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Abstract

Parameterizing the approximate posterior of a generative model with neural net-
works has become a common theme in recent machine learning research. While
providing appealing flexibility, this approach makes it difficult to impose or assess
structural constraints such as conditional independence. We propose a framework
for learning representations that relies on auto-encoding variational Bayes, in
which the search space is constrained via kernel-based measures of independence.
In particular, our method employs the d-variable Hilbert-Schmidt Independence
Criterion (dHSIC) to enforce independence between the latent representations and
arbitrary nuisance factors. We show how this method can be applied to a range
of problems, including problems that involve learning invariant and conditionally
independent representations. We also present a full-fledged application to single-
cell RNA sequencing (scRNA-seq). In this setting the biological signal is mixed
in complex ways with sequencing errors and sampling effects. We show that our
method outperforms the state-of-the-art approach in this domain.

1 Introduction

Since the introduction of variational auto-encoders (VAEs) [1], graphical models whose conditional
distribution are specified by deep neural networks have become commonplace. For problems where
all that matters is the goodness-of-fit (e.g., marginal log probability of the data), there is little reason
to constrain the flexibility/expressiveness of these networks other than possible considerations of
overfitting. In other problems, however, some latent representations may be preferable to others—
for example, for reasons of interpretability or modularity. Traditionally, such constraints on latent
representations have been expressed in the graphical model setting via conditional independence
assumptions. But these assumptions are relatively rigid, and with the advent of highly flexible
conditional distributions, it has become important to find ways to constrain latent representations that
go beyond the rigid conditional independence structures of classical graphical models.

In this paper, we propose a new method for restricting the search space to latent representations with
desired independence properties. As in [1], we approximate the posterior for each observation X
with an encoder network that parameterizes qφ(Z ∣ X). Restricting this search space amounts to
constraining the class of variational distributions that we consider. In particular, we aim to constrain
the aggregated variational posterior [2]:

q̂φ(Z) ∶= Epdata(X) [qφ(Z ∣X)] . (1)

Here pdata(X) denotes the empirical distribution. We aim to enforce independence statements of the
form q̂φ(Zi) á q̂φ(Zj), where i and j are different coordinates of our latent representation.
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Figure 1: Tasks presented in the paper.

Unfortunately, because q̂φ(Z) is a mixture distribution, computing any standard measure of indepen-
dence is intractable, even in the case of Gaussian terms [3]. In this paper, we circumvent this problem
in a novel way. First, we estimate dependency though a kernel-based measure of independence,
in particular the Hilbert-Schmidt Information Criterion (HSIC) [4]. Second, by scaling and then
subtracting this measure of dependence in the variational lower bound, we get a new variational lower
bound on log p(X). Maximizing it amounts to maximizing the traditional variational lower bound
with a penalty for deviating from the desired independence conditions. We refer to this approach as
HSIC-constrained VAE (HCV).

The remainder of the paper is organized as follows. In Section 2, we provide background on VAEs
and the HSIC. In Section 3, we precisely define HCV and provide a theoretical analysis. The next
three sections each present an application of HVC—one for each task shown in Figure 1. In Section 4,
we consider the problem of learning an interpretable latent representation, and we show that HCV
compares favorably to β-VAE [5] and β-TCVAE [6]. In Section 5, we consider the problem of
learning an invariant representation, showing both that HCV includes the variational fair auto-encoder
(VFAE) [7] as a special case, and that it can improve on the VFAE with respect to its own metrics.
In Section 6, we denoise single-cell RNA sequencing data with HCV, and show that our method
recovers biological signal better than the current state-of-the-art approach.

2 Background

In representation learning, we aim to transform a variable x into a representation vector z for which
a given downstream task can be performed more efficiently, either computationally or statistically.
For example, one may learn a low-dimensional representation that is predictive of a particular label y,
as in supervised dictionary learning [8]. More generally, a hierarchical Bayesian model [9] applied to
a dataset yields stochastic representations, namely, the sufficient statistics for the model’s posterior
distribution. In order to learn representations that respect specific independence statements, we
need to bring together two independent lines of research. First, we will present briefly variational
auto-encoders and then non-parametric measures of dependence.

2.1 Auto-Encoding Variational Bayes (AEVB)

We focus on variational auto-encoders [1] which effectively summarize data for many tasks within a
Bayesian inference paradigm [10, 11]. Let {X,S} denote the set of observed random variables and
Z the set of hidden random variables (we will use the notation zi to denote the i-th random variable
in the set Z). Then Bayesian inference aims to maximize the likelihood:

pθ(X ∣ S) = ∫ pθ(X ∣ Z,S)dp(Z). (2)

Because the integral is in general intractable, variational inference finds a distribution qφ(Z ∣X,S)
that minimizes a lower bound on the data—the evidence lower bound (ELBO):

log pθ(X ∣ S) ≥ Eqφ(Z∣X,S) log pθ(X ∣ Z,S) −DKL((qφ(Z ∣X,S) ∣∣ p(Z)) (3)

In auto-encoding variational Bayes (AEVB), the variational distribution is parametrized by a neural
network. In the case of a variational auto-encoder (VAE), both the generative model and the variational
approximation have conditional distributions parametrized with neural networks. The difference
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between the data likelihood and the ELBO is the variational gap:

DKL(qφ(Z ∣X,S) ∣∣ pθ(Z ∣X,S)). (4)

The original AEVB framework is described in the seminal paper [1] for the case Z = {z},X =
{x}, S = ∅. The representation z is optimized to “explain” the data x.

AEVB has since been successfully applied and extended. One notable example is the semi-supervised
learning case—where Z = {z1, z2}, X = {x}, y ∈ X ∪ Z—which is addressed by the M1 + M2
model [12]. Here, the representation z1 both explains the original data and is predictive of the label
y. More generally, solving an additional problem is tantamount to adding a node in the underlying
graphical model. Finally, the variational distribution can be used to meet different needs: qφ(y ∣ x) is
a classifier and qφ(z1 ∣ x) summarizes the data.

When using AEVB, the empirical data distribution pdata(X,S) is transformed into the empirical
representation q̂φ(Z) = Epdata(X,S)qφ(Z ∣ X,S). This mixture is commonly called the aggregated
posterior [13] or average encoding distribution [14].

2.2 Non-parametric estimates of dependence with kernels

Let (Ω,F ,P) be a probability space. Let X (resp. Y) be a separable metric space. Let u ∶ Ω → X
(resp. v ∶ Ω → Y) be a random variable. Let k ∶ X ×X → R (resp. l ∶ Y × Y → R) be a continuous,
bounded, positive semi-definite kernel. Let H (resp. K) be the corresponding reproducing kernel
Hilbert space (RKHS) and φ ∶ Ω→H (resp. ψ ∶ Ω→ K) the corresponding feature mapping.

Given this setting, one can embed the distribution P of random variable u into a single point µP of
the RKHSH as follows:

µP = ∫
Ω
φ(u)P (du). (5)

If the kernel k is universal1, then the mean embedding operator P ↦ µP is injective [15].

We now introduce a kernel-based estimate of distance between two distributions P and Q over
the random variable u. This approach will be used by one of our baselines for learning invariant
representations. Such a distance, defined via the canonical distance between theirH-embeddings, is
called the maximum mean discrepancy [16] and denoted MMD(P,Q).

The joint distribution P (u, v) defined over the product space X ×Y can be embedded as a point Cuv
in the tensor spaceH⊗K. It can also be interpreted as a linear mapH → K:

∀(f, g) ∈H ×K, Ef(u)g(v) = ⟨f(u),Cuvg(v)⟩H = ⟨f ⊗ g,Cuv⟩H⊗K. (6)

Suppose the kernels k and l are universal. The largest eigenvalue of the linear operator Cuv is zero if
and only if the random variables u and v are marginally independent [4]. A measure of dependence
can therefore be derived from the Hilbert-Schmidt norm of the cross-covariance operator Cuv called
the Hilbert-Schmidt Independence Criterion (HSIC) [17]. Let (ui, vi)1≤i≤n denote a sequence of
iid copies of the random variable (u, v). In the case where X = Rp and Y = Rq, the V-statistics in
Equation 7 yield a biased empirical estimate [15], which can be computed in O(n2(p + q)) time. An
estimator for HSIC is

ˆHSICn(P ) = 1

n2

n

∑
i,j

k(ui, uj)l(vi, vj) +
1

n4

n

∑
i,j,k,l

k(ui, uj)l(vk, vl)

− 2

n3

n

∑
i,j,k

k(ui, uj)l(vi, vk).
(7)

The dHSIC [18, 19] generalizes the HSIC to d variables. We present the dHSIC in Appendix A.

3 Theory for HSIC-Constrained VAE (HCV)

This paper is concerned with intepretability of representations learned via VAEs. Independence
between certain components of the representation can aid in interpretability [6, 20]. First, we will

1A kernel k is universal if k(x, ⋅) is continuous for all x and the RKHS induced by k is dense in C(X ). This
is true for the Gaussian kernel (u,u′)↦ e−γ∣∣u−u

′ ∣∣2 when γ > 0.
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explain why AEVB might not be suitable for learning representations that satisfy independence
statements. Second, we will present a simple diagnostic in the case where the generative model is
fixed. Third, we will introduce HSIC-constrained VAEs (HCV): our method to correct approximate
posteriors learned via AEVB in order to recover independent representations.

3.1 Independence and representations: Ideal setting

The goal of learning representation that satisfies certain independence statements can be achieved
by adding suitable nodes and edges to the generative distribution graphical model. In particular,
marginal independence can be the consequence of an “explaining away” pattern as in Figure 1a for
the triplet {u,x, v}. If we consider the setting of infinite data and an accurate posterior, we find that
independence statements in the generative model are respected in the latent representation:

Proposition 1. Let us apply AEVB to a model pθ(X,Z ∣ S) with independence statement I (e.g.,
zi á zj for some (i, j)). If the variational gap Epdata(X,S)DKL(qφ(Z ∣ X,S) ∣∣ pθ(Z ∣ X,S)) is
zero, then under infinite data the representation q̂φ(Z) satisfies statement I.

The proof appears in Appendix B. In practice we may be far from the idealized infinite setting if
(X,S) are high-dimensional. Also, AEVB is commonly used with a naive mean field approximation
qφ(Z ∣X,S) =∏k qφ(zk ∣X,S), which could poorly match the real posterior. In the case of a VAE,
neural networks are also used to parametrize the conditional distributions of the generative model.
This makes it challenging to know whether naive mean field or any specific improvement [11, 21]
is appropriate. As a consequence, the aggregated posterior could be quite different from the “exact”
aggregated posterior Epdata(X,S)pθ(Z ∣ X,S). Notably, the independence properties encoded by
the generative model pθ(X ∣ S) will often not be respected by the approximate posterior. This is
observed empirically in [7], as well as Section 4 and Section 5 of this work.

3.2 A simple diagnostic in the case of posterior approximation

A theoretical analysis explaining why the empirical aggregated posterior presents some misspecified
correlation is not straightforward. The main reason is that the learning of the model parameters
θ along with the variational parameters φ makes diagnosis hard. As a first line of attack, let us
consider the case where we approximate the posterior of a fixed model. Consider learning a posterior
qφ(Z ∣ X,S) via naive mean field AEVB. Recent work [22, 14, 13] focuses on decomposing the
second term of the ELBO and identifying terms, one of which is the total correlation between hidden
variables in the aggregate posterior. This term, in principle, promotes independence. However, the
decomposition has numerous interacting terms, which makes exact interpretation difficult. As the
generative model is fixed in this setting, optimizing the ELBO is tantamount to minimizing the
variational gap, which we propose to decompose as

DKL(qφ(Z ∣X,S) ∣∣ pθ(Z ∣X,S)) =∑
k

DKL(qφ(zk ∣X,S) ∣∣ pθ(zk ∣X,S))

+Eqφ(Z∣X,S) log
∏k pθ(zk ∣X,S)
pθ(Z ∣X,S)

.
(8)

The last term of this equation quantifies the misspecification of the mean-field assumption. The larger
it is, the more the coupling between the hidden variables Z. Since neural networks are flexible, they
can be very successful at optimizing this variational gap but at the price of introducing supplemental
correlation between Z in the aggregated posterior. We expect this side effect whenever we use neural
networks to learn a misspecified variational approximation.

3.3 Correcting the variational posterior

We aim to correct the variational posterior qφ(Z ∣ X,S) so that it satisfies specific independence
statements of the form ∀(i, j) ∈ S, q̂φ(zi) á q̂φ(zj). As q̂φ(Z) is a mixture distribution, any
standard measure of independence is intractable based on the conditionals qφ(Z ∣X,S), even in the
common case of mixture of Gaussian distributions [3]. To address this issue, we propose a novel idea:
estimate and minimize the dependency via a non-parametric statistical penalty. Given the AEVB
framework, let λ ∈ R+, Z0 = {zi1 , .., zip} ⊂ Z and S0 = {sj1 , .., sjq} ⊂ S. The HCV framework with
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independence constraints on Z0 ∪ S0 learns the parameters θ, φ from maximizing the ELBO from
AEVB penalized by

− λdHSIC(q̂φ(zi1 , .., zip)pdata(sj1 , .., sjq)). (9)
A few comments are in order regarding this penalty. First, the dHSIC is positive and therefore
our objective function is still a lower bound on the log-likelihood. The bound will be looser but
the resulting parameters will yield a more suitable representation. This trade-off is adjustable via
the parameter λ. Second, the dHSIC can be estimated with the same samples used for stochastic
variational inference (i.e., sampling from the variational distribution) and for minibatch sampling (i.e.,
subsampling the dataset). Third, the HSIC penalty is based only on the variational parameters—not
the parameters of the generative model.

4 Case study: Learning interpretable representations

Suppose we want to summarize the data x with two independent components u and v, as shown in
Figure 1a. The task is especially important for data exploration since independent representations are
often more easily interpreted.

A related problem is finding latent factors (z1, ..., zd) that correspond to real and interpretable
variations in the data. Learning independent representations is then a key step towards learn-
ing disentangled representations [6, 5, 23, 24]. The β-VAE [5] proposes further penalizing the
DKL(qφ(z ∣ x) ∣∣ p(z)) term. It attains significant improvement over state-of-the art methods
on real datasets. However, this penalization has been shown to yield poor reconstruction perfor-
mance [25]. The β-TCVAE [6] penalized an approximation of the total correlation (TC), defined as
DKL(q̂φ(z) ∣∣ ∏k q̂φ(zk)) [26], which is a measure of multivariate mutual independence. However,
this quantity does not have a closed-form solution [3] and the β-TCVAE uses a biased estimator of
the TC—a lower bound from Jensen inequality. That bias will be zero only if evaluated on the whole
dataset, which is not possible since the estimator has quadratic complexity in the number of samples.
However, the bias from the HSIC [17] is of order O(1/n); it is negligible whenever the batch-size is
large enough. HSIC therefore appears to be a more suitable method to enforce independence in the
latent space.

To assess the performance of these various approaches to finding independent representations, we
consider a linear Gaussian system, for which exact posterior inference is tractable. Let (n,m,d) ∈ N3

and λ ∈ R+. Let (A,B) ∈ Rd×n ×Rd×m be random matrices with iid normal entries. Let Σ ∈ Rd×d
be a random matrix following a Wishart distribution. Consider the following generative model:

v ∼ Normal(0, In)
u ∼ Normal(0, Im)

x ∣ u, v ∼ Normal(Av +Bu,λId +Σ).
(10)

The exact posterior p(u, v ∣ x) is tractable via block matrix inversion, as is the marginal p(x), as
shown in Appendix C. We apply HCV with Z = {u, v},X = {x}, S = ∅, Z0 = {u, v}, andS0 = ∅.
This is equivalent to adding to the ELBO the penalty −λHSIC(Epdata(x)qφ(u, v ∣ x)). Appendix
D describes the stochastic training procedure. We report the trade-off between correlation of the
representation and the ELBO for various penalty weights λ for each algorithm: β-VAE [5], β-
TCVAE [6], an unconstrained VAE, and HCV. As correlation measures, we consider the summed
Pearson correlation ∑(i,j) ρ(q̂φ(ui), q̂φ(vj)) and HSIC.

Results are reported in Figure 2. The VAE baseline (like all the other methods) has an ELBO value
worse than the marginal log-likelihood (horizontal bar) since the real posterior is not likely to be in
the function class given by naive mean field AEVB. Also, this baseline has a greater dependence
in the aggregated posterior q̂φ(u, v) than in the exact posterior p̂(u, v) (vertical bar) for the two
measures of correlation. Second, while correcting the variational posterior, we want the best trade-off
between model fit and independence. HCV attains the highest ELBO values despite having the lowest
correlation.

5 Case study: Learning invariant representations

We now consider the particular problem of learning representations for the data that is invariant to a
given nuisance variable. As a particular instance of the graphical model in Figure 1b, we embed an
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Figure 2: Results for the linear Gaussian system. All results are for a test set. Each dot is averaged
across five random seeds. Larger dots indicate greater regularization. The purple line is the log-
likelihood under the true posterior. The cyan line is the correlation under the true posterior.

image x into a latent vector z1 whose distribution is independent of the observed lighting condition s
while being predictive of the person identity y (Figure 3). The generative model is defined in Figure 3c
and the variational distribution decomposes as qφ(z1, z2 ∣ x, s, y) = qφ(z1 ∣ x, s)qφ(z2 ∣ z1, y), as
in [7].

(a) s: angle between the camera
and the light source

(b) One image x for a given
lighting condition s and person y

x

sz1

yz2

(c) Complete graphical model

Figure 3: Framework for learning invariant representations in the Extended Yale B Face dataset.

This problem has been studied in [7] for binary or categorical s. For their experiment with a
continuous covariate s, they discretize s and use the MMD to match the distributions q̂φ(z1 ∣ s = 0)
and q̂φ(z1 ∣ s = j) for all j. Perhaps surprisingly, their penalty turns out to be a special case of our
HSIC penalty. (We present a proof of this fact in Appendix D.)

Proposition 2. Let the nuisance factor s be a discrete random variable and let l (the kernel
for K) be a Kronecker delta function δ ∶ (s, s′) ↦ 1s=s′ . Then, the V-statistic correspond-
ing to HSIC(q̂φ(z1), pdata) is a weighted sum of the V-statistics of the MMD between the pairs
q̂φ(z ∣ s = i), q̂φ(z ∣ s = j). The weights are functions of the empirical probabilities for s.

Working with the HSIC rather than an MMD penalty lets us avoid discretizing s. We take into account
the whole angular range and not simply the direction of the light. We apply HCV with mean-field
AEVB, Z = {z1, z2},X = {x, y}, S = {s},Z0 = {z1} and S0 = {s}.

Dataset The extended Yale B dataset [27] contains cropped faces [28] of 38 people under 50
lighting conditions. These conditions are unit vectors in R3 encoding the direction of the light source
and can be summarized into five discrete groups (upper right, upper left, lower right, lower left and
front). Following [7], we use one image from each group per person (total 190 images) and use
the remaining images for testing. The task is to learn a representation of the faces that is good at
identifying people but has low correlation with the lighting conditions.
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Experiment We repeat the experiments from the paper introducing the variational fair auto-encoder
(VFAE) [7], this time comparing the VAE [1] with no covariate s, the VFAE [7] with observed lighting
direction groups (five groups), and the HCV with the lighting direction vector (a three-dimensional
vector). As a supplemental baseline, we also report results for the unconstrained VAEs. As in [7], we
report 1) the accuracy for classifying the person based on the variational distribution qφ(y ∣ z1, s); 2)
the classification accuracy for the lighting group condition (five-way classification) based on a logistic
regression and a random forest classifier on a sample from the variational posterior qφ(z1 ∣ z2, y, s)
for each datapoint; and 3) the average error for predicting the lighting direction with linear regression
and a random forest regressor, trained on a sample from the variational posterior qφ(z1 ∣ z2, y, s).
Error is expressed in degrees. λ is optimized via grid search as in [7].

We report our results in Table 1. As expected, adding information (either the lightning group or the
refined lightning direction) always improves the quality of the classifier qφ(y ∣ z1, s). This can be
seen by comparing the scores between the vanilla VAE and the unconstrained algorithms. However,
by using side information s, the unconstrained models yield a representation less suitable because it
is more correlated with the nuisance variables. There is therefore a trade-off between correlation to
the nuisance and performance. Our proposed method (HCV) shows greater invariance to lighting
direction while accurately predicting people’s identities.

Person identity
(Accuracy)

Lighting group
(Average classification error)

Lighting direction
(Average error in degree)

Random Forest
Classifier

Logistic
Regression

Random Forest
Regressor

Linear
Regression

VAE 0.72 0.26 0.11 14.07 9.40
VFAE∗ 0.74 0.23 0.01 13.96 8.63
VFAE 0.69 0.51 0.42 23.59 19.89
HCV∗ 0.75 0.25 0.10 12.25 2.59
HCV 0.75 0.52 0.29 36.15 28.04

Table 1: Results on the Extended Yale B dataset. Preprocessing differences likely explain the slight
deviation in scores from [7]. Stars (∗) the unconstrained version of the algorithm was used.

6 Case study: Learning denoised representations

This section presents a case study of denoising datasets in the setting of an important open sci-
entific problem. The task of denoising consists of representing experimental observations x and
nuisance observations s with two independent signals: biological signal z and technical noise u.
The difficulty is that x contains both biological signal and noise and is therefore strongly correlated
with s (Figure 1c). In particular, we focus on single-cell RNA sequencing (scRNA-seq) data which
renders a gene-expression snapshot of an heterogeneous sample of cells. Such data can reveal a cell’s
type [29, 30], if we can cope with a high level of technical noise [31].

The output of an scRNA-seq experiment is a list of transcripts (lm)m∈M. Each transcript lm is
an mRNA molecule enriched with a cell-specific barcode and a unique molecule identifier, as in
[32]. Cell-specific barcodes enable the biologist to work at single-cell resolution. Unique molecule
identifiers (UMIs) are meant to remove some significant part of the technical bias (e.g., amplification
bias) and make it possible to obtain an accurate probabilistic model for these datasets [33]. Transcripts
are then aligned to a reference genome with tools such as CellRanger [34].

The data from the experiment has two parts. First, there is a gene expression matrix (Xng)(n,g)∈N×G ,
whereN designates the set of cells detected in the experiment and G is the set of genes the transcripts
have been aligned with. A particular entry of this matrix indicates the number of times a particular
gene has been expressed in a particular cell. Second, we have quality control metrics (si)i∈S
(described in Appendix E) which assess the level of errors and corrections in the alignment process.
These metrics cannot be described with a generative model as easily as gene expression data but they
nonetheless impact a significant number of tasks in the research area [35]. Another significant portion
of these metrics focus on the sampling effects (i.e., the discrepancy in the total number of transcripts
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captured in each cell) which can be taken into account in a principled way in a graphical model as
in [33].

We visualize these datasets x and s with tSNE [36] in Figure 4. Note that x is correlated with s,
especially within each cell type. A common application for scRNA-seq is discovering cell types,
which can be be done without correcting for the alignment errors [37]. A second important application
is identifying genes that are more expressed in one cell type than in another—this hypothesis testing
problem is called differential expression [38, 39]. Not modeling s can induce a dependence on x
which hampers hypothesis testing [35].

Most research efforts in scRNA-seq methodology research focus on using generalized linear models
and two-way ANOVA [40, 35] to regress out the effects of quality control metrics. However, this
paradigm is incompatible with hypothesis testing. A generative approach, however, would allow
marginalizing out the effect of these metrics, which is more aligned with Bayesian principles. Our
main contribution is to incorporate these alignment errors into our graphical model to provide a better
Bayesian testing procedure. We apply HCV with Z = {z, u},X = {x, s},Z0 = {z, u}. By integrating
out u while sampling from the variational posterior, ∫ qφ(x ∣ z, u)dp(u), we find a Bayes factor
that is not subject to noise. (See Appendix F for a complete presentation of the hypothesis testing
framework and the graphical model under consideration).

(a) Embedding of x: gene
expression data. Each point is a

cell. Colors are cell-types.

(b) Embedding of s: alignment
errors. Each point is a cell. Color

is s1.

(c) Embedding of x: gene
expression data. Each point is a
cell. Color is the same quality

control metric s1.

Figure 4: Raw data from the PBMC dataset. s1 is the proportion of transcripts which confidently
mapped to a gene for each cell.

Dataset We considered scRNA-seq data from peripheral blood mononuclear cells (PBMCs) from a
healthy donor [34]. Our dataset includes 12,039 cells and 3,346 genes, five quality control metrics
from CellRanger and cell-type annotations extracted with Seurat [41]. We preprocessed the data as in
[33, 35]. Our ground truth for the hypothesis testing, from microarray studies, is a set of genes that
are differentially expressed between human B cells and dendritic cells (n=10 in each group [42]).

Experiment We compare scVI [33], a state-of-the-art model, with no observed nuisance variables
(8 latent dimensions for z), and our proposed model with observed quality control metrics. We use
five latent dimensions for z and three for u. The penalty λ is selected through grid search. For each
algorithm, we report 1) the coefficient of determination of a linear regression and random forest
regressor for the quality metrics predictions based on the latent space, 2) the irreproducible discovery
rate (IDR) [43] model between the Bayes factor of the model and the p-values from the micro-array.
The mixture weights, reported in [33], are similar between the original scVI and our modification (and
therefore higher than other mainstream differential expression procedures) and saturate the number
of significant genes in this experiment (∼23%). We also report the correlation of the reproducible
mixture as a second-order quality metric for our gene rankings.

We report our results in Table 2. First, the proposed method efficiently removes much correlation with
the nuisance variables s in the latent space z. Second, the proposed method yields a better ranking
of the genes when performing Bayesian hypothesis testing. This is shown by a substantially higher
correlation coefficient for the IDR, which indicates the obtained ranking better conforms with the
micro-array results. Our denoised latent space is therefore extracting information from the data that
is less subject to alignment errors and more biologically interpretable.
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Irreproducible Discovery Rate Quality control metrics
(coefficient of determination)

Mixture
weight

Reproducible
correlation

Linear
Regression

Random Forest
Regression

scVI 0.213 ± 0.001 0.26 ± 0.07 0.195 0.129
HCV 0.217 ± 0.003 0.43 ± 0.02 0.176 0.123

Table 2: Results on the PBMCs dataset. IDR results are averaged over twenty initializations.

7 Discussion

We have presented a flexible framework for correcting independence properties of aggregated vari-
ational posteriors learned via naive mean field AEVB. The correction is performed by penalizing
the ELBO with the HSIC—a kernel-based measure of dependency—between samples from the
variational posterior.

We illustrated how variational posterior misspecification in AEVB could unwillingly promote depen-
dence in the aggregated posterior. Future work should look at other variational approximations and
quantify this dependence.

Penalizing the HSIC as we do for each mini-batch implies that no information is learned about
distribution q̂(Z) or ∏i q̂(zi) during training. On one hand, this is positive since we do no have
to estimate more parameters, especially if the joint estimation would imply a minimax problem as
in [23, 13]. One the other hand, that could be harmful if the HSIC could not be estimated with only a
mini-batch. Our experiments show this does not happen in a reasonable set of configurations.

Trading a minimax problem for an estimation problem does not come for free. First, there are some
computational considerations. The HSIC is computed in quadratic time but linear time estimators
of dependence [44] or random features approximations [45] should be used for non-standard batch
sizes. For example, to train on the entire extended Yale B dataset, VAE takes two minutes, VFAE
takes ten minutes2, and HCV takes three minutes. Second, the problem of choosing the best kernel is
known to be difficult [46]. In the experiments, we rely on standard and efficient choices: a Gaussian
kernel with median heuristic for the bandwidth. The bandwidth can be chosen analytically in the case
of a Gaussian latent variable and done offline in case of an observed nuisance variable. Third, the
general formulation of HCV with the dHSIC penalization, as in Equation 9, should be nuanced since
the V-statistic relies on a U-statistic of order 2d. Standard non-asymptotic bounds as in [4] would
exhibit a concentration rate of O(

√
d/n) and therefore not scale well for a large number of variables.

We also applied our HCV framework to scRNA-seq data to remove technical noise. The same
graphical model can be readily applied to several other problems in the field. For example, we
may wish to remove cell cycles [47] that are biologically variable but typically independent of what
biologists want to observe. We hope our approach will empower biological analysis with scalable
and flexible tools for data interpretation.
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