E [N (ε/8,G, (Z ′i; i ∈ H))] exp

(
−Nε2

256C2

)
+

+ 2mNβkN+1

where Z ′i is the ”ghost” sample that mirrors Zi, N (ε/8,G, (Z ′i; i ∈ H)) is the covering number for
G, and H = ∪mN

j=1Hi is the union of blocks in the sampling path.

The covering number in the above lemma can be bounded using the following result:
Lemma 2 (Corollary 3 [Haussler, 1995]). For any setX , and x1, . . . , xn ∈ X , assumeF of functions
on X are bounded within [0, C] with pseudo-dimension DF <∞. Then, for any ε,

N (ε,F , (x1, . . . , xn)) ≤ e(DF + 1)

(
2eC

ε

)DF
,

where e is the Euler’s number.

With the above two lemmas, we are ready to prove the theorem.

B.2 Learning Error

For any sample (θ, y), let φ(q, u) = u(θ, y)−Eθ∼q(θ|y)[ν∗(u(θ, y))|y]. Then, the objective function
in (4) can be written as Φ(q, u) = E[φ(q, u)], where the expectation is with respect to the joint
distribution of (θ, y) ∼ p(y|θ)π(θ).

By assumption, since |u(θ, y)| ≤ Cu, 6 the Fenchel dual in (4) can be bounded. In particular, we
denote the upper bound as ν∗(u) = supu′∈[−Cu,Cu]〈u

′, u〉 − ν(u′) ≤ Cν , 7 and hence

φ(q, u) ≤ Cν + Cu.

Invoking Lemma 1, in which we let G = P × U , we have

P

(
sup

(q,u)∈P×U

∣∣∣Φ̂N (q, u)− Φ(q, u)
∣∣∣ > ε

)
≤ 2mNβkN+1+

+ 16E
[
N
(ε

8
,P × U , ((θi, yi), i ∈ H)

)]
exp

(
−mN ε

2

128(Cν + Cu)2

)
.

Next, invoking Lemma 2 and by assumption, 8 we have

P

(
sup

(q,u)∈P×U

∣∣∣Φ̂N (q, u)− Φ(q, u)
∣∣∣ > ε

)
≤ 16e(D + 1)

(
4eC

ε

)D
exp

(
−mN ε

2

128(Cν + Cu)2

)
+

+ 2mNβkN+1.

6Imagine Gaussian mixture representation with bounded coefficients, or neural networks whose last layer of
activation is a bounded function, such as the hyperbolic tangent or the sigmoid function, amplified by a constant
Cu such that |u(θ, y)| ≤ Cu.

7For example, for χ2-divergence, we have Cν = C2
u + Cu.

8For transportation reparametrization with neural networks, it is known that when the neural network is feed
forward and piecewise linear, there exists upper bounds for its pseudo dimension [Bartlett et al., 2017].

13

Lastly, by setting kN = (Nε2C2/b)
1/(κ+1), with C2 = 1/(512(Cν +Cu)2) and mN = N/2kN , we

have the right-hand side of the above equation bounded by δ with

ε =

√
C1(max(C1/b, 1))1/κ

C2N
,

and C1 = 0.5D logN + log(e/δ) + [log(2 max(16e(D + 1)C
D/2
2 , β̄))]+, with β̄ is such that

βm ≤ β̄ exp(−bmκ).

C Derivation of objective functions

Divergence Saddle point objective
χ2 divergence E(θ,y)∼p(y|θ)π(θ)[u(θ, y)]− Eθ∼f(y,ξ),ξ∼p0(ξ),y∼p(y)[u(θ, y) + u2(θ, y)/4]
Wasserstein distance E(θ,y)∼p(y|θ)π(θ)[u(θ, y)]− Eθ∼f(y,ξ),ξ∼p0(ξ),y∼p(y)[u(θ, y)]
KL divergence E(θ,y)∼p(y|θ)π(θ)[u(θ, y)]− Eθ∼f(y,ξ),ξ∼p0(ξ),y∼p(y)[1 + log(u(θ, y))]

Table 2: A list of divergences and their corresponding saddle point objective.
In this section, we present the detailed derivation of the objective functions in Section 2 and give
examples for deriving (4) for several choices of f -divergences in Table 2.

Posterior Distribution Matching For the posterior distribution matching objective, we want to
minimize

min
f∈F

max
h∈H

Ey
[(
Eθ|y[h(θ)]− Eθ∼p0(ξ)[h(f(y, ξ))]

)2]
.

By exploiting the dual embedding technique and the Fenchel duality, we have

max
h∈H

Ey
[(
Eθ|y [h(θ)]− Eθ∼p0(ξ) [h(f (y, ξ))]

)2]
= max

h∈H
Ey
[
max
vy∈R

vy

(
Eθ|y [h(θ)]− Eξ∼p0(ξ) [h(f (y, ξ))]− 1

2
v2y

)]
= max

h∈H
max
v∈V

Ey
[
v (y) ·

(
Eθ|y [h(θ)]− Eξ∼p(ξ) [h(f(y, ξ))]

)
− 1

2
v2(y)

]
,

thus achieving the equivalence between (5) and (6).

Joint Distribution Matching

• χ2-divergence. Recall that the divergence minimization objective (3) can be written in the
saddle point formulation:

min
f∈F

max
u∈U

E(θ,y)∼p(y|θ)π(θ) [u(θ, y)]− Eθ∼f(y,ξ),ξ∼p0(ξ),y∼p(y) [ν∗ (u(θ, y))] .

For χ2 divergence, we have
ν(x) = (x− 1)2.

Therefore,

ν∗(x) = sup
y

(〈x, y〉 − ν(y)) = sup
y

(xy − (y − 1)2) =
x2 + 4x+ 8

4
.

Plugging in x = u(θ, y) gives the result of ν∗(u(θ, y)), and the expression for Φ follows
immediately.

ν∗(x) = sup
y

(〈x, y〉 − ν(y)) = sup
y

(〈x, y〉 − (y − 1)2) = x− x2

4
.

Plugging in x = u(θ, y) gives the expression of ν∗(u(θ, y), and hence we arrive at the
conclusion.

• KL divergence. For KL divergence, ν(x) = log x. We thus have
ν∗(x) = sup

y
(〈x, y〉 − log y) = 1 + log x.

Therefore, letting x = u(θ, y) gives the expression of ν∗(u(θ, y)), and hence we arrive at
the conclusion.

14

D Proof of Theorem 2

Following the notations in Algorithm 1, we denote the updates of q and u at iteration k by qk and
uk, respectively. Different representations of q and u will determine the detailed forms of qk and
uk. For example, when represented by Gaussian mixtures, both uk and qk in Algorithm 1 will be a
coefficient vector. However, for the purpose of proving convergence, using an abstract form uk and
qk is sufficient barring that U and P are closed and bounded.

By convex-concavity of the empirical loss function, we have

Φ̂N (qk, uk)− Φ̂N (q, uk) ≤ 〈∇qΦ̂N (qk, uk), qk − q〉,

and

Φ̂N (qk, u)− Φ̂N (qk, uk) ≤ 〈∇uΦ̂N (qk, uk), u− uk〉

for any q ∈ P and u ∈ U . Combining these two inequalities gives

Φ̂N (qk, u)− Φ̂N (q, uk) ≤ 〈∇qΦ̂N (qk, uk), qk − q〉+ 〈∇uΦ̂N (qk, uk), u− uk〉.

It is worth clarifying, at this point, that the gradient symbol we used for Φ̂N so far refer to the actual
gradient rather than the stochastic gradients given in Section 3.1. However, they are closely related
by the fact that the expectation of the stochastic gradient is the gradient. To avoid confusion, we use
∇̂qΦ̂N and ∇̂uΦ̂N to represent the stochastic gradients, for which we have

E
[
∇̂uΦ̂N (q, u)

]
= ∇uΦ̂N (q, u) and E

[
∇̂qΦ̂N (q, u)

]
= ∇qΦ̂N (q, u),

where the expectation is taken over the the second term in (9), where we have used θ ∼ q(θ|y) to
derive the stochastic gradients.

By convexity of Φ̂N , we have

ε(q̄T , ūT) = max
u∈U

Φ̂N (q̄T , u)−min
q∈P

Φ̂N (q, ūT)

= max
u∈U

Φ̂N

(∑T
k=1 ηkqk∑T
k=1 ηk

, u

)
−min
q∈P

Φ̂N

(
q,

∑T
k=1 ηkuk∑T
k=1 ηk

)

≤ max
u∈U

∑T
k=1 ηkΦ̂N (qk, u)∑T

k=1 ηk
−min
q∈P

∑T
k=1 ηkΦ̂N (q, uk)∑N

k=1 ηk

≤
maxu∈U,q∈P

{∑T
k=0

(
ηk〈∇qΦ̂N (qk, uk), qk − q〉 − ηk〈∇uΦ̂N (qk, uk), uk − u〉

)}
∑T
k=1 ηk

.

We now prove that the expectation of the numerator is upper bounded by the numerator of the
right-hand side of the bound in the statement of Theorem 2, which will bring us to the conclusion.

To prove this, we first note that, by the contractivity of the projection operator, we have, for any
q ∈ P ,

E‖qk+1 − q‖2P = E
∥∥∥ΠP(qk − ηk∇̂qΦ̂N (qk, uk))−ΠP(q)

∥∥∥2
P

≤ E‖qk − q‖2P + E
∥∥∥ηk∇̂qΦ̂N (qk, uk)

∥∥∥2
P
− 2E

〈
qk − q, ηk∇qΦ̂N (qk, uk)

〉
,

which implies

2E
〈
qk − q, ηk∇qΦ̂N (qk, uk)

〉
≤ E‖qk − q‖2P + E

∥∥∥ηk∇̂qΦ̂N (qk, uk)
∥∥∥2
P
− E‖qk+1 − q‖2P

for any q ∈ P . Similarly, we have

−2E
〈
uk − u, ηk∇uΦ̂N (qk, uk)

〉
≤ E‖uk − u‖2U + E

∥∥∥ηk∇̂uΦ̂N (qk, uk)
∥∥∥2
U
− E‖uk+1 − u‖2U

15

Fully Connected Layer

Recurrent Neural Network
with LSTM Cells

𝜉 𝑦1 𝑦𝑛 ⋯ ⋯

𝑓(𝑌, 𝜉)

Generator

Fully Connected Layer

Recurrent Neural Network
with LSTM Cells

𝜃 𝑦1 𝑦𝑛 ⋯ ⋯

𝑢(𝜃, 𝑌)

Discriminator

Figure 4: Network architectures for u and f .

for any u ∈ U . By the Lipschitz assumption, we have

E
∥∥∥ηk∇̂qΦ̂N (qk, uk)

∥∥∥2
P
≤ (ηk)2L2

N , and E
∥∥∥ηk∇̂uΦ̂N (qk, uk)

∥∥∥2
U
≤ (ηk)2L2

N .

Therefore,

2E
〈
qk − q, ηk∇qΦ̂N (qk, uk)

〉
− 2E

〈
uk − u, ηk∇uΦ̂N (qk, uk)

〉
≤ E

(
‖qk − q‖2P − ‖qk+1 − q‖2P + ‖uk − u‖2U − ‖uk+1 − u‖2U

)
+
[
(ηk)2 + (ηk)2

]
L2
N .

Lastly, by telescoping, we have

E

{
T∑
k=0

(
2
〈
qk − q, ηk∇qΦ̂N (qk, uk)

〉
− 2

〈
uk − u, ηk∇uΦ̂N (qk, uk)

〉)}

≤ E
(
‖q0 − q‖2P + ‖u0 − u‖2U − ‖qT+1 − q‖2P − ‖uT+1 − u‖2U

)
+

T∑
k=0

[
(ηk)2 + (ηk)2

]
L2
N

≤ E
(
‖q0 − q‖2P + ‖u0 − u‖2U

)
+

T∑
k=0

[
(ηk)2 + (ηk)2

]
L2
N

≤ D2
P +D2

U +

T∑
k=0

2η2kL
2
N .

This holds for any q ∈ P and u ∈ U , and therefore holds for the supremum over q and u. Hence, we
reached the conclusion.

E Neural Network Architecture for Biological Dynamic System Experiment

Below, we describe the structure for the neural network we used in the simulation of the ecological
dynamical system. The network structure is shown in Figure 4. On the left-hand side, we have
the network structure for f(Y, ξ), for which we first input y1, . . . , yn into an RNN comprised of
LSTM cells, and then use its output combined with ξ as the input for a fully connected layer. On
the right-hand side, the network structure for u(θ, Y) is similar, except that we replace ξ with θ and
change the dimension of the fully connected layer accordingly. When θ is generated from f(Y, ξ),
we concatenate the two neural networks, using the output of f as part of the input to u.

16

