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Abstract

We develop a novel computationally efficient and general framework for robust
hypothesis testing. The new framework features a new way to construct uncertainty
sets under the null and the alternative distributions, which are sets centered around
the empirical distribution defined via Wasserstein metric, thus our approach is
data-driven and free of distributional assumptions. We develop a convex safe
approximation of the minimax formulation and show that such approximation
renders a nearly-optimal detector among the family of all possible tests. By
exploiting the structure of the least favorable distribution, we also develop a
tractable reformulation of such approximation, with complexity independent of
the dimension of observation space and can be nearly sample-size-independent in
general. Real-data example using human activity data demonstrated the excellent
performance of the new robust detector.

1 Introduction

Hypothesis testing is a fundamental problem in statistics and an essential building block for scientific
discovery and many machine learning problems such as anomaly detection. The goal is to develop
a decision rule or a detector which can discriminate between two (or multiple) hypotheses based
on data and achieve small error probability. For simple hypothesis test, it is well-known from the
Neyman-Pearson Lemma that the likelihood ratio between the distributions of the two hypotheses
is optimal. However, in practice, when the true distribution deviates from the assumed nominal
distribution, the performance of the likelihood ratio detector is no longer optimal and it may perform
poorly.

Various robust hypothesis testing frameworks have been developed, to address the issue with dis-
tribution misspecification and outliers. The robust detectors are constructed by introducing various
uncertainty sets for the distributions under the null and the alternative hypotheses. In non-parametric
setting, Huber’s original work [13] considers the so-called ε-contamination sets, which contain distri-
butions that are close to the nominal distributions in terms of total variation metric. The more recent
works [17, 9] consider uncertainty set induced by Kullback-Leibler divergence around a nominal
distribution. Based on this, robust detectors usually depend on the so-called least-favorable distri-
butions (LFD). Although there has been much success in theoretical results, computation remains a
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major challenge in finding robust detectors and finding LFD in general. Existing results are usually
only for the one-dimensional setting. In multi-dimensional setting, finding LFD remains an open
question in the literature. In parametric setting, [1] provides a computationally efficient and provably
near-optimal framework for robust hypothesis testing based on convex optimization.

In this paper, we present a novel computationally efficient framework for developing data-driven
robust minimax detectors for non-parametric hypothesis testing based on the Wasserstein distance,
in which the robust uncertainty set is chosen as all distributions that are close to the empirical
distributions in Wasserstein distance. This is very practical since we do not assume any parametric
form for the distribution, but rather “let the data speak for itself”. Moreover, the Wasserstein distance
is a more flexible measure of closeness between two distributions. The distance measures used in other
non-parametric frameworks [13, 17, 9] are not well-defined for distributions with non-overlapping
support, which occurs often in (1) data-driven problems, in which we often want to measure the
closeness between an empirical distribution and some continuous underlying true distribution, and
(2) high-dimensional problems, in which we may want to compare two distributions that are of high
dimensions but supported on two low-dimensional manifolds with measure-zero intersection.

To solve the minimax robust detector problem, we face at least three difficulties: (i) The hypothesis
testing error probability is a nonconvex function of the decision variable; (ii) The optimization over
all possible detectors is hard in general since we consider any infinite-dimensional detector with
nonlinear dependence on data; (iii) The worst-case distribution over the uncertainty sets is also an
infinite dimensional optimization problem in general. To tackle these difficulties, in Section 3, we
develop a safe approximation of the minimax formulation by considering a family of tests with a
special form that facilitates a convex approximation. We show that such approximation renders a
nearly-optimal detector among the family of all possible tests (Theorem 1), and the risk of the optimal
detector is closely related to divergence measures (Theorem 2). In Section 4, exploiting the structure
of the least favorable distributions yielding from Wasserstein uncertainty sets, we derive a tractable
and scalable convex programming reformulation of the safe approximation based on strong duality
(Theorem 3). Finally, Section 5 demonstrates the excellent performance of our robust detectors using
real-data for human activity detection.

2 Problem Set-up and Related Work

Let Ω ⊂ Rd be the observation space where the observed random variable takes its values. Denote
by P(Ω) be the set of all probability distributions on Ω. Let P1,P2 ⊂ P(Ω) be our uncertainty
sets associated with hypothesis H1 and H2. The uncertainty sets are two families of probability
distributions on Ω. We assume that the true probability distribution of the observed random variable
belongs to either P1 or P2. Given an observation ω of the random variable, we would like to decide
which one of the following hypotheses is true

H1 : ω ∼ P1, P1 ∈ P1,

H2 : ω ∼ P2, P2 ∈ P2.

A test for this testing problem is a (Lebesgue) measurable function T : Ω → {1, 2}. Given an
observation ω ∈ Ω, the test accepts hypotheses HT (ω) and rejects the other. A test is called simple, if
P1,P2 are singletons.

The worst-case risk of a test is defined as the maximum of the worst-case type-I and type-II errors

ε(T |P1,P2) := max
(

sup
P1∈P1

P1{ω : T (ω) = 2}, sup
P2∈P2

P2{ω : T (ω) = 1}
)
.

Here, without loss of generality, we define the risk to be the maximum of the two types of errors. Our
framework can extend directly to the case where the risk is defined as a linear combination of the
Type-I and Type-II errors (as usually considered in statistics).

We consider the minimax robust hypothesis test formulation, where the goal is to find a test that
minimizes the worst-case risk. More specifically, given P1,P2 and ε > 0, we would like to find an
ε-optimal solution of the following problem

inf
T :Ω→{1,2}

ε(T |P1,P2). (1)
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We construct our uncertainty sets P1,P2 to be centered around two empirical distributions and
defined using the Wasserstein metric. Given two empirical distributions Qk = (1/nk)

∑nk

i=1 δω̂k
i

,
which are based on samples drawn from two underlying distributions respectively, where δω denotes
the Dirac measure on ω. Define the sets using Wasserstein metric (of order 1):

Pk = {P ∈P(Ω) :W(P,Qk) ≤ θk}, k = 1, 2, (2)

where θk > 0 specifies the radius of the set, andW(P,Q) denotes the Wasserstein metric of order 1:

W(P,Q) := min
γ∈P(Ω2)

{
E(ω,ω′)∼γ [‖ω − ω′‖] : γ has mariginal distributions P and Q

}
,

where ‖· − ·‖ is an arbitrary norm on Rn. We consider Wasserstein metric of order 1 for the ease
of exposition. Intuitively, the joint distribution γ on the right-hand side of the above equation
can be viewed as a transportation plan which transports probability mass from P to Q. Thus, the
Wasserstein metric between two distributions equals the cheapest cost (measured in some norm
‖· − ·‖) of transporting probability mass from one distribution to the other. In particular, if both P
and Q are finite-supported, the above minimization problem reduces to the transportation problem in
linear programming. Wasserstein metric has recently become popular in machine learning as a way
to measuring the distance between probability distributions, and has been applied to a variety of areas
including computer vision [25, 16, 23], generative adversarial networks [2, 10], and distributionally
robust optimization [6, 7, 4, 27, 26].

2.1 Related Work

We present a brief review on robust hypothesis test and related work. The most commonly seen form
of hypothesis test in statistics is simple hypothesis. The so-called simple hypothesis test assuming
that the null and the alternative distributions are two singleton sets. Suppose one is interested in
discriminating between H0 : θ = θ0 and H1 : θ = θ1, when the data x is assumed to follow a
distribution fθ with parameter θ. The likelihood ratio test rejects H0 when fθ1(x)/fθ0(x) exceeds a
threshold. The celebrated Neyman-Pearson lemma says that the likelihood ratio is the most powerful
test given a significance level. In other words, the likelihood ratio test achieves the minimum Type-II
error given any Type-I error. In practice, when the true distributions deviate from the two assumed
distributions, especially in the presence of outliers, the likelihood ratio test is no longer optimal. The
so-called robust detector aims to extend the simple hypothesis test to composite test, where the null
and the alternative hypotheses include a family of distributions. There are two main approaches
to the minimax robust hypothesis testing, one dates back to Huber’s seminal work [13], and one
is attributed to [17]. Huber considers composite hypotheses over the so-called ε-contamination
sets which are defined as total variation classes of distributions around nominal distribution, while
the more recent work [17, 9] considers uncertainty sets defined using the Kullback-Leibler (KL)
divergence, and demonstrated various closed-form LFDs for one-dimensional setting. However,
in the multi-dimensional setting, there remains the computational challenge to establish robust
sequential detection procedures or to find the LFD. Indeed, closed-form LFDs are found only for
one-dimensional case (e.g, [12, 18, 9]). Moreover, classic hypothesis test is usually parametric in that
the distribution functions under the null and the alternative are assumed to be belong to a family of
distributions with certain parameters.

Recent works [8, 14] take a different approach from the classic statistical approach for hypothesis
testing. Although “robust hypothesis test” are not mentioned, the formulation therein is essentially
minimax robust hypothesis test, when the null and the alternative distributions are parametric with
the parameters belong to certain convex sets. They show that when exponential function is used as
a convex relaxation, the optimal detector corresponds to the likelihood ratio test between the two
LFDs that are solved from a convex programming. Our work is inspired by [8, 14] and extends the
state-of-the-art in several ways. First, we consider more general classes of convex relaxations, and
show that they can produce a nearly-optimal detector for the original problem and admits an exact
tractable reformulation for common convex surrogate loss functions. In contrast, the tractability of the
framework in [8] relies heavily on the particular choice of the convex loss, because their parametric
framework has stringent convexity requirement in distribution parameters which fails to hold for
general convex loss even for Gaussian case, while our non-parametric framework only requires
convexity in distribution which holds for general convex surrogates and imposes no conditions on the
considered distributions. In addition, certain convex loss functions render a tighter nearly-optimal
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detector than the one considered in [8]. Furthermore, the tractability of our framework is due to
novel strong duality results Proposition 1 and Theorem 3. They are nontrivial, and to the best of our
knowledge, cannot be obtained from extending strong duality results on robust hypothesis testing
[8] and distributionally robust optimization (DRO) [4, 6, 7], as will be elaborated later. We finally
remark that [24] also considered using Wasserstein metric for hypothesis testing and drew connections
between different test statistics. Our focus is different from theirs as we consider Wasserstein metric
mainly for the minimax robust formulation.

3 Optimal Detector

We consider a family of tests with a special form, which is referred as a detector. A detector
φ : Ω→ R is a measurable function associated with a test Tφ which, for a given observation ω ∈ Ω,
accepts H1 and rejects H2 whenever φ(ω) ≥ 0, otherwise accepts H2 and rejects H1. The restriction
of problem (1) on the sets of all detectors is

inf
φ:Ω→R

max
(

sup
P1∈P1

P1{ω : φ(ω) < 0}, sup
P2∈P1

P2{ω : φ(ω) ≥ 0}
)
. (3)

We next develop a safe approximation of problem (3) that provides an upper bound via convex
approximations of the indicator function [22]. We introduce a notion called generating function.

Definition 1 (Generating function). A generating function ` : R → R+ ∪ {∞} is a nonnegative
valued, nondecreasing, convex function satisfying `(0) = 1 and limt→−∞ `(t) = 0.

For any probability distribution P , it holds that P{ω : φ(ω) < 0} ≤ EP [`(−φ(ω))}]. Set

Φ(φ;P1, P2) := EP1 [` ◦ (−φ)(ω))] + EP2 [` ◦ φ(ω)].

We define the risk of a detector for a test (P1,P2) by

ε(φ|P1,P2) := sup
P1∈P1,P2∈P2

Φ(φ;P1, P2).

It follows that the following problem provides an upper bound of problem (3):

inf
φ:Ω→R

sup
P1∈P1,P2∈P2

Φ(φ;P1, P2). (4)

We next bound the gap between (4) and (1). To facilitate discussion, we introduce an auxiliary
function ψ, which is well-defined due to the assumptions on `:

ψ(p) := min
t∈R

[p`(t) + (1− p)`(−t)], 0 ≤ p ≤ 1.

For various generating functions `, ψ admits a close-form expression. Table 1 lists some choices of
generating function ` and their corresponding auxiliary function ψ. Note that the Hinge loss (last row
in the table) leads to the smallest relaxation gap. As we shall see, ψ plays an important role in our
analysis, and is closely related to the divergence measure between probability distributions.

Table 1: Generating function (first column) and its corresponding auxiliary function (second column), optimal
detector (third column), and detector risk (fourth column).

`(t) ψ(p) φ∗ 1 − 1/2 infφ Φ(φ;P1, P2)

exp(t) 2
√
p(1 − p) log

√
p1/p2 H2(P1, P2)

log(1 + exp(t))/ log 2 −(p log p+ (1 − p) log(1 − p))/ log 2 log(p1/p2) JS(P1, P2)/ log 2
(t+ 1)2+ 4p(1 − p) 1 − 2 p1

p1+p2
χ2(P1, P2)

(t+ 1)+ 2 min(p, 1 − p) sgn(p1 − p2) TV (P1, P2)

Theorem 1 (Near-optimality of (4)). For any distributionsQ1 andQ2, and any non-empty uncertainty
sets P1 and P2, whenever there exists a feasible solution T of problem (1) with objective value less
than ε ∈ (0, 1/2), there exists a feasible solution φ of problem (4) with objective value less than ψ(ε).
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Theorem 1 guarantees that the approximation (4) of problem
(1) is nearly optimal, in the sense that whenever the hypothe-
ses H1, H2 can be decided upon by a test T with risk less
than ε, there exists a detector φ with risk less than ψ(ε). It
holds regardless the specification of P1 and P2. Figure 1
illustrates the value of ψ(ε) when ε ∈ (0, 1/2).

The next proposition shows that we can interchange the inf
and sup operators. Hence, in order to solve (4), we can first
solve the problem of finding the best detector for a simple
test (P1, P2), and then finding the least favorable distribution
that maximizes the risk among those best detectors.
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Figure 1: ψ(ε) as a function of ε
Proposition 1. For the Wasserstein uncertainty sets P1,P2 specified in (2), we have

inf
φ:Ω→R

sup
P1∈P1,P2∈P2

Φ(φ;P1, P2) = sup
P1∈P1,P2∈P2

inf
φ:Ω→R

Φ(φ;P1, P2).

To establish Proposition 1, observe that the sets under inf and sup are: (i) both infinitely dimensional,
(ii) the Wasserstein ball is not compact in the space of probability measures, and (iii) the space of all
tests φ is not endowed with a linear topological structure, so there is no readily applicable tools (such
as Sion’s minimax theorem used in [8]) to justify the interchange of inf and sup. Our proof strategy
is to identify an approximate optimal detector for the sup inf problem on the left side of (5) using
Theorem 3 (whose proof does not depend on the result in Proposition 1), and then verify it is also an
approximate optimal solution for the original inf sup problem (4). We also note that such issue does
not occur in the distributionally robust optimization setting, as their focus is to study only the inner
supremum, while the outer infimum in those problems are already finite-dimensional by definition (in
fact it corresponds to decision variables in Rn).

The next theorem provides an expression of the optimal detector and its risk.

Theorem 2 (Optimal detector). For any distributions P1 and P2, let dPk

d(P1+P2) be the Radon-Nikodym
derivative of Pk with respect to P1 + P2, k = 1, 2. Then

inf
φ:Ω→R

Φ(φ;P1, P2) =

∫
Ω

ψ
(

dP1

d(P1+P2)

)
d(P1 + P2).

Define Ω0(P1, P2) :=
{
ω ∈ Ω : 0 < dPk

d(P1+P2) (ω) < 1, k = 1, 2
}

. Suppose there exists a
well-defined map t : Ω→ R such that

t∗(ω) ∈ arg mint∈R

[
dP1

d(P1+P2) (ω)`(−t) + dP2

d(P1+P2) (ω)`(t)
]
.

Then φ∗(ω) := −t∗(ω) is an optimal detector for the simple test.
Remark 1. By definition, ψ(0) = ψ(1) = 0. Then the infimum depends only on the value of P1, P2

on Ω0, the subset of Ω on which P1 and P2 are absolutely continuous with respect to each other:

inf
φ:Ω→R

Φ(φ;P1, P2) =

∫
Ω0

ψ
(

dP1

d(P1+P2)

)
d(P1 + P2).

This is intuitive as we can always find a detector φ such that its value is arbitrarily close to zero on
Ω \ Ω0. In particular, if P1 and P2 have measure-zero overlap, then infφ Φ(φ;P1, P2) equals zero,
that is, the optimal test for the simple test (P1, P2) has zero risk.

Optimal detector φ∗. Set pk := dPk/(d(P1 +P2)) on Ω0, k = 1, 2. For the four choices of ψ listed
in Table 1, the optimal detectors φ∗ on Ω0 are listed in the third column, where sgn denotes the sign
function. The first one has been considered in [1].

Relation between divergence measures and the risk of the optimal detector. The term∫
Ω
ψ
(

dP1

d(P1+P2)

)
d(P1 + P2) can be viewed as a “measure of closeness” between probability distribu-

tions. Indeed, in the fourth column of Table 1 we show that the smallest detector risk for a simple
test P1 vs. P2 equals the negative of some divergence between P1 and P2 up to a constant, where H ,
JS, ∆, and TV represent respectively the Hellinger distance [11], Jensen-Shannon divergence [20],
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triangle discrimination (symmetric χ2-divergence) [28], and Total Variation metric [28]. It follows
from Theorem 2 that

sup
P1∈P1,P2∈P2

inf
φ:Ω→R

Φ(φ;P1, P2) = sup
P1∈P1,P2∈P2

∫
Ω

ψ
(

dP1

d(P1+P2)

)
d(P1 + P2). (5)

The objective on the right-hand side is concave in (P1, P2) since by Theorem 2, it equals to the
infimum of linear functions Φ(φ;P1, P2) of (P1, P2). Problem (5) can be interpreted as finding two
distributions P ∗1 ∈ P1 and P ∗2 ∈ P2 such that the divergence between P ∗1 and P ∗2 is minimized.
This makes sense in that the least favorable distribution (P ∗1 , P

∗
2 ) should be as close to each other as

possible for the worst-case hypothesis test scenario.

4 Tractable Reformulation

In this section, we provide a tractable reformulation of (5) by deriving a novel strong duality result.
Recall in our setup, we are given two empirical distributions Qk = 1

nk

∑nk

i=1 δω̂i
k
, k = 1, 2. To unify

notation, for l = 1, . . . , n1 + n2, we set

ωl =

{
ω̂l1, 1 ≤ l ≤ n1,

ω̂l−n1
2 , n1 + 1 ≤ l ≤ n1 + n2,

and set Ω̂ := {ωl : l = 1, . . . , n1 + n2}.
Theorem 3 (Convex equivalent reformulation). Problem (5) with P1,P2 specified in (2) can be
equivalently reformulated as a finite-dimensional convex program

max
p1,p2∈R

n1+n2
+

γ1,γ2∈R
(n1+n2)
+ ×R(n1+n2)

+

n1+n2∑
l=1

(pl1 + pl2)ψ
( pl1
pl1+pl2

)

subject to
n1+n2∑
l=1

n1+n2∑
m=1

γlmk
∥∥ωl − ωm∥∥ ≤ θk, k = 1, 2,

n1+n2∑
m=1

γlm1 =
1

n1
, 1 ≤ l ≤ n1,

n1+n2∑
m=1

γlm1 = 0, n1 + 1 ≤ l ≤ n1 + n2,

n1+n2∑
m=1

γlm2 = 0, 1 ≤ l ≤ n1,

n1+n2∑
m=1

γlm2 =
1

n2
, n1 + 1 ≤ l ≤ n1 + n2,

n1+n2∑
l=1

γlmk = pmk , 1 ≤ m ≤ n1 + n2, k = 1, 2.

(6)

Theorem 3, combining with Proposition 1, indicates that problem (4) is equivalent to problem (6).
We next explain various elements in problem (6).

Decision variables. pk can be identified with a probability distribution on Ω̂, because
∑
l p
l
k =∑

lm γ
lm
k = 1, and γk can be viewed as a joint probability distribution on Ω̂2 with marginal

distributions Qk and pk. We can eliminate variables p1, p2 by substituting pk with γk using the last
constraint, so that γ1, γ2 are the only decision variables.

Objective. The objective function is identical to the objective function of (5), and thus we are
maximizing a concave function of (p1, p2). If we substitute pk with γk, then the objective function is
also concave in (γ1, γ2).

Constraints. The constraints are all linear. Note that ωl are parameters, but not decision variables,
thus

∥∥ωl − ωm∥∥ can be computed before solving the program. The constraints all together are
equivalent to the Wasserstein metric constraintsW(Qk, pk) ≤ θk.

Strong duality. Problem (6) is a restriction of problem (4) in the sense that they have the same
objective but (4) restricts the feasible region to the subset of distributions that are supported on a
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subset Ω̂. Nevertheless, Theorem 3 guarantees that the two problems has the same optimal value,
because there exists a least favorable distribution supported on Ω̂, as explained below.

Intuition on the reformulation.
We here provide insights on the structural properties of the
least favorable distribution that explain why the reduction
in Theorem 3 holds. The complete proof of Theorem 3
can be found in Appendix. Suppose Qk = δω̂k

, k = 1, 2,
Ω = Rd and ψ(p) = 2

√
p(1− p). Note that Wasserstein

metric measures the cheapest cost (measured in ‖· − ·‖) of
transporting probability mass from one distribution to the
other. Thus, based on the discussion in Section 3, the goal
of problem (5) is to move (part of) the probability mass on
ω̂1 and ω̂2 such that the negative divergence between the
resulting distributions is maximized. The following three key
observations demonstrate how to move the probability mass
in a least favorable way.

Figure 2: Illustration of the least favor-
able distribution: it is always better off
to move the probability mass from ω̂1

and ω̂2 to an identical point ω on the
line segment connecting ω̂1, ω̂2.

(i) Consider feasible solutions of the form

(P1, P2) =
(
(1− p1)δω̂1

+ p1δω1
, (1− p2)δω̂2

+ p2δω2

)
, ω1, ω2 ∈ Ω \ {ω̂1, ω̂2}.

Namely, (P1, P2) is obtained by moving out probability mass pk > 0 from ω̂k to ωk, k = 1, 2 (see
Figure 2). It follows that the objective value∫

Ω

ψ( dP1

d(P1+P2) )d(P1 + P2) =

{
2
√
p1p2, if ω1 = ω2,

0, o.w.

This is consistent with Remark 1 in that the objective value vanishes if the supports of P1, P2 do
not overlap. Moreover, when ω1 = ω2, the objective value is independent of their common value
ω = ω1 = ω2. Therefore, we should move probability mass out of resources ω̂1, ω̂2 to some common
region, which contain points that receive probability mass from both resources.

(ii) Motivated by (i), we consider solutions of the following form

(P1, P2) =
(
(1− p1)δω̂1

+ p1δω, (1− p2)δω̂2
+ p2δω

)
, ω ∈ Ω \ {ω̂1, ω̂2},

which has the same objective value 2
√
p1p2. In order to save the budget for the Wasserstein metric

constraint, i.e., to minimize the transport distance

p1 ‖ω1 − ω̂1‖+ p2 ‖ω2 − ω̂2‖ ,
by triangle inequality we should choose ω1 = ω2 = ω to be on the line segment connecting ω̂1 and
ω̂2 (see Figure 2).

(iii) Motivated by (ii), we consider solutions of the following form

P ′k = (1− pk − p′k)δω̂k
+ p1δωk

+ p′1δω′
k
, k = 1, 2,

where ωk, ω′k /∈ Ω \ {ω̂k} are on the line segment connecting ω̂1 and ω̂2, k = 1, 2. Then the objective
value is maximized at ω1 = ω′1 = ω̂2, ω2 = ω′2 = ω̂1, and equals 2

√
(p1 + p′1)(p2 + p′2) +

2
√

(1− p1 − p′1)(1− p2 − p′2). Hence it is better off to move out probability mass from ω̂1 to ω̂2

and from ω̂2 to ω̂1.

Therefore, we conclude that there exist a least favorable distribution supported on Ω̂. The argument
above utilizes Theorem 2, the triangle inequality of a norm and the concavity of the auxiliary function
ψ. The compete proof can be viewed as a generalization to the infinitesimal setting.

Complexity. Problem (6) is a convex program which maximizes a concave function subject to linear
constraints. We briefly comment on the complexity of solving (6) in terms of the dimension of the
observation space and the sample sizes:

(i) The complexity of (6) is independent of the dimension d of Ω, since we only need to compute
pairwise distances

∥∥ωl − ωm∥∥ as an input to the convex program.

(ii) The complexity in terms of the sample sizes n1, n2 depends on the objective function and can be
nearly sample size-independent when the objective function is Lipschitz in `1 norm (equivalently,

7



the `∞ norm of the partial derivative is bounded). The reasons are as follows. In this case, after
eliminating variables p1, p2, we end up with a convex program involving only γ1, γ2, and the Lipschitz
constant of the objective with respect to γ is identical to that with respect to p. Observe that the
feasible region of each γk is a subset of the `1-ball in R(n1+n2)

+ . Then according to the complexity
theory of the first order method for convex optimization [3], when the objective function is Lipschitz
in `1 norm, the complexity is O(ln(n1) + ln(n2)). Notice that this is true for all except for the first
case in Table 1. Hence, this is a quite general.

We finally remark that extending previous strong duality results on DRO [4, 6, 7] from one Wasserstein
ball to two Wasserstein balls does not lead to an immediately tractable (convex) reformulation. For
one thing, simply applying those previous results on the inner supremum in (4) does not work,
because after doing so we are left with the outer infimum that is still intractable. For another thing,
applying the previous methodology onto problem (5) does not lead to an tractable reformulation
either, mainly because the objective function

∫
Ω
ψ( dP1

d(P1+P2) )d(P1 + P2) is not separable in P1 and
P2, but depends on the density on the common support of P1 and P2. Thus, as argued in Section 4, in
the least-favorable distribution the probability mass of the two distributions cannot be transported
arbitrarily, but are linked via their common support. In contrast, the problems in DRO [4, 6, 7] have
no such linking constraints, which makes it hard to extend the previous methodology. Instead, we
prove the strong duality from scratch and provide new insights on the structural properties of the
least-favorable distribution that are different in nature from that in DRO settings.

5 Numerical Experiments

In this section, we demonstrate the performance of our robust detector using real data for human
activity detection. We adopt a dataset released by the Wireless Sensor Data Mining (WISDM) Lab in
October 2013. The data in this set were collected with the Actitracker system, which is described in
[19, 29, 15]. A large number of users carried an Android-based smartphone while performing various
everyday activities. These subjects carried the Android phone in their pocket and were asked to walk,
jog, ascend stairs, descend stairs, sit, and stand for specific periods of time.

The data collection was controlled by an application executed on the phone. This application is able
to record the user’s name, start and stop the data collection, and label the activity being performed.
In all cases, the accelerometer data is collected every 50ms, so there are 20 samples per second.
There are 2,980,765 recorded time-series in total. The activity recognition task involves mapping
time-series accelerometer data to a single physical user activity [29]. Our goal is to detect the change
of activity in real-time from sequential observations. Since it is hard to model distributions for various
activities, traditional parametric methods do not work well in this case.

For each person, the recorded time-series contains the acceleration of the sensor in three directions.
In this setting, every ωl is a three-dimensional vector (alx, a

l
y, a

l
z). We set θ1 = θ2 = θ as the sample

sizes are identical, and θ is chosen such that the quantity 1− 1/2 infφ Φ(φ;P ∗1 , P
∗
2 ) in Table 1, or

equivalently, the divergence between P ∗1 and P ∗2 , is close to zero with high probability if Q1 and
Q2 are bootstrapped from the data before change, where P ∗1 , P

∗
1 is the LFD yielding from (6). The

intuition is that we want the Wasserstein ball to be large enough to avoid false detection while still
have separable hypotheses (so the problem is well-defined).

We compare our robust detector, when coupled with CUSUM detector using a scheme similar to [5],
with the Hotelling T2 control chart, which is a traditional way to detect the mean and covariance
change for the multivariate case. The Hotelling control chart plots the following quantity [21]:

T 2 = (x− µ)′Σ−1(x− µ),

where µ and Σ are the sample mean and sample covariance obtained from training data.

As shown in Fig. 3 (a), in many cases, Hotelling T2 fails to detect the change successfully and our
method performs pretty well. This is as expected since the change is hard to capture via mean and
covariance as Hotelling does.

Moreover, we further test the proposed robust detector, φ∗ = 1
2 ln(p∗1/p

∗
2) and φ∗ = sgn(p∗1 − p∗2),

on 100 sequences of data. Here p∗1 and p∗2 are the LFD computed from the optimization problem (6).
For each sequence, we choose the threshold for detection by controlling the type-I error. Then we
compare the average detection delay of the robust detector and the Hotelling T2 control chart, as
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Figure 3: Comparison of the detector φ∗ = 1
2 ln(p∗1/p

∗
2) with Hotelling control chart: (a): Upper: the

proposed optimal detector; Middle: the Hotelling T2 control chart; Lower: the raw data, here we plot
(a2
x + a2

y + a2
z)

1/2 for simple illustration. The dataset is a portion of full observations from the person
indexed by 1679, with the pre-change activity jogging and post-change activity walking. The black
dotted line at index 4589 indicates the boundary between the pre-change and post-change regimes.
(b): The average detection delay v.s. type-I error. The average is taken over 100 sequences of data.

shown in 3 (b). The robust detector has a clear advantage, and the sgn(p∗1 − p∗2) indeed has better
performance than 1

2 ln(p∗1/p
∗
2), consistent with our theoretical finding.

6 Conclusion

In this paper, we propose a data-driven, distribution-free framework for robust hypothesis testing
based on Wasserstein metric. We develop a computationally efficient reformulation of the minimax
problem which renders a nearly-optimal detector. The framework is readily extended to multiple
hypotheses and sequential settings. The approach can also be extended to other settings, such as
constraining the Type-I error to be below certain threshold (as the typical statistical test of choosing
the size or significance level of the test), or considering minimizing a weighed combination of
the Type-I and Type-II errors. In the future, we will study the optimal selection of the size of the
uncertainty sets leveraging tools from distributionally robust optimization, and test the performance
of our framework on large-scale instances.
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