
SUPPLEMENTARY MATERIAL
Computationally and statistically efficient learning of causal Bayes nets using

path queries

Appendix A Discussion

Learning causal Bayes nets from purely interventional data. Our interest in purely interven-
tional data stems from our goal of discovering the true causal relationships. We perform single-vertex
interventions for each node, which agrees with the numbers of single-vertex interventions sufficient
and in the worst-case necessary to identify any DAG, as shown in [8].

Availability of purely interventional data. The availability of purely interventional data is an
implicit assumption in several prior works, which equivalently assume that one can perform an
intervention on any node [19, 28, 11, 10, 25, 13]. As an illustration of the availability of interventional
data, as well as the applicability of our method, we show experimental evidence using three gene
perturbation datasets from [33, 9]. (See Appendix G.4.)

Appendix B Algorithms

B.1 Algorithm for Transitive Reduction

As proved in [1], the time complexity of the best algorithm for finding the transitive reduction of a
DAG is the same as the time to compute the transitive closure of a graph or to perform Boolean matrix
multiplication. Therefore, we can use any exact algorithm for fast matrix multiplication, such as [15],
which has O(n2.3729) time complexity. As a result, the time complexity of Algorithm 4 is dominated
by the computation of the transitive reduction since answering a query Q̃(i, j) is in Õ(log n). Finally,
note that performing n2 queries (one per each node pair) is equivalent to performing n single-vertex
interventions, in which we intervene one node and observe the remaining n− 1 nodes. This number
of interventions is necessary in the worst case, as discussed in [8].

Algorithm 4 Learning the transitive reduction by using noisy path queries
Input: Vertex set V

Output: Edge set Ê

1: Ê← ∅
2: for i = 1 . . . n do
3: for j = 1 . . . n do
4: if i 6= j and Q̃(i, j) = 1 then
5: Ê← Ê ∪ {(i, j)}
6: Ê← TR(Ê)

Assuming that we have correct answers for all path queries, Algorithm 4 will indeed exactly recover
the TR(G) of any DAG G. However, this is not necessary. We can recover the true transitive reduction,
TR(G), if we have correct answers for queriesQG(i, j) when i ∈ πG(j), and when there is no directed
path from i to j, and arbitrary answers when there is a directed path from i to j. This is because
the transitive reduction step will remove every transitive edge. It is the previous observation that
motivated our characterization of noisy queries given in Definition 3.

B.2 Noisy Path Query Algorithms

Algorithms 5 and 6 present our algorithms for answering a noisy path query Q̃(i, j) motivated by
Theorems 1 and 2 respectively. For discrete CBNs, we first create a list L of size d = |Dom[Xi]|,

containing the empirical probability mass functions (PMFs) of Xj after intervening Xi with all the
possible values from its domain Dom[Xi]. Next, if the `∞-norm of the difference of any pair of
PMFs in L is greater than a constant γ, then we answer the query with 1, and 0 otherwise. For
continuous CBNs, we intervene Xi with a constant value z and compute the empirical expected
value of Xj . We then output 1 if the absolute value of the expected value is greater than 1/2, and 0
otherwise. (The threshold of 1/2 is due to the particular way to set z, as prescribed by Theorem 2 and
Corollary 1.)

Algorithm 5 Noisy path query algorithm for discrete variables
Input: Nodes i and j, number of interventional samples m, and constant γ.
Output: Q̃(i, j)

1: L ← emptyList()
2: for xi ∈ Dom[Xi] do
3: Intervene Xi by setting its value to xi, and obtain m samples x(1)j , . . . , x

(m)
j of Xj

4: p̂k = 1
m

∑m
l=1 1[x

(l)
j = k],∀k ∈Dom[Xj]

5: Add p̂ to the list L
6: Q̃(i, j)← 1[(∃ p̂, q̂ ∈ L) ‖p̂− q̂‖∞ > γ]

Algorithm 6 Noisy path query algorithm for continuous variables
Input: Nodes i and j, number of interventional samples m, and constant z (set as prescribed by

Theorem 2 or Corollary 1.)
Output: Q̃(i, j)

1: Intervene Xi by setting its value to z, and obtain m samples x(1)j , . . . , x
(m)
j of Xj

2: µ̂← 1
m

∑m
k=1 x

(k)
j

3: Q̃(i, j)← 1[|µ̂| > 1/2] . (The threshold of 1/2 is due to the particular way to set z, as prescribed
by Theorem 2 and Corollary 1.)

B.3 Noisy Transitive Query Algorithms

Algorithms 7 and 8 show how to answer a transitive query for discrete and continuous CBNs
respectively. Both algorithms are motivated on a property of CBNs, that is, ∀i ∈ V and for every set
S disjoint of {i, πG(i)}, we have P (Xi|do(XπG(i) = xπG(i)), do(XS = xS)) = P (Xi|do(XπG(i) =
xπG(i))). Thus, both algorithms intervene all the variables in S, if S is the parent set of j, then i will
have no effect on j and they return 0, and 1 otherwise.

Algorithm 7 Noisy transitive query algorithm for discrete variables
Input: Nodes i and j, set of nodes S, number of interventional samples m, and constant γ.
Output: T̃ (i, j, S)

1: L ← emptyList()
2: for xs ∈ ×k∈SDom[Xk] do
3: Intervene set XS by setting its value to xs
4: for xi ∈ Dom[Xi] do
5: Intervene Xi by setting its value to xi, and obtain m samples x(1)j , . . . , x

(m)
j of Xj

6: p̂k = 1
m

∑m
l=1 1[x

(l)
j = k],∀k ∈Dom[Xj]

7: Add p̂ to the list L
8: T̃ (i, j, S)← 1[(∃ p̂, q̂ ∈ L) ‖p̂− q̂‖∞ > γ]

9: if T̃ (i, j, S) = 1 then STOP

B.4 Query Algorithm for Discrete Networks Under Imperfect Interventions

Algorithm 9 shows how to answer a noisy query for discrete CBNs under imperfect interventions.

13

Algorithm 8 Noisy transitive query algorithm for continuous variables
Input: Nodes i and j, set of nodes S, number of interventional samples m, and constants z1, z2 (set

as prescribed by Theorem 4 or Corollary 2.)
Output: T̃ (i, j, S)

1: Intervene all variables XS by setting their values to z1
2: Intervene Xi by setting its value to z2, and obtain m samples x(1)j , . . . , x

(m)
j of Xj

3: µ̂← 1
m

∑m
k=1 x

(k)
j

4: T̃ (i, j, S)← 1[|µ̂| > 1/2] . (The threshold of 1/2 is due to the particular way to set z1 and z2, as
prescribed by Theorem 4 and Corollary 2.)

Algorithm 9 Noisy path query algorithm for discrete variables under imperfect interventions.
Input: Nodes i and j, number of interventional samples m, and constant γ
Output: Q̃(i, j)

1: L ← emptyList()
2: for xi ∈ Dom[Xi] do
3: Try to intervene Xi with value xi, and obtain m pair samples (x

(1)
i , x

(1)
j), . . . , (x

(m)
i , x

(m)
j)

of Xi and Xj

4: p̂k = 1∑m
l=1 1[x

(l)
i =xi]

∑m
l=1 1[x

(l)
j = k ∧ x(l)i = xi],∀k ∈ Dom[Xj]

5: Add p̂ to the list L
6: Q̃(i, j)← 1[(∃ p̂, q̂ ∈ L) ‖p̂− q̂‖∞ > γ]

Appendix C On Imperfect Interventions

In this section we relax the assumption of perfect interventions and analyze the sample complexity of a
noisy path query. [7] analyzed a general framework of interventions named as uncertain interventions.
In general terms, we model an imperfect intervention by adding some degree of uncertainty to the
intervened variable. Note that the main distinction with respect to perfect interventions is that now the
intervened variable is a random variable, meanwhile in perfect interventions the intervened variable
is considered a constant.

Discrete random variables. For a discrete CBN, we assume that an intervention follows a
Bernoulli trial. That is, when one wants to intervene a variable Xi with target value v, the probability
that Xi takes the target value v is φi, i.e., P (Xi = v) = φi, and P (Xi 6= v) = 1− φi otherwise.

To answer a noisy path query under this setting, we modify lines 3 and 4 of Algorithm 5. In
line 3, we now get pair samples {(x(1)i , x

(1)
j), . . . , (x

(m)
i , x

(m)
j)}. In line 4, we know estimate

p(Xj |do(Xi = xi)) as follows: ∀k ∈ Dom[Xj], p̂k = 1∑m
l=1 1[x

(l)
i =xi]

∑m
l=1 1[x

(l)
j = k∧x(l)i = xi].

For completeness, we include the algorithm in Appendix B.4. Finally, the number of interventional
samples m is prescribed by the following theorem.

Theorem 5. Let B = (G,PG), r, and γ follow the same definition as in Theorem 1. Let α be a
constant such that for all i ∈ V, 1/2 ≤ α ≤ φi, in terms of imperfect interventions. Let Ĝ = (V, Ê)
be the output of Algorithm 4. Then for γ > 0 and a fixed probability of error δ ∈ (0, 1), we have
P (TR(G) = Ĝ) ≥ 1− δ, provided that m ∈ O(1

αγ2

(
lnn+ ln r

δ

)
) interventional samples are used

per δ-noisy partially-correct path query in the modified Algorithm 5 as described above.

In practice, knowing the value of each φi can be hard to obtain, hence our motivation to introduce a
lower bound α in Theorem 5.

Continuous random variables. For continuous CBNs, we model an imperfect intervention by
assuming that the intervened variable is also a sub-Gaussian variable. That is, when one intervenes a
variable Xi with target value v, Xi becomes a sub-Gaussian variable with mean v and variance ν2i .
Finally, we continue using Algorithm 6 to answer noisy path queries under this new setting.

14

Theorem 6. Let B = (G,PG), µj = 0, and σ2
j follow the same definition as in Theorem 2.

Let µj|do(Xi=z) and σ2
j|do(Xi=z)

denote the expected value and variance of Xj after perfectly
intervening Xi with value z. Furthermore, let µ(B, z) = min(i,j)∈E |EXi

[µj|do(Xi=z)]|, and
σ2(B, z) = max(max(i,j)∈E EXi [σ

2
j|do(Xi=z)

],maxj∈V σ
2
j). Let Ĝ = (V, Ê) be the output of Al-

gorithm 4. If there exist an upper bound σ2
ub and a finite value z such that σ2(B, z) ≤ σ2

ub and
µ(B, z) ≥ 1, then for a fixed probability of error δ ∈ (0, 1), we have P (TR(G) = Ĝ) ≥ 1 − δ,
provided that m ∈ O(σ2

ub log n
δ) interventional samples are used per δ-noisy partially-correct path

query in Algorithm 6.

The motivation of the conditions in Theorem 6 are similar to Theorem 2. Next, we show that ASGN
models can fulfill the conditions above.

Corollary 3. Under the settings given in Corollary 1. If for all j ∈ V, ν2j ≤ σ2
max in terms of

imperfect interventions. Then, for a fixed probability of error δ ∈ (0, 1), we have P (TR(G) = Ĝ) ≥
1− δ provided that m ∈ O(σ2

ub log n
δ) interventional samples are used per δ-noisy partially-correct

path query in Algorithm 6.

Appendix D Examples

D.1 Example for the use of faithfulness assumption

Consider the following ASGN network in Figure 4, assume that X1 is intervened, then we have that
the expected value of X3 is 0 regardless of the value of the intervention. This occurs because the
effect is canceled via the directed paths {(1, 2), (2, 3)} and {(1, 3)}. This motivated us to use the
faithfulness assumption and rule out such “pathological” parameterizations. Finally, in practice, the
values of wmin and σ2

ub are unknown. Fortunately, knowing a lower bound of wmin and an upper
bound of σ2

ub suffices for structure recovery.

1

2 3

+
1

+1

−
1

Figure 4: An ASGN network in which the effect of X1 on X3 is none.

D.2 Example about the Number of Experiments in the Worst Case for Multiple-Vertex
Interventions

Consider the following DAG in Figure 5 of 6 binary variables. Such that, P (A) = 0.5, P (B) =
0.2, P (C) = 0.1. Let us also assume that P (X1|¬A¬B¬C) = 0.4, and for any other combination
of A,B,C we have P (X1| ·) = 0.8.

Let us say that we perform a multiple-vertex intervention of A,B,C, and that we want to unveil
the causal edge (A,X1). For this DAG we have that P (X1|do(A), do(B), do(C)) = P (X1|ABC).
Next let us say that we randomly select the configuration A,¬B,C for the intervention. Then
P (X1|do(A¬BC)) = P (X1|A¬BC) = 0.8, in order to discover the causal edge, we also perform
the following intervention, P (X1|do(¬A¬BC)) = P (X1|¬A¬BC) = 0.8. Which results in an
“independence” or apparent no causal effect. In order to unveil the causal edge (A,X1), it is required
to intervene with the configurations A,¬B,¬C and ¬A,¬B,¬C, which in the worst case may be a
single configuration out of an exponential number of possible configurations that allows to find the
direct causal effect.

Appendix E On Latent Confounders

It is well-known that the existence of confounders imposes the most crucial problem for inferring
causal relationships from observational data [17, 21]. However, since we perform single-vertex

15

A

B C

X1 X2 X3

Figure 5: DAG of 6 variables where we perform a multiple-vertex intervention.

interventions for every node in the CBN, the existence of hidden confounders does not impose a
problem. In the leftmost graph of Figure 6, X and Y are associated observationally due to a hidden
common cause, but neither of them is a cause of the other. By intervening X or Y , we remove the
“hidden edges”. As a consequence, we are able to infer that neither X nor Y is a cause. The middle
graph shows an association between X and Y , and the need to intervene X in order to discover that
X is a cause of Y . Finally, the rightmost graph shows that even in more complex latent configurations,
by intervening X we are removing any association between X and Y due to confounders.

X Y X Y X Z Y

Figure 6: Examples of a latent configurations that associate the variables X and Y .

Appendix F Detailed Proofs

We now present the proofs of Propositions, Theorems and Corollaries from our main text.

F.1 Proof of Proposition 1

Proof. The proof follows directly from rule 3 of do-calculus [21], which states that P (Xj |do(Xi =
xi)) = P (Xj) if (Xi ⊥ Xj) in the mutilated graph after the intervention on Xi. Since there is no
directed path from i to j, in the mutilated graph there is either no path or a path with a v-structure
between i and j, which implies the independence of Xi and Xj .

For clarity, we also provide a longer (and equivalent) proof. The proof follows a d-separation
argument. Let B̄ be the network after we perform an intervention on Xi with value xi, i.e., B̄ has
the edge set E \ {(pi, i) | pi ∈ πG(i)}. Let ancG(i) and ancG(j) be the ancestor set of i and j
respectively. Now, if there is no directed path from i to j in B then there is no directed path in B̄
either, therefore, i /∈ ancG(j). Also, ancG(i) = ∅ as a consequence of intervening Xi. Next, we
follow the d-separation procedure to determine if Xi and Xj are marginally independent in B̄. Since
ancG(i) = ∅, the ancestral graph of i consists of just i itself in isolation, moralizing and disorienting
the edges of the ancestral graph of j will not create a path from i to j. Thus, guaranteeing the
independence of Xi and Xj , i.e., P (Xj) = P (Xj |Xi) in B̄. Finally, since P (Xj |XπG(j)) is fully
specified by the parents of j and these parents are not affected by i, we have that the marginal of Xj

in B remains unchanged in B̄, i.e., P (Xj |do(Xi = xi)) = P (Xj).

F.2 Proof of Proposition 2

Proof. Here we assume faithfulness in the post-interventional distribution. Both claims follow a proof
by contradiction. For Claim 1, if for all xi ∈ Dom[Xi] we have that P (Xj) = P (Xj |do(Xi = xi))
then Xi would not be a cause of Xj , which contradicts the fact that i ∈ πG(j). For Claim 2, if for all
xi, x

′
i ∈ Dom[Xi] we have that P (Xj |do(Xi = xi)) = P (Xj |do(Xi = x′i)) then in the mutilated

graph we have that P (Xj) = P (Xj |Xi = xi) for all xi, which implies that Xi would not be a cause
of Xj , thus contradicting the fact that i ∈ πG(j).

16

F.3 Proof of Proposition 3

The proof follows similar arguments to the proof of Theorem 1.

F.4 Proof of Theorem 1

To answer a path query in a discrete CBN, our algorithm compares two empirical PMFs, therefore,
we need a good estimation of these PMFs. The following lemma shows the sample complexity to
estimate several PMFs simultaneously by using maximum likelihood estimation.
Lemma 1. Let Y1, . . . , YL be L random variables, such that w.l.o.g. the domain of each variable,
Dom[Yi], is a finite subset of Z+. Also, let y(1)i , . . . , y

(m)
i be m independent samples of Yi. The

maximum likelihood estimator, p̂(Yi), is obtained as follows:

p̂j(Yi) =
1

m

m∑
k=1

1[y
(k)
i = j], j ∈ Dom[Yi].

Then, for fixed values of t > 0 and δ ∈ (0, 1), and provided that m ≥ 2
t2 ln 2L

δ , we have

P
(

(∀i ∈ {1 . . . L})
∥∥p̂(Yi)− p(Yi)

∥∥
∞ ≤ t

)
≥ 1− δ.

Proof. We use the Dvoretzky-Kiefer-Wolfowitz inequality [18, 6]:

P

(
sup

j∈Dom[Yi]

∣∣∣F̂j(Yi)− Fj(Yi)∣∣∣ > t

)
≤ 2e−2mt

2

, t > 0,

where F̂j(Yi) =
∑
k≤j p̂k(Yi) and Fj(Yi) =

∑
k≤j pk(Yi). Since p̂j(Yi) = F̂j(Yi)− F̂j−1(Yi) and

pj(Yi) = Fj(Yi)− Fj−1(Yi), we have∣∣p̂j(Yi)− pj(Yi)
∣∣ =

∣∣∣∣(F̂j(Yi)− F̂j−1(Yi)
)
−
(
Fj(Yi)− Fj−1(Yi)

)∣∣∣∣
≤
∣∣∣F̂j(Yi)− Fj(Yi)∣∣∣+

∣∣∣F̂j−1(Yi)− Fj−1(Yi)
∣∣∣

therefore, for a specific i, we have

P
(∥∥p̂(Yi)− p(Yi)

∥∥
∞ > t

)
≤ 2e−mt

2/2, t > 0.

Then by the union bound, we have

P
(

(∃i ∈ {1 . . . L})
∥∥p̂(Yi)− p(Yi)

∥∥
∞ > t

)
≤ 2Le−mt

2/2, t > 0.

Let δ = 2Le−mt
2/2, then for m ≥ 2

t2 ln 2L
δ , we have

P
(

(∀i ∈ {1 . . . L})
∥∥p̂(Yi)− p(Yi)

∥∥
∞ ≤ t

)
≥ 1− δ, δ ∈ (0, 1), t > 0.

Which concludes the proof of Lemma 1.

Lemma 1 states that simultaneously for all L PMFs, the maximum likelihood estimator p̂(Yi) is at
most t-away of p(Yi) in `∞-norm with probability at least 1 − δ. Next, we provide the proof of
Theorem 1.

Proof. We analyze a path query Q̃(i, j) for nodes i, j ∈ V. From the contrapositive of Proposition 1
we have that if P (Xj |do(Xi = xi)) 6= P (Xj) then there exists a directed path from i to j. To detect
the latter, we opt to use Claim 2 from Proposition 2.

Let p(k)
ij = P (Xj |do(Xi = xk)) for all i, j ∈ V and xk ∈ Dom[Xi], and let p̂(k)

ij be the maximum

likelihood estimation of p(k)
ij . Also, let τ = γ

2 for convenience. Next, using Lemma 1 with t = τ/4

and L = rn2, we have

P

((
∀i, j ∈ V,∀xk ∈ Dom[Xi]

)∥∥∥p̂(k)
ij − p

(k)
ij

∥∥∥
∞
≤ τ/4

)
≥ 1− δ.

17

That is, with probability at least 1− δ, simultaneously for all i, j, k, the estimators p̂(k)
ij are at most

τ/4-away from the true distributions p(k)
ij in `∞ norm, provided that m ≥ 32

τ2 (2 lnn+ln 2r
δ) samples

are used in the estimation.

Now, we analyze the two cases that we are interested to answer with high probability. First, let
i ∈ πG(j). We have that for any two distributions p

(u)
ij ,p

(v)
ij where xu, xv ∈ Dom[Xi], either

p
(u)
ij = p

(v)
ij or ‖p(u)

ij − p
(v)
ij ‖∞ > τ (recall the definition of γ and τ). Next, for a specific i, j, we

show how to test if two distributions p(u)
ij ,p

(v)
ij are equal or not. Let us assume p(u)

ij = p
(v)
ij , then we

have ∥∥∥p̂(u)
ij − p̂

(v)
ij

∥∥∥
∞

=

∥∥∥∥p̂(u)
ij − p

(u)
ij −

(
p̂
(v)
ij − p

(v)
ij

)∥∥∥∥
∞

≤
∥∥∥p̂(u)

ij − p
(u)
ij

∥∥∥
∞

+
∥∥∥p̂(v)

ij − p
(v)
ij

∥∥∥
∞

≤ τ/2.

Therefore, if ‖p̂(u)
ij −p̂

(v)
ij ‖∞ > τ/2 then w.h.p. p(u)

ij 6= p
(v)
ij . On the other hand, if ‖p̂(u)

ij −p̂
(v)
ij ‖∞ ≤

τ/2 then w.h.p. we have:∥∥∥p(u)
ij − p

(v)
ij

∥∥∥
∞

=

∥∥∥∥p(u)
ij − p̂

(u)
ij −

(
p
(v)
ij − p̂

(v)
ij

)
+ p̂

(u)
ij − p̂

(v)
ij

∥∥∥∥
∞

≤
∥∥∥p̂(u)

ij − p
(u)
ij

∥∥∥
∞

+
∥∥∥p̂(v)

ij − p
(v)
ij

∥∥∥
∞

+
∥∥∥p̂(u)

ij − p̂
(v)
ij

∥∥∥
∞

≤ τ.

From the definition of γ and τ , we have ‖p(u)
ij − p

(v)
ij ‖∞ > τ for any pair p(u)

ij 6= p
(v)
ij , then w.h.p.

we have that p(u)
ij = p

(v)
ij .

Second, let be the case that there is no directed path from i to j. Then, following Proposition 1, we
have that all the distributions p(k)

ij ,∀xk ∈ Dom[Xi], are equal. Similarly as in the first case, we have

that if ‖p̂(u)
ij − p̂

(v)
ij ‖∞ > τ/2 then w.h.p. p(u)

ij 6= p
(v)
ij , and equal otherwise.

Next, note that since Algorithm 5 compares pair of distributions, the provable guarantee of all queries
(after eliminating the transitive edges) is directly related to the estimation of all PMFs with probability
of error at most δ, i.e., we have that

P
((
∀j = 1, . . . , n ∧ (i ∈ πG(j) ∨ j /∈ descG(i))

)
Q̃(i, j) = QG(i, j)

)
≥ 1− δ,

where descG(i) denotes the descendants of i. Finally, note that we are estimating each distribution by
usingm ≥ 32

τ2 (2 lnn+ln 2r
δ) samples, i.e.,m ∈ O(1

γ2 (lnn+ln r
δ)). However, for each query Q̃(i, j)

in Algorithm 5, we estimate a maximum of r distributions, as a result, we use 32r
τ2 (2 lnn + ln 2r

δ)
interventional samples in total per query.

F.5 Proof of Theorem 2

Proof. From the contrapositive of Proposition 1 we have that if P (Xj |do(Xi = xi)) 6= P (Xj) then
there exists a directed path from i to j. To detect the latter, we opt to use Claim 1 from Proposition
2, i.e., using expected values. Recall from the characterization of the BN that there exist a finite
value z and upper bound σ2

ub, such that µ(B, z) ≥ 1 and σ2(B, z) ≤ σ2
ub. Let x(1)j , . . . , x

(m)
j be m

i.i.d. samples of Xj after intervening Xi with z, and let µj|do(Xi=z) and σ2
j|do(Xi=z)

be the mean

and variance of Xj respectively. Also, let µ̂j|do(Xi=z) = 1
m

∑m
k=1 x

(k)
j be the empirical expected

value of Xj .

Now, we analyze the two cases that we are interested to answer with high probability. First, let
i ∈ πG(j). Clearly, µ̂j|do(Xi=z) has expected value |E[µ̂j|do(Xi=z)]| = |µj|do(Xi=z)| ≥ 1, and
variance σ̂2

j|do(Xi=z)
= σ2

j|do(Xi=z)
/m ≤ σ2

ub/m. Then, using Hoeffding’s inequality we have

P

(∣∣∣µ̂j|do(Xi=z) − µj|do(Xi=z)

∣∣∣ ≥ t) ≤ 2e−t
2/(2σ̂2

j|do(Xi=z))

18

≤ 2e−mt
2/(2σ2

ub). (6.1)

Second, if there is no directed path from i to j, then by using Proposition 1, we have µj|do(Xi=z) =

µj = 0 and σ2
j|do(Xi=z)

= σ2
j ≤ σ2

ub.

As we can observe from both cases described above, the true mean µj|do(Xi=z) when i ∈ πG(j) is
at least separated by 1 from the true mean when there is no directed path. Therefore, to estimate
the mean, a suitable value for t in inequality (6.1) is t ≤ 1/2. The latter allows us to state that if
|µ̂j|do(Xi=z)| > 1/2 then Q̃(i, j) = 1, and Q̃(i, j) = 0 otherwise. Replacing t = 1/2 and restating
inequality (6.1), we have that for a specific pair of nodes (i, j), if i ∈ πG(j) or if j /∈ descG(i)
(descG(i) denotes the descendants of i), then

P
(
QG(i, j) 6= Q̃(i, j)

)
≤ 2e−m/(8σ

2
ub).

The latter inequality is for a single query. Using the union bound we have

P
((
∃j = 1, . . . , n ∧ (i ∈ πG(j) ∨ j /∈ descG(i))

)
Q̃(i, j) 6= QG(i, j)

)
≤ 2n2e−m/(8σ

2
ub).

Now, let δ = 2n2e−m/(8σ
2
ub), if m ≥ 8σ2

ub log 2n2

δ then

P
((
∀j = 1, . . . , n ∧ (i ∈ πG(j) ∨ j /∈ descG(i))

)
Q̃(i, j) = QG(i, j)

)
≥ 1− δ.

That is, with probability of at least 1− δ, the path query Q̃(i, j) (in Algorithm 6) is equal to QG(i, j)
for all n2 performed queries in which either i ∈ πG(j), or there is no directed path from i to j.
Note also that the probability at least 1− δ is guaranteed after we remove the transitive edges in the
network. Therefore, we obtain m ≥ 8σ2

ub(2 log n+ log 2
δ), i.e., m ∈ O(σ2

ub log n
δ).

F.6 Proof of Theorem 3

The proof follows the same arguments given in the proof of Theorem 1. For a pair of nodes i, j,
Algorithm 3 sets S = π̂G(j). If S is already the true parent set of j, then Xi will only have effect on
Xj if i ∈ S. If S is a subset of the true parent set, then Xi will only have effect on Xj if there exists a
transitive edge (i, j). This is because by intervening S we are blocking any possible effect of Xi on
Xj through any node in S, and since non-transitive edges are already recovered then (i, j) must be a
transitive edge if there exists some effect. This effect is detected as in Theorem 1, i.e., through the
`∞-norm of difference of empirical marginals of Xj .

F.7 Proof of Theorem 4

The proof follows the same arguments given in the proof of Theorem 2. For a pair of nodes i, j,
Algorithm 3 sets S = π̂G(j). If S is already the true parent set of j, then Xi will only have effect on
Xj if i ∈ S. If S is a subset of the true parent set, then Xi will only have effect on Xj if there exists a
transitive edge (i, j). This is because by intervening S we are blocking any possible effect of Xi on
Xj through any node in S, and since non-transitive edges are already recovered then (i, j) must be a
transitive edge if there exists some effect. This effect is detected as in Theorem 2, i.e., through the
absolute value of the difference of the empirical means of Xj .

F.8 Proof of Theorem 5

To prove Theorem 5 we first derive a lemma that specifies the number of samples to obtain a good
approximation with guarantees of conditional PMFs.
Lemma 2. Let Y1, . . . , YL be L discrete random variables, such that w.l.o.g. the domain of each
variable, Dom[Yi], is a finite subset of Z+. Let Z1, . . . , ZL be L Bernoulli random variables, such
that each variable fulfills P (Zi = 1) ≥ α ≥ 1/2. Also, let (z

(1)
i , y

(1)
i), . . . , (z

(m)
i , y

(m)
i) be m pair

of independent samples of Zi and Yi. The conditional maximum likelihood estimator, p̂(Yi|Zi = 1),
is obtained as follows:

p̂j(Yi|Zi = 1) =
1∑m

k=1 z
(k)
i

m∑
k=1

1[y
(k)
i = j ∧ z(k)i], j ∈ Dom[Yi].

19

Then, for fixed values of t, δ ∈ (0, 1), and provided that m ≥ 4
αt2 ln 4L

δ , we have

P
(

(∀i ∈ {1 . . . L})
∥∥p̂(Yi|Zi = 1)− p(Yi|Zi = 1)

∥∥
∞ ≤ t

)
≥ 1− δ.

Proof. First, we analyze a pair of variables Zi, Yi. Let E1 = { 1
m

∑m
k=1 z

(k)
i ≥ α− ε}. Next, using

the one-sided Hoeffding’s inequality, we have

P (E1) ≥ 1− e−2ε
2m.

Now, let the event E2 = {‖p̂(Yi|Zi = 1)− p(Yi|Zi = 1)‖∞ ≤ t}. Using Lemma 1 (see Proof F.4),
we obtain

P (E2|E1) ≥ 1− 2e−m(α−ε)t2/2.

Then, by the law of total probability, we have

P (E2) ≥ P (E2|E1)P (E1)

≥ 1− e−2ε
2m − 2e−m(α−ε)t2/2.

Let δ2 = e−2ε
2m, and δ

2 = 2e−m(α−ε)t2/2. Then provided that m ≥ max(1
2ε2 ln 2

δ ,
2

(α−ε)t2 ln 4
δ),

P (E2) ≥ 1− δ.

For ε = α
2 , and t ∈ (0, 1), we can simplify the bound on m to be m ≥ 4

αt2 ln 4
δ . Finally, using union

bound and provided that m ≥ 4
αt2 ln 4L

δ , we have

P
(

(∀i ∈ {1 . . . L})
∥∥p̂(Yi|Zi = 1)− p(Yi|Zi = 1)

∥∥
∞ ≤ t

)
≥ 1− δ.

Which concludes the proof.

Now follows the proof of Theorem 5.

Proof of Theorem 5. The proof follows the same steps as in the proof of Theorem 1 (Appendix F.4).
The difference is that we now use the sample complexity given by Lemma 2 instead of Lemma 1.
Therefore, for a query Q̃(i, j) we obtain a sample complexity of m ∈ O(1

αγ2

(
lnn+ ln r

δ

)
).

F.9 Proof of Theorem 6

Proof. Recall from the characterization of the BN that there exist a finite value z and upper bound
σ2
ub, such that µ(B, z) ≥ 1 and σ2(B, z) ≤ σ2

ub. Let x(1)j , . . . , x
(m)
j be m i.i.d. samples of Xj after

trying to intervene Xi with value z. Let µj|do(Xi=z) and σ2
j|do(Xi=z)

be the mean and variance of Xj

respectively, after perfectly intervening Xi with value z. Also, let µ̂ = 1
m

∑m
k=1 x

(k)
j be the empirical

expected value of Xj .

Now, we analyze the two cases that we are interested to answer with high probability. First, let
i ∈ πG(j). Clearly, µ̂ has expected value |E[µ̂]| = |EXi

[µj|do(Xi=z)]| ≥ 1, and variance σ̂2 =

EXi [σ
2
j|do(Xi=z)

]/m ≤ σ2
ub/m. Then, using Hoeffding’s inequality we have

P
(∣∣µ̂− E[µ̂]

∣∣ ≥ t) ≤ 2e−t
2/(2σ̂2)

≤ 2e−mt
2/(2σ2

ub). (6.2)

Second, if there is no directed path from i to j, then by using Proposition 1, we have
EXi [µj|do(Xi=z)] = EXi [µj] = 0 and EXi [σ

2
j|do(Xi=z)

] = EXi [σ
2
j] ≤ σ2

ub.

As we can observe from both cases described above, the true mean EXi
[µj|do(Xi=z)] when i ∈ πG(j)

is at least separated by 1 from the true mean when there is no directed path. Therefore, to estimate
the mean, a suitable value for t in inequality (6.2) is t ≤ 1/2. The latter allows us to state that if
|µ̂| > 1/2 then Q̃(i, j) = 1, and Q̃(i, j) = 0 otherwise. Replacing t = 1/2 and restating inequality

20

(6.2), we have that for a specific pair of nodes (i, j), if i ∈ πG(j) or if j /∈ descG(i) (descG(i)
denotes the descendants of i), then

P
(
QG(i, j) 6= Q̃(i, j)

)
≤ 2e−m/(8σ

2
ub).

The latter inequality is for a single query. Using the union bound we have

P
((
∃j = 1, . . . , n ∧ (i ∈ πG(j) ∨ j /∈ descG(i))

)
Q̃(i, j) 6= QG(i, j)

)
≤ 2n2e−m/(8σ

2
ub).

Now, let δ = 2n2e−m/(8σ
2
ub), if m ≥ 8σ2

ub log 2n2

δ then

P
((
∀j = 1, . . . , n ∧ (i ∈ πG(j) ∨ j /∈ descG(i))

)
Q̃(i, j) = QG(i, j)

)
≥ 1− δ.

That is, with probability of at least 1− δ, the path query Q̃(i, j) (in Algorithm 6) is equal to QG(i, j)
for all n2 performed queries in which either i ∈ πG(j), or there is no directed path from i to j.
Note also that the probability at least 1− δ is guaranteed after we remove the transitive edges in the
network. Therefore, we obtain m ≥ 8σ2

ub(2 log n+ log 2
δ), i.e., m ∈ O(σ2

ub log n
δ).

F.10 Proof of Corollary 1

Proof. Let us first analyze the expected value µj of each variableXj in the network before performing
any intervention. From the definition of the ASGN model we have that the expected value of Xj is
µj =

∑
p∈πG(j) Wjpµp, and from the topological ordering of the network we can observe that the

variables without parents have zero mean since these are only affected by a sub-Gaussian noise with
zero mean. Therefore, following this ordering we have that the mean of every variable Xj is µj = 0.

Recall from Remark 2 that we can write the model as: X = WX + N , which is equivalent to
X = (I−W)−1N . Let B = (I−W)−1, then Bji denotes the total weight effect of the noise Ni on
the node j. Furthermore, let �iB = (I−�iW)−1 and similarly {�iB}jk denotes the total weight
effect of the noise Nk on the node j after intervening the node i.

Next, we analyze if z = 1/wmin, and σ2
ub = σ2

maxwmax fulfill the conditions given in Theorem 2.
First, let i ∈ πG(j), i.e., (i, j) ∈ E. Since wmin = min(i,j)∈E |{�iB}ji|, we have |µj|do(Xi=z)| =
|{�iB}ji| × |z| = |{�iB}ji|/wmin. Since wmin ≤ |{�iB}ji| for any (i, j) ∈ E, we have
that µ(B, z) ≥ 1. Let υj|do(Xi=z) be the variance of Xj after intervening Xi, then we have that
υ2j|do(Xi=z)

=
∑
p∈V\i({�iB }jp)2σ2

j , similarly, the variance of j without any intervention is υ2j =∑
p∈V\i(Bjp)

2σ2
j . Then max(i,j)∈E υ

2
j|do(Xi=z)

≤ maxi∈V σ
2
max‖�iB‖2∞,2, and maxj∈V υ

2
j ≤

σ2
max‖B‖2∞,2, which results in σ2

ub = σ2
maxwmax.

Second, let be the case that there is no directed path from i to j. Then from Proposition 1, Xi and Xj

are independent after intervening Xi, i.e., µj|do(Xi=z) = µj = 0, and υ2j|do(Xi=z)
= υ2j ≤ σ2

ub.

As shown above, for these values of z = 1/wmin and σ2
ub = σ2

maxwmax, we fulfill the conditions
given in Theorem 2, which concludes our proof.

F.11 Proof of Corollary 2

For a pair of nodes i, j, Algorithm 3 sets S = π̂G(j). If S is already the true parent set of j, then Xi

will only have effect on Xj if i ∈ S. If S is a subset of the true parent set, then Xi will only have
effect on Xj if there exists a transitive edge (i, j). This is because by intervening S we are blocking
any possible effect of Xi on Xj through any node in S, and since non-transitive edges are already
recovered then (i, j) must be a transitive edge if there exists some effect. Thus, wmin = minij |Wij |
is enough to ensure a mean of at least 1 for Xj , since only Xi is intervened with value z2 = 1/wmin
while the other nodes in S are intervened with value z1 = 0. Finally, because the value of wmax takes
the maximum across all possible interventions of subsets of the parent set of j, then σ2

ub is an upper
bound and similar arguments as in Corollary 1 hold.

F.12 Proof of Corollary 3

Proof. To prove the corollary we need to show that for z = 1/wmin and σ2
ub = σ2

maxwmax, the
conditions µ(B, z) ≥ 1 and σ2(B, z) ≤ σ2

ub hold, similarly to Proof F.10.

21

For the case when i ∈ πG(j), now Xi (the intervened variable) is a sub-Gaussian variable with mean
z and variance ν2i , we clearly have that the same upper bound σub = σ2

maxwmax works since ν2i ≤
σ2
max. Likewise, the value z is properly set since the value of wmin is wmin = min(i,j)∈E |{�iB}ji|.

For the case when there is no directed path from i to j, we have that Xi and Xj are independent after
intervening Xi, i.e., E[Xj] = µj = 0, and Var[Xj] = υ2j ≤ σ2

ub.

From these analyses we conclude that the ASGN model fulfills the conditions given in Theorem 6.
Which concludes our proof.

Appendix G Experiments

G.1 Experiments on Synthetic CBNs

In this section, we validate our theoretical results on synthetic data for perfect and imperfect interven-
tions by using Algorithms 4, 5, and 6. Our objective is to characterize the number of interventional
samples per query needed by our algorithm for learning the transitive reduction of a CBN exactly.

Our experimental setup is as follows. We sample a random transitively reduced DAG structure G
over n nodes. We then generate a CBN as follows: for a discrete CBN, the domain of a variable
Xi is Dom[Xi] = {1, . . . , d}, where d is the size of the domain, which is selected uniformly at
random from {2, . . . , 5}, i.e., r = 5 in terms of Theorem 1. Then, each row of a CPT is generated
uniformly at random. Finally, we ensure that the generated CBN fulfills γ ≥ 0.01. For a continuous
CBN, we use Gaussian noises following the ASGN model as described in Definition 4, where each
noise variable Ni is Gaussian with mean 0 and variance selected uniformly at random from [1, 5], i.e.,
σ2
max = 5, in terms of Corollary 1. The edge weights Wij are selected uniformly at random from

[−1.25,−0.01] ∪ [0.01, 1.25] for all (i, j) ∈ E. We ensure that W fulfills ‖(I−W)−1‖22,∞ ≤ 20.
After generating a CBN, one can now intervene a variable, and sample accordingly to a given query.
Finally, we set δ = 0.01, and estimate the probability P (G = Ĝ) by computing the fraction of times
that the learned DAG structure Ĝ matched the true DAG structure G exactly, across 40 randomly
sampled BNs. We repeated this process for n ∈ {20, 40, 60}. The number of samples per query
was set to eC log nr for discrete BNs, and eC log n for continuous BNs, where C was the control
parameter, chosen to be in [0, 16]. Figure 7 shows the results of the structure learning experiments.
We can observe that there is a sharp phase transition from recovery failure to success in all cases, and
that the log n scaling holds in practice, as prescribed by Theorems 1 and 2.

Similarly, for imperfect interventions we work under the same experimental settings described above.
For a discrete BN, we additionally set α = 0.9 in terms of Theorem 5. Whereas for a continuous
BN, we set ν2i = σ2

i for all i ∈ V, in terms of 3. Figure 7 shows the results of the structure learning
experiments. We can observe that the sharp phase transition from recovery failure to success and the
log n scaling is also preserved, as prescribed by Theorems 5 and 6.

G.2 Most Benchmark BNs Have Few Transitive Edges

In this section we compute some attributes of 21 benchmark networks, which are publicly available at
http://compbio.cs.huji.ac.il/Repository/networks.html and http://www.bnlearn.
com/bnrepository/. These benchmark BNs contain the DAG structure and the conditional proba-
bility tables. Several prior works also used these BNs and evaluated DAG recovery by sampling data
observationally by using the joint probability distribution [2, 30].

Table 2 reports the number of vertices, |V|, the number of edges, |E|, the number of transitive edges,
|RE|, and the ratio, |RE|/|E|. Finally, the mean and median of the ratios is presented. A median
of 0.48% indicates that more than half of these networks have a number of transitive edges less
than 0.50% of the total number of edges. In other words, our methods provide guarantees for exact
learning of at least 99.5% of the true structure for many of these benchmark networks.

G.3 DAG Recovery on Benchmark BNs

In this section we test Algorithms 4, 5, 6, 7, 8, and 3, on benchmark networks that may contain tran-
sitive edges. The networks are publicly available at http://www.bnlearn.com/bnrepository/.

22

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Figure 7: (Left, Top) Probability of correct structure recovery of the transitive reduction of a discrete
CBN vs. number of samples per query, where the latter was set to eC log nr, with all CBNs having
r = 5 and γ ≥ 0.01. (Right, Top) Similarly, for continuous CBNs, the number of samples per
query was set to eC log n, with all CBNs having ‖(I−W)−1‖22,∞ ≤ 20. (Left, Bottom) Results for
imperfect interventions for discrete CBNs under same settings as in perfect interventions and α = 0.9.
(Right, Bottom) Results for imperfect interventions for continuous CBNs under same settings as in
perfect interventions and ν2i = σ2

i ,∀i ∈ V . Finally, we observe that there is a sharp phase transition
from recovery failure to success in all cases, and the log n scaling holds in practice, as prescribed by
Theorems 1, 2, 5, and 6.

Table 2: For each network we show the number of vertices, |V|, the number of edges, |E|, the number
of transitive edges, |RE|, and the ratio, |RE|/|E|.

Network |V| |E| |RE| |RE|/|E|
Alarm 37 46 4 8.70%
Andes 223 338 45 13.31%
Asia 8 8 0 0.00%
Barley 48 84 14 16.67%
Cancer 5 4 0 0.00%
Carpo 60 74 0 0.00%
Child 20 25 1 4.00%
Diabetes 413 602 48 7.97%
Earthquake 5 4 0 0.00%
Hailfinder 56 66 4 6.06%
Hepar2 70 123 16 13.01%
Insurance 27 52 12 23.08%
Link 724 1125 0 0.00%
Mildew 35 46 6 13.04%
Munin1 186 273 1 0.37%
Munin2 1003 1244 6 0.48%
Munin3 1041 1306 6 0.46%
Munin4 1038 1388 6 0.43%
Pigs 441 592 0 0.00%
Water 32 66 0 0.00%
Win95pts 76 112 8 7.14%
Average 5.46%
Median 0.48%

These standard benchmark BNs contain the DAG structure and the conditional probability distribu-
tions. We sample data interventionally by using the manipulation theorem [21]. We then compare

23

the learned DAG versus the true DAG. Several prior works used these BNs and also evaluated DAG
recovery by sampling data observationally by using the joint probability distribution [2, 30].

Discrete networks. We first present experiments on discrete BNs. For each network we set the
number of samples m = e12 log nr, and ran Algorithm 4 once. After learning the transitive reduction,
we ran Algorithm 3 to learn the missing transitive edges. For the true edge set E and recovered edge
set Ẽ, we define the edge precision as |Ẽ ∩ E|/|Ẽ|, and the edge recall as |Ẽ ∩ E|/|E|. The F1 score
was computed from the previously defined precision and recall. As we can observe in Table 3, all of
the networks achieved an edge precision of 1.0, which indicates that all the edges that our algorithm
learned are indeed part of the true network. Finally, all networks also achieved an edge recall of 1.0,
which indicates that all edges (including the transitive edges) were correctly recovered.

Table 3: Results on benchmark discrete networks. For each network, we show the number of nodes,
n, the number of edges, |E|, the number of transitive edges, |RE|, the maximum domain size, r, the
edge precision, |Ẽ ∩ E|/|Ẽ|, the edge recall, |Ẽ ∩ E|/|E|, and the F1 score.

Network n |E| |RE| r
Edge

precision
Edge
recall F1 score

Carpo 60 74 0 4 1.00 1.00 1.00
Child 20 25 1 6 1.00 1.00 1.00
Hailfinder 56 66 4 11 1.00 1.00 1.00
Win95pts 76 112 8 2 1.00 1.00 1.00

Additive Gaussian networks. Next, we present experiments on continuous BNs. For each network
we set the number of samples m = eC log n, and ran Algorithm 4 once. For the true edge set E and
recovered edge set Ẽ, we define the edge precision as |Ẽ∩E|/|Ẽ|, and the edge recall as |Ẽ∩E|/|E|.
The F1 score was computed from the previously defined precision and recall. As we can observe in
Table 4, both networks achieved an edge precision of 1.0, which indicates that all the edges that our
algorithm learned are indeed part of the true network. Finally, both networks also achieved an edge
recall of 1.0, which indicates that all edges (including the transitive edges) were correctly recovered.

Table 4: Results on benchmark continuous networks. For each network, we show the number of nodes,
n, the number of edges, |E|, the number of transitive edges, |RE|, the constant C, the maximum
domain size, r, the edge precision, |Ẽ ∩ E|/|Ẽ|, the edge recall, |Ẽ ∩ E|/|E|, and the F1 score.

Network n |E| |RE| C
Edge

precision
Edge
recall F1 score

Magic-Irri 64 102 25 11 1.00 1.00 1.00
Magic-Niab 44 66 12 7 1.00 1.00 1.00

G.4 DAG Recovery on Real-World Gene Perturbation Datasets

In this section we show experimental results on real-world interventional data. We selected 14 yeast
genes from the gene perturbation data in “Transcriptional regulatory code of a eukaryotic genome”
[9]. A few observations from the learned BN shown in Figure 8 are: the gene YFL044C reaches 2
genes directly and has an indirect influence on all 11 remaining genes; finally, the genes YML081W
and YNR063W are reached by almost all other genes.

Next we show experimental results on real-world gene perturbation data from Xiao et al. [33]. Figure
9 shows the learned DAGs for genes from mouses (Left) and humans (Right). For mouse genes we
analyzed 17 genes and we can observe the following: the gene Spint1 reaches 3 genes directly and all
other genes indirectly; finally, the genes Tgm2, Ifnb1, Tgfbr2 and Hmgn1 are the most influenced
genes. For human genes we analyzed 17 genes and we observe the following: the gene CTGF reaches
1 gene directly and all the remaining genes indirectly; finally, the gene HNRNPA2B1 is reached by
all genes.

24

YBL054W

YER184C YKR064W

YBR267W

YDR049W

YER130C

YML081W

YJL206C YPR022C

YFL044C

YGR067C

YNR063W

YKL222C

YPR196W

Figure 8: DAG structure recovered from interventional data in [9]. The nodes correspond to yeast
genes.

Irf8

Pou5f1Tgm2

Tgfbr2

Ifnb1Dicer1

Tcf3

Hmgn1

Esr1

Pten

Trp53

Gata3

Ly6a

Mef2c

Cebpa

Klf1

Spint1

ALOX5AP

NGFR

HNRNPA2B1

CTNNB1

TP53 STEAP1

FOXM1

NFE2L2

HIF1A

E2F1

SATB1

AR

FOXA1

ZIC2

MYB

CTGF

GPR64

Figure 9: DAG structure recovered from interventional data in [33]. (Left) Nodes correspond to
mouse genes. (Right) Nodes correspond to human genes.

25

