
Pelee: A Real-Time Object Detection System on
Mobile Devices

Robert J. Wang, Xiang Li, Charles X. Ling ∗

Department of Computer Science
University of Western Ontario

London, Ontario, Canada, N6A 3K7
{jwan563,lxiang2,charles.ling}@uwo.ca

Abstract

An increasing need of running Convolutional Neural Network (CNN) models on
mobile devices with limited computing power and memory resource encourages
studies on efficient model design. A number of efficient architectures have been
proposed in recent years, for example, MobileNet, ShuffleNet, and MobileNetV2.
However, all these models are heavily dependent on depthwise separable convolu-
tion which lacks efficient implementation in most deep learning frameworks. In
this study, we propose an efficient architecture named PeleeNet, which is built
with conventional convolution instead. On ImageNet ILSVRC 2012 dataset, our
proposed PeleeNet achieves a higher accuracy and over 1.8 times faster speed than
MobileNet and MobileNetV2 on NVIDIA TX2. Meanwhile, PeleeNet is only
66% of the model size of MobileNet. We then propose a real-time object detec-
tion system by combining PeleeNet with Single Shot MultiBox Detector (SSD)
method and optimizing the architecture for fast speed. Our proposed detection
system2, named Pelee, achieves 76.4% mAP (mean average precision) on PASCAL
VOC2007 and 22.4 mAP on MS COCO dataset at the speed of 23.6 FPS on iPhone
8 and 125 FPS on NVIDIA TX2. The result on COCO outperforms YOLOv2 in
consideration of a higher precision, 13.6 times lower computational cost and 11.3
times smaller model size.

1 Introduction

There has been a rising interest in running high-quality CNN models under strict constraints on
memory and computational budget. Many innovative architectures, such as MobileNets [1], Shuf-
fleNet [2], NASNet-A [3], MobileNetV2 [4], have been proposed in recent years. However, all these
architectures are heavily dependent on depthwise separable convolution [5] which lacks efficient
implementation. Meanwhile, there are few studies that combine efficient models with fast object
detection algorithms [6]. This research tries to explore the design of an efficient CNN architecture for
both image classification tasks and object detection tasks. It has made a number of major contributions
listed as follows:

We propose a variant of DenseNet [7] architecture called PeleeNet for mobile devices. PeleeNet
follows the connectivity pattern and some of key design principals of DenseNet. It is also designed
to meet strict constraints on memory and computational budget. Experimental results on Stanford
Dogs [8] dataset show that our proposed PeleeNet is higher in accuracy than the one built with the
original DenseNet architecture by 5.05% and higher than MobileNet [1] by 6.53%. PeleeNet achieves
a compelling result on ImageNet ILSVRC 2012 [9] as well. The top-1 accuracy of PeleeNet is 72.1%

∗Contact author
2The code and models are available at: https://github.com/Robert-JunWang/Pelee

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



which is higher than that of MobileNet by 1.6%. It is also important to point out that PeleeNet is only
66% of the model size of MobileNet. Some of the key features of PeleeNet are:

• Two-Way Dense Layer Motivated by GoogLeNet [5], we use a 2-way dense layer to get
different scales of receptive fields. One way of the layer uses a 3x3 kernel size. The other
way of the layer uses two stacked 3x3 convolution to learn visual patterns for large objects.
The structure is shown on Fig. 1,

1x1, 4k, conv

3x3, k, conv

Filter concatenate

Previous layer

1x1, 4k, conv

3x3, k, conv

Filter concatenate

Previous layer

1x1, 2k, conv

3x3, k/2, conv

Filter concatenate

Previous layer

3x3, k/2, conv

3x3, k/2, conv

1x1, 2k, conv
1x1, 2k, conv

3x3, k/2, conv

Filter concatenate

Previous layer

3x3, k/2, conv

3x3, k/2, conv

1x1, 2k, conv

(a) original dense layer (b) 2-way dense layer

Figure 1: Structure of 2-way dense layer

• Stem Block Motivated by Inception-v4 [10] and DSOD [11], we design a cost efficient stem
block before the first dense layer. The structure of stem block is shown on Fig. 2. This stem
block can effectively improve the feature expression ability without adding computational
cost too much - better than other more expensive methods, e.g., increasing channels of the
first convolution layer or increasing growth rate.

Input

1x1, 16, stride 1, conv

2x2, stride 2

max pool

3x3, 32, stride 2, conv

Filter concatenate

1x1, 32, stride 1, conv 56x56x32

56x56x64

112x112x323x3, 32, stride 2, conv

224x224x3Input

1x1, 16, stride 1, conv

2x2, stride 2

max pool

3x3, 32, stride 2, conv

Filter concatenate

1x1, 32, stride 1, conv 56x56x32

56x56x64

112x112x323x3, 32, stride 2, conv

224x224x3

Figure 2: Structure of stem block

• Dynamic Number of Channels in Bottleneck Layer Another highlight is that the number
of channels in the bottleneck layer varies according to the input shape instead of fixed
4 times of growth rate used in the original DenseNet. In DenseNet, we observe that
for the first several dense layers, the number of bottleneck channels is much larger than
the number of its input channels, which means that for these layers, bottleneck layer
increases the computational cost instead of reducing the cost. To maintain the consistency
of the architecture, we still add the bottleneck layer to all dense layers, but the number is
dynamically adjusted according to the input shape, to ensure that the number of channels
does not exceed the input channels. Compared to the original DenseNet structure, our
experiments show that this method can save up to 28.5% of the computational cost with a
small impact on accuracy. (Fig. 3)

• Transition Layer without Compression Our experiments show that the compression factor
proposed by DenseNet hurts the feature expression. We always keep the number of output
channels the same as the number of input channels in transition layers.

2



(a) Dense layer with bottleneck (b) Computational cost of the first 4 dense layers

Figure 3: Dynamic number of channels in bottleneck layer

• Composite Function To improve actual speed, we use the conventional wisdom of “post-
activation” (Convolution - Batch Normalization [12] - Relu) as our composite function
instead of pre-activation used in DenseNet. For post-activation, all batch normalization
layers can be merged with convolution layer at the inference stage, which can accelerate the
speed greatly. To compensate for the negative impact on accuracy caused by this change, we
use a shallow and wide network structure. We also add a 1x1 convolution layer after the last
dense block to get the stronger representational abilities.

We optimize the network architecture of Single Shot MultiBox Detector (SSD) [13] for speed
acceleration and then combine it with PeleeNet. Our proposed system, named Pelee, achieves
76.4% mAP on PASCAL VOC [14] 2007 and 22.4 mAP on COCO. It outperforms YOLOv2 [15] in
terms of accuracy, speed and model size. The major enhancements proposed to balance speed and
accuracy are:

• Feature Map Selection We build object detection network in a way different from the
original SSD with a carefully selected set of 5 scale feature maps (19 x 19, 10 x 10, 5 x 5, 3
x 3, and 1 x 1). To reduce computational cost, we do not use 38 x 38 feature map.

• Residual Prediction Block We follow the design ideas proposed by [16] that encourage
features to be passed along the feature extraction network. For each feature map used for
detection, we build a residual [17] block (ResBlock) before conducting prediction. The
structure of ResBlock is shown on Fig. 4

• Small Convolutional Kernel for Prediction Residual prediction block makes it possible
for us to apply 1x1 convolutional kernels to predict category scores and box offsets. Our
experiments show that the accuracy of the model using 1x1 kernels is almost the same as
that of the model using 3x3 kernels. However, 1x1 kernels reduce the computational cost by
21.5%.

(a) ResBlock (b) Network of Pelee

Figure 4: Residual prediction block

We provide a benchmark test for different efficient classification models and different one-stage
object detection methods on NVIDIA TX2 embedded platform and iPhone 8.

3



2 PeleeNet: An Efficient Feature Extraction Network

2.1 Architecture

The architecture of our proposed PeleeNet is shown as follows in Table 1. The entire network consists
of a stem block and four stages of feature extractor. Except the last stage, the last layer in each stage
is average pooling layer with stride 2. A four-stage structure is a commonly used structure in the
large model design. ShuffleNet [2] uses a three stage structure and shrinks the feature map size at the
beginning of each stage. Although this can effectively reduce computational cost, we argue that early
stage features are very important for vision tasks, and that premature reducing the feature map size
can impair representational abilities. Therefore, we still maintain a four-stage structure. The number
of layers in the first two stages are specifically controlled to an acceptable range.

Table 1: Overview of PeleeNet architecture

Stage Layer Output Shape
Input 224 x 224 x 3

Stage 0 Stem Block 56 x 56 x 32

Stage 1
Dense Block DenseLayer x 3

28 x 28 x 128
Transition Layer

1 x 1 conv, stride 1
2 x 2 average pool, stride 2

Stage 2
Dense Block DenseLayer x 4

14 x 14 x 256
Transition Layer

1 x 1 conv, stride 1
2 x 2 average pool, stride 2

Stage 3
Dense Block DenseLayer x 8

7 x 7 x 512
Transition Layer

1 x 1 conv, stride 1
2 x 2 average pool, stride 2

Stage 4
Dense Block DenseLayer x 6

7 x 7 x 704
Transition Layer 1 x 1 conv, stride 1

Classification Layer
7 x 7 global average pool 1 x 1 x 704

1000D fully-connecte,softmax

2.2 Ablation Study

2.2.1 Dataset

We build a customized Stanford Dogs dataset for ablation study. Stanford Dogs [8] dataset contains
images of 120 breeds of dogs from around the world. This dataset has been built using images
and annotation from ImageNet for the task of fine-grained image classification. We believe the
dataset used for this kind of task is complicated enough to evaluate the performance of the network
architecture. However, there are only 14,580 training images, with about 120 images per class, in the
original Stanford Dogs dataset, which is not large enough to train the model from scratch. Instead of
using the original Stanford Dogs, we build a subset of ILSVRC 2012 according to the ImageNet wnid
used in Stanford Dogs. Both training data and validation data are exactly copied from the ILSVRC
2012 dataset. In the following chapters, the term of Stanford Dogs means this subset of ILSVRC
2012 instead of the original one. Contents of this dataset:

• Number of categories: 120
• Number of training images: 150,466
• Number of validation images: 6,000

2.2.2 Effects of Various Design Choices on the Performance

We build a DenseNet-like network called DenseNet-41 as our baseline model. There are two
differences between this model and the original DenseNet. The first one is the parameters of the first

4



conv layer. There are 24 channels on the first conv layer instead of 64, the kernel size is changed from
7 x 7 to 3 x 3 as well. The second one is that the number of layers in each dense block is adjusted to
meet the computational budget.

All our models in this section are trained by PyTorch with mini-batch size 256 for 120 epochs. We
follow most of the training settings and hyper-parameters used in ResNet on ILSVRC 2012. Table 2
shows the effects of various design choices on the performance. We can see that, after combining
all these design choices, PeleeNet achieves 79.25% accuracy on Stanford Dogs, which is higher in
accuracy by 4.23% than DenseNet-41 at less computational cost.

Table 2: Effects of various design choices and components on performance

From DenseNet-41 to PeleeNet
Transition layer without compres-
sion 3 3 3 3 3 3

Post-activation 3 3 3
Dynamic bottleneck channels 3 3 3 3
Stem Block 3 3 3
Two-way dense layer 3 3
Go deeper (add 3 extra dense lay-
ers) 3

Top 1 accuracy 75.02 76.1 75.2 75.8 76.8 78.8 79.25

2.3 Results on ImageNet ILSVRC 2012

Our PeleeNet is trained by PyTorch with mini-batch size 512 on two GPUs. The model is trained
with a cosine learning rate annealing schedule, similar to what is used by [18] and [19]. The initial
learning rate is set to 0.18 and the total amount of epochs is 120. We then fine tune the model with
the initial learning rate of 5e-3 for 20 epochs. Other hyper-parameters are the same as the one used
on Stanford Dogs dataset.

Cosine Learning Rate Annealing means that the learning rate decays with a cosine shape (the
learning rate of epoch t (t <= 120 ) set to 0 .5 ∗ lr ∗ (cos(π ∗ t/120 ) + 1 ).

As can be seen from Table 3, PeleeNet achieves a higher accuracy than that of MobileNet and
ShuffleNet at no more than 66% model size and the lower computational cost. The model size of
PeleeNet is only 1/49 of VGG16.

Table 3: Results on ImageNet ILSVRC 2012

Model Computational Cost
(FLOPs)

Model Size
(Parameters)

Accuracy (%)
Top-1 Top-5

VGG16 15,346 M 138 M 71.5 89.8
1.0 MobileNet 569 M 4.24 M 70.6 89.5

ShuffleNet 2x (g = 3) 524 M 5.2 M 70.9 -
NASNet-A 564 M 5.3 M 74.0 91.6

PeleeNet (ours) 508 M 2.8 M 72.1 90.6

2.4 Speed on Real Devices

Counting FLOPs (the number of multiply-accumulates) is widely used to measure the computational
cost. However, it cannot replace the speed test on real devices, considering that there are many other
factors that may influence the actual time cost, e.g. caching, I/O, hardware optimization etc,. This
section evaluates the performance of efficient models on iPhone 8 and NVIDIA TX2 embedded
platform. The speed is calculated by the average time of processing 100 pictures with 1 batch size.
We run 100 picture processing for 10 times separately and average the time.

5



As can be seen in Table 4 PeleeNet is much faster than MoibleNet and MobileNetV2 on TX2.
Although MobileNetV2 achieves a high accuracy with 300 FLOPs, the actual speed of the model is
slower than that of MobileNet with 569 FLOPs.

Using half precision float point (FP16) instead of single precision float point (FP32) is a widely
used method to accelerate deep learning inference. As can be seen in Figure 5, PeleeNet runs 1.8
times faster in FP16 mode than in FP32 mode. In contrast, the network that is built with depthwise
separable convolution is hard to benefit from the TX2 half-precision (FP16) inference engine. The
speed of MobileNet and MobileNetV2 running in FP16 mode is almost the same as the ones running
in FP32 mode.

On iPhone 8, PeleeNet is slower than MobileNet for the small input dimension but is faster than
MobileNet for the large input dimension. There are two possible reasons for the unfavorable result
on iPhone. The first reason is related to CoreML which is built on Apple’s Metal API. Metal is a 3D
graphics API and is not originally designed for CNNs. It can only hold 4 channels of data (originally
used to hold RGBA data). The high-level API has to slice the channel by 4 and caches the result of
each slice. The separable convolution can benefit more from this mechanism than the conventional
convolution. The second reason is the architecture of PeleeNet. PeleeNet is built in a multi-branch
and narrow channel style with 113 convolution layers. Our original design is misled by the FLOPs
count and involves unnecessary complexity.

Table 4: Speed on NVIDIA TX2 (The larger the better) The benchmark tool is built with NVIDIA
TensorRT4.0 library.

Model
Top-1 Accuracy
on ILSVRC2012

@224x224

FLOPs
@224x224

Speed
(images per second)

Input Dimension
224x224 320x320 640x640

1.0 MobileNet 70.6 569 M 136.2 75.7 22.4
1.0 MobileNetV2 72.0 300 M 123.1 68.8 21.6

ShuffleNet 2x (g = 3) 70.9 524 M 110 65.3 19.8
PeleeNet (ours) 72.1 508 M 240.3 129.1 37.2

(a) Speed and accuracy on FP16 mode (b) FP32 vs FP16 by 224x224 dimension

Figure 5: Speed on NVIDIA TX2

6



Table 5: Speed on iPhone 8 (The larger the better) The benchmark tool is built with CoreML library.

Model
Top-1 Accuracy
on ILSVRC2012

@224x224

FLOPs
@224x224

Speed
(images per second)

Input Dimension
224x224 320x320

1.0 MobileNet 70.6 569 M 27.7 20.3
PeleeNet (ours) 72.1 508 M 26.1 22.8

3 Pelee: A Real-Time Object Detection System

3.1 Overview

This section introduces our object detection system and the optimization for SSD. The main purpose
of our optimization is to improve the speed with acceptable accuracy. Except for our efficient feature
extraction network proposed in last section, we also build the object detection network in a way
different from the original SSD with a carefully selected set of 5 scale feature maps. In the meantime,
for each feature map used for detection, we build a residual block before conducting prediction (Fig.
4). We also use small convolutional kernels to predict object categories and bounding box locations
to reduce computational cost. In addition, we use quite different training hyperparameters. Although
these contributions may seem small independently, we note that the final system achieves 70.9%
mAP on PASCAL VOC2007 and 22.4 mAP on MS COCO dataset. The result on COCO outperforms
YOLOv2 in consideration of a higher precision, 13.6 times lower computational cost and 11.3 times
smaller model size.

There are 5 scales of feature maps used in our system for prediction: 19 x 19, 10 x 10, 5 x 5, 3 x 3,
and 1 x 1. We do not use 38 x 38 feature map layer to ensure a balance able to be reached between
speed and accuracy. The 19x19 feature map is combined to two different scales of default boxes and
each of the other 4 feature maps is combined to one scale of default box. Huang et al. [6] also do not
use 38 x 38 scale feature map when combining SSD with MobileNet. However, they add another
2 x 2 feature map to keep 6 scales of feature map used for prediction, which is different from our
solution.

Table 6: Scale of feature map and default box

Model Scale of Feature Map : Scale of Default Box
Original

SSD 38x38:30 19x19:60 10x10:110 5x5:162 3x3:213 1x1:264

SSD +
MobileNet [6] 19x19:60 10x10:105 5x5:150 3x3:195 2x2:240 1x1:285

Pelee (ours) 19x19: 30.4 & 60.8 10x10:112.5 5x5:164.2 3x3:215.8 1x1:267.4

3.2 Results on VOC 2007

Our object detection system is based on the source code of SSD3 and is trained with Caffe [20]. The
batch size is set to 32. The learning rate is set to 0.005 initially, then it decreased by a factor of 10 at
80k and 100k iterations,respectively. The total iterations are 120K.

3.2.1 Effects of Various Design Choices

Table 7 shows the effects of our design choices on performance. We can see that residual prediction
block can effectively improve the accuracy. The model with residual prediction block achieves a
higher accuracy by 2.2% than the model without residual prediction block. The accuracy of the model
using 1x1 kernels for prediction is almost same as the one of the model using 3x3 kernels. However,
1x1 kernels reduce the computational cost by 21.5% and the model size by 33.9%.

3https://github.com/weiliu89/caffe/tree/ssd

7



Table 7: Effects of various design choices on performance

38x38 Feature ResBlock Kernel Size
for

Prediction
FLOPs Model Size

(Parameters)
mAP (%)

3 7 3x3 1,670 M 5.69 M 69.3
7 7 3x3 1,340 M 5.63 M 68.6
7 3 3x3 1,470 M 7.27 M 70.8
7 3 1x1 1,210 M 5.43 M 70.9

3.2.2 Comparison with Other Frameworks

As can be seen from Table 8, the accuracy of Pelee is higher than that of TinyYOLOv2 by 13.8%
and higher than that of SSD+MobileNet [6] by 2.9%. It is even higher than that of YOLOv2-288 at
only 14.5% of the computational cost of YOLOv2-288. Pelee achieves 76.4% mAP when we take
the model trained on COCO trainval35k as described in Section 3.3 and fine-tuning it on the 07+12
dataset.

Table 8: Results on PASCAL VOC 2007. Data: ”07+12”: union of VOC2007 and VOC2012
trainval. ”07+12+COCO”: first train on COCO trainval35k then fine-tune on 07+12

Model Input
Dimension FLOPs Model Size

(Parameters) Data mAP (%)

YOLOv2 288x288 8,360 M 67.13 M 07+12 69.0
Tiny-YOLOv2 416x416 3,490 M 15.86 M 07+12 57.1

SSD+MobileNet 300x300 1,150 M 5.77 M 07+12 68
Pelee (ours) 304x304 1,210 M 5.43 M 07+12 70.9

SSD+MobileNet 300x300 1,150 M 5.77 M 07+12+COCO 72.7
Pelee (ours) 304x304 1,210 M 5.43 M 07+12+COCO 76.4

3.2.3 Speed on Real Devices

We then evaluate the actual inference speed of Pelee on real devices. The speed are calculated by
the average time of 100 images processed by the benchmark tool. This time includes the image
pre-processing time, but it does not include the time of the post-processing part (decoding the
bounding-boxes and performing non-maximum suppression). Usually, post-processing is done on the
CPU, which can be executed asynchronously with the other parts that are executed on mobile GPU.
Hence, the actual speed should be very close to our test result.

Although residual prediction block used in Pelee increases the computational cost, Pelee still runs
faster than SSD+MobileNet on iPhone and on TX2 in FP32 mode. As can be seen from Table 9,
Pelee has a greater speed advantage compared to SSD+MobileNet and SSDLite+MobileNetV2 in
FP16 mode.

Table 9: Speed on real devices

Model Input
Dimension FLOPs Speed (FPS)

iPhone 8 TX2
(FP16)

TX2
(FP32)

SSD+MobileNet 300x300 1,200 M 22.8 82 73
SSDLite+MobileNetV2 320x320 805 M - 62 60

Pelee (ours) 304x304 1,290 M 23.6 125 77

3.3 Results on COCO

We further validate Pelee on the COCO dataset. The models are trained on the COCO train+val
dataset excluding 5000 minival images and evaluated on the test-dev2015 set. The batch size is set

8



to 128. We first train the model with the learning rate of 10−2 for 70k iterations, and then continue
training for 10k iterations with 10−3 and 20k iterations with 10−4 .

Table 10 shows the results on test-dev2015. Pelee is not only more accurate than SSD+MobileNet [6],
but also more accurate than YOLOv2 [15] in both mAP@[0.5:0.95] and mAP@0.75. Meanwhile,
Pelee is 3.7 times faster in speed and 11.3 times smaller in model size than YOLOv2.

Table 10: Results on COCO test-dev2015

Model Input
Dimension

Speed
on TX2

(FPS)
Model Size

(Parameters)
Avg. Precision (%), IoU:

0.5:0.95 0.5 0.75
Original

SSD 300x300 - 34.30 M 25.1 43.1 25.8

YOLOv2 416x416 32.2 67.43 M 21.6 44.0 19.2
YOLOv3 320x320 21.5 62.3 M - 51.5 -

YOLOv3-Tiny 416x416 105 12.3 M - 33.1 -
SSD+MobileNet 300x300 80 6.80 M 18.8 - -

SSDlite +
MobileNet v2 320x320 61 4.3 M 22 - -

Pelee (ours) 304x304 120 5.98 M 22.4 38.3 22.9

4 Conclusion

Depthwise separable convolution is not the only way to build an efficient model. Instead of using
depthwise separable convolution, our proposed PeleeNet and Pelee are built with conventional
convolution and have achieved compelling results on ILSVRC 2012, VOC 2007 and COCO.

By combining efficient architecture design with mobile GPU and hardware-specified optimized
runtime libraries, we are able to perform real-time prediction for image classification and object
detection tasks on mobile devices. For example, Pelee, our proposed object detection system, can run
23.6 FPS on iPhone 8 and 125 FPS on NVIDIA TX2 with high accuracy.

References
[1] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias

Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[2] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. arXiv preprint arXiv:1707.01083, 2017.

[3] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable
architectures for scalable image recognition. arXiv preprint arXiv:1707.07012, 2017.

[4] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4510–4520, 2018.

[5] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015.

[6] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara, Alireza Fathi,
Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama, et al. Speed/accuracy trade-offs
for modern convolutional object detectors. arXiv preprint arXiv:1611.10012, 2016.

[7] Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der Maaten. Densely connected
convolutional networks. arXiv preprint arXiv:1608.06993, 2016.

9



[8] Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Fei-Fei Li. Novel dataset for
fine-grained image categorization: Stanford dogs. In Proc. CVPR Workshop on Fine-Grained
Visual Categorization (FGVC), volume 2, page 1, 2011.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pages 248–255. IEEE, 2009.

[10] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-v4,
inception-resnet and the impact of residual connections on learning. In AAAI, pages 4278–4284,
2017.

[11] Zhiqiang Shen, Zhuang Liu, Jianguo Li, Yu-Gang Jiang, Yurong Chen, and Xiangyang Xue.
Dsod: Learning deeply supervised object detectors from scratch. In The IEEE International
Conference on Computer Vision (ICCV), volume 3, page 7, 2017.

[12] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International Conference on Machine Learning, pages
448–456, 2015.

[13] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang
Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In European conference on
computer vision, pages 21–37. Springer, 2016.

[14] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. International journal of computer vision,
88(2):303–338, 2010.

[15] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. arXiv preprint
arXiv:1612.08242, 2016.

[16] Kyoungmin Lee, Jaeseok Choi, Jisoo Jeong, and Nojun Kwak. Residual features and unified
prediction network for single stage detection. arXiv preprint arXiv:1707.05031, 2017.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[18] Geoff Pleiss, Danlu Chen, Gao Huang, Tongcheng Li, Laurens van der Maaten, and Kilian Q
Weinberger. Memory-efficient implementation of densenets. arXiv preprint arXiv:1707.06990,
2017.

[19] Ilya Loshchilov and Frank Hutter. Sgdr: stochastic gradient descent with restarts. arXiv preprint
arXiv:1608.03983, 2016.

[20] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick,
Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature
embedding. In Proceedings of the 22nd ACM international conference on Multimedia, pages
675–678. ACM, 2014.

10


