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Abstract

We present a new technique for deep reinforcement learning that automatically
detects moving objects and uses the relevant information for action selection. The
detection of moving objects is done in an unsupervised way by exploiting structure
from motion. Instead of directly learning a policy from raw images, the agent first
learns to detect and segment moving objects by exploiting flow information in
video sequences. The learned representation is then used to focus the policy of
the agent on the moving objects. Over time, the agent identifies which objects are
critical for decision making and gradually builds a policy based on relevant moving
objects. This approach, which we call Motion-Oriented REinforcement Learning
(MOREL), is demonstrated on a suite of Atari games where the ability to detect
moving objects reduces the amount of interaction needed with the environment
to obtain a good policy. Furthermore, the resulting policy is more interpretable
than policies that directly map images to actions or values with a black box neural
network. We can gain insight into the policy by inspecting the segmentation and
motion of each object detected by the agent. This allows practitioners to confirm
whether a policy is making decisions based on sensible information. Our code is
available at https://github.com/vik-goel/MOREL.

1 Introduction

Tremendous progress has been made in the development of reinforcement learning (RL) algorithms for
tasks where the input consists of images. For instance, model-free RL techniques [33] now outperform
humans on the majority of the Atari games in the arcade learning environment [3]. Despite this
outstanding performance, RL techniques require a lot more interactions with the environment than
human players to perform well on Atari games. This is largely due to the fact that RL techniques
do not have any prior knowledge of these games and therefore require a lot more interactions to
learn to extract relevant information from images. In contrast, humans immediately recognize salient
objects (e.g., spaceships, monsters, balls) and exploit texture cues to guess a strategy [6]. Within
a few interactions with the environment, humans quickly learn the effects of their actions and can
easily predict future frames. At that point, humans can focus on learning a good policy.

Existing RL techniques for image inputs typically use convolutional neural networks as part of a
policy network or Q-network. The beauty of deep RL is that there is no need for practitioners to
handcraft features such as object detectors, but this obviously requires more interactions with the
environment since the convolutional neural network needs to learn what features to extract for a good
policy and/or value function.

We propose a new approach that leverages existing work in computer vision to estimate the segmenta-
tion and motion of objects in video sequences [8]. In many games, the position and velocity of moving
objects constitute important features that should be taken into account by an optimal policy. More
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precisely, we describe how to obtain an object mask with flow information for each moving object in
an unsupervised fashion based on a modified version of SfM-Net [35] that is trained on the first 1%
of the frames seen by the agent while playing. The encoding part of the resulting network is then
used to initialize the image encoder of actor-critic algorithms. This has two benefits: 1) the number
of interactions with the environment needed to find a good policy can be reduced and 2) the object
masks can be inspected to interpret and verify the features extracted by the policy. Since moving
objects are not the only salient features in games (e.g., fixed objects such as treasures, keys and bombs
are also important), we combine the encoder for moving objects with a standard convolutional neural
network that can learn to extract complementary features. We showcase the performance of MOREL
on all 59 Atari games where we observe a notable improvement in comparison to A2C and PPO for
26 and 25 games respectively, and a worse performance for 3 and 9 games respectively.

The paper is organized as follows. Sec. 2 provides some background about reinforcement learning.
Sec. 3 discusses related work in reducing the number of interactions with the environment and
improving the interpretability of RL techniques. Sec. 4 describes our new approach, Motion-Oriented
REinforcement Learning (MOREL), that learns to segment moving objects and infer their motion in
an unsupervised way as part of a model free RL technique. Sec. 5 evaluates the approach empirically
on 59 Atari games. Finally, Sec. 6 concludes the paper and discusses possible future extensions.

2 Background

2.1 Reinforcement Learning

Reinforcement learning (RL) [33] provides a principled framework to optimize sequences of
interdependent decisions in stochastic environments with unknown dynamics. More specif-
ically, an agent learns to optimize a policy ⇡ that maps histories of observations ht =
(a0, o1, a1, o2..., at�2, ot�1, at�1, ot) to the next action at. The value V ⇡(h) = E⇡[

P
T

t=0 �
trt]

of a policy ⇡ is measured by the expected sum of discounted rewards rt (with discount factor
� 2 [0, 1)) earned while executing the policy after observing history h. Similarly, the action value
function Q⇡(h, a) = E[r0|h, a] + E⇡[

P
T

t=1 �
trt] quantifies the expected value of executing a fol-

lowed by ⇡. The goal is to find an optimal policy ⇡⇤ = argmax⇡ V ⇡(h) 8h with the highest value
function.

RL algorithms can be categorized into value-based techniques (that maximize some type of value
function), policy optimization techniques (that directly optimize a policy) and actor-critics (that use
both a value function and a policy). In RL problems with complex observation spaces, it is common
to use deep neural networks to represent value functions and policies. For instance, in the arcade
learning environment [3], observations consist of images and convolutional neural networks [20]
are often used to automatically extract relevant features for the selection of actions (policy) and the
computation of values (value function) [20, 24, 25, 30, 31, 34].

Policy optimization algorithms include policy gradient techniques [37] that gradually improve a policy
by taking steps in the direction of the gradient r✓⇡✓(at|ht)Rt where ✓ consists of the parameters
of the policy ⇡ and Rt is an estimator of the cumulative rewards, Rt =

P
k
�krt+k. To reduce

variance in the estimator, it is common to replace Rt by an estimate At of the advantage function,
A(ht, at) = Q(ht, at) � V (ht) [9]. The asynchronous advantage actor critic (A3C) [24] and its
synchronous variant (A2C) are good examples of such techniques.

In practice, the policy gradient may not give the best direction for improvement and large steps
may induce instability. To mitigate those problems, trust region techniques [30] search for the best
improvement to a policy within a small neighbourhood by solving a constrained optimization problem.
Within the same spirit, proximal policy optimization (PPO) techniques [31] clip the policy gradient
to prevent overly large changes to the policy.

In this paper, we describe an object-sensitive representation learning technique that can be combined
with most value-based, policy optimization, and actor-critic algorithms. We will demonstrate the
gains in sample efficiency of our object sensitive technique using the Atari domain in the context of
A2C and PPO, which are strong baselines that achieve very good results in many domains.
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2.2 Unsupervised Object Segmentation

In computer vision, it is possible to exploit information induced from the movement of rigid objects
to learn in a completely unsupervised way to segment them, to infer their motion and depth, and
to infer the motion of the camera. The Structure from Motion Network (SfM-Net) [35] is a good
example of a deep neural network that takes as input two consecutive images and computes the
geometry of moving objects. This architecture consists of two subnetworks: one which predicts the
depth of each pixel in an image, and another which predicts camera motion and masks along with
rotation and translation values for moving objects in the image. The combined information is used to
compute the optical flow which attempts to reconstruct one of the input frames from the other. By
minimizing the L1 difference between the reconstructed frame and the true frame, the entire network
can be trained in an unsupervised fashion. In Section 4, we use a modified version of SfM-Net to
pre-train the encoder of our MOREL technique.

3 Related Work

Previous works have used learned feature representations for reinforcement learning [7, 11, 10, 19].
Finn et al. [7] train a fixed feature extractor to encode key spatial feature points in images. They use
this spatial encoding when training reinforcement learning algorithms on robotic manipulation tasks.
Higgins et al. [11] use learned feature representations for sample efficient domain adaptation. By
learning a disentangled representation of the environment, their reinforcement learning agent is able
to quickly adapt to new domains.

3.1 Object-Based RL

Object representations are not new in reinforcement learning. Diuk et al. [5] proposed an object-
oriented framework to facilitate reasoning about objects and their interactions in reinforcement
learning. The framework was extended with a physics based model to reason about the dynamics
of objects [29]. Other frameworks such as interaction networks [2] and schema networks [16] have
been combined with reinforcement learning to reason and learn about causal relationships among
objects. All of these frameworks can improve generalization and reduce sample complexity in
reinforcement learning, but they assume that object features and relations are directly available from
the environment. Li et al. [21] proposed object-sensitive deep RL by introducing a template matching
technique to detect objects in raw images and augmenting them with object channels, but suitable
templates must be handcrafted for each object in each environment. Bellemare et al. [3] used classic
computer vision algorithms to detect objects in the Atari domain. Similarly, these hand-engineered
methods rely on assumptions that do not hold outside of the Atari domain. In contrast, we propose an
unsupervised technique that does not require any domain information, labeled data, or manual input
from practitioners to automatically detect moving objects with their motion in visual reinforcement
learning tasks.

3.2 Auxiliary objectives and model-based RL

Another approach to reduce the sample complexity of reinforcement learning consists of augmenting
rewards with auxiliary objectives corresponding to auxiliary control or reward tasks [14, 22]. In
navigation tasks, data efficiency can be improved with auxiliary depth prediction and loop closure
classification tasks [23]. More generally, an agent capable of predicting future rewards and obser-
vations is extracting useful information that can speed up the learning of a good policy or value
function [26]. This agent is also effectively learning a model of the environment based on which
it can generate additional simulated data to learn without interacting with the environment [10].
However, there is a risk that the simulated data will harm the learning process if it is inaccurate.
To that effect, Weber et al. [27] devised an approach to "interpret" simulated trajectories and try to
extract only beneficial information. Our technique is orthogonal to this work and could be combined
with auxiliary tasks and model-based techniques to further reduce sample complexity.

3.3 Interpretable RL

Khan et al. [17] pioneered a generic technique to explain policies for factored Markov decision
processes in terms of the occupancy frequency of future states. This approach assumes discrete
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features and a model of the environment. In deep learning, classifications and predictions can often
be visualized by finding the input that maximizes some desired output [32]. Along those lines, a
saliency map of the input features can also be used to explain the degree of sensitivity of each feature
to a desired output. The saliency of each feature corresponds to the magnitude of the derivative of
the output to that feature. Since such saliency maps may be difficult to interpret when the saliency
of individual pixels do not produce recognizable images, Iyer et al. [13, 21] proposed object-level
saliency maps to explain RL policies in visual domains by measuring the impact on action choices
when we replace an object in the input image by the surrounding background. However, templates
for each object must be hand-engineered. We show how the object masks produced by our technique
in an unsupervised fashion can help to interpret and visualize the information used by RL policies.

4 Method

We decouple our training procedure into two phases. First, we learn a structured representation of
the input that captures information about all moving objects in the scene through training on the
task of unsupervised video object segmentation. After learning a disentangled representation of the
scene, we transfer the weights to our reinforcement learning agent and continue to optimize our
segmentation network jointly along with the policy and/or value function. This biases the model to
focus on moving objects, allowing us to obtain a good policy, and requires fewer interactions with the
environment in the second phase.

4.1 Unsupervised Video Object Segmentation

Model Architecture Our architecture is illustrated in Figure 1. Given two consecutive frames
x0, x1 2 RW⇥H , our network predicts K object segmentation masks M (k) 2 [0, 1]W⇥H , K
corresponding object translations tk 2 R2, and a camera translation c 2 R2. We found K = 20
to work well. Our model compresses the input images to a 512-dimensional embedding which is
forced to contain information about all of the moving objects in the input. We use the standard
architecture from [24, 31, 34] which we modify to take in 2 frames as input instead of 4 to match
the inputs of SfM-Net [35]. We upsample the embedding via a fully-connected layer followed by
two more layers of bilinear interpolation and convolutions to predict the K object masks. A sigmoid
non-linearity ensures M (k) 2 [0, 1]W⇥H while allowing each pixel to belong to many objects or
no objects (indicating background). A separate branch from the embedding, consisting of a single
fully-connected layer, computes the camera translation. Contrary to many segmentation networks
[1, 28, 35], our model does not make use of skip connections from the downsampling path to the
upsampling path, and this ensures that all object information will be present in the embedding.

Reconstruction Loss Since we do not have ground truth for the object masks or translations, we
follow the approach in [35] and train the network to interpolate between x0 and x1. Using the object
masks and translations, we estimate the optical flow F 2 RW⇥H⇥2. This is computed as shown in
Equation 1 by performing the pixel-wise sum of all the object translations weighted by the probability
of that pixel belonging to the corresponding object. The camera translation c is also added afterwards.

Fij =
KX

k=1

(M (k)
ij

⇥ tk) + c (1)

We use the optical flow to warp x1 into an estimate of x0, x̂0. This can be done differentiably using
the method proposed by Spatial Transformer Networks [15]. We train the network to minimize this
reconstruction error, as achieving a low reconstruction error requires the network to accurately model
all the moving objects in the scene, allowing it to disentangle many factors of variation.

We use structural dissimilarity (DSSIM) [36], a perceptually-based distance metric for images, to
train our network to reconstruct x0. This loss is chosen instead of the L1 loss used to train SfM-Net
[35]. The L1 loss suffers from a gradient locality problem [4] where each pixel’s gradient is function
of only its immediate neighbouring pixels [39]. This makes it difficult for the network to learn
translations which are further away or that are in regions with little texture. DSSIM, on the other
hand, is computed with an 11⇥ 11 filter that helps ensure that the gradient at each pixel gets signal
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Object & Camera Translation
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Figure 1: Unsupervised object segmentation model architecture. There are 3 convolutional layers
which are followed by a fully-connected layer to compress the input into a 512-dimensional embed-
ding. We use the embedding to predict object and camera translations. To predict object masks from
the embedding, we have another fully-connected layer and then reshape the activations into a 3D
volume. Next, we use bilinear interpolation to increase the size of the activations before applying
a stride 1 convolution. After upsampling in this manner twice, the activation volume is the desired
dimensionality for the object masks. Every convolution is followed by an ReLU non-linearity, except
for the object masks which are followed by a sigmoid. The optical flow is computed using the
translations and object masks as shown in Equation 1.

from a large number of pixels in its vicinity. In turn, this makes the optimization procedure more
stable.

Flow Regularization Solely minimizing reconstruction loss is insufficient to get sharp, inter-
pretable object masks because the problem is underdetermined. The network can learn to predict
many translations which cancel out to the correct optical flow. One approach to solve this is imposing
L1 regularization on the object masks to encourage sparsity. However, if we only regularize the object
masks, there is still a degenerate solution consisting of object masks with very small values coupled
with large object translations. When multiplied, the computed optical flow is equivalent, however the
L1 norm of the object masks will be very low. To get sparse object masks and reasonable translations,
we impose L1 regularization only after multiplying each mask by its corresponding translation.

Lreg =
KX

k=1

kM (k) ⇥ tkk1 (2)

Lseg = Lreconstruct + �regLreg (3)

Curriculum We minimize Lseg where �reg is a hyperparameter which determines the strength of
the regularization. Setting �reg too high causes the network to collapse and predict zero optical flow
as this minimizes Lreg . To resolve this training instability, for the first 100k steps we linearly increase
�reg from 0 to 1. This progressively makes the task harder and slowly encourages the network to
make the object masks interpretable without collapsing.

Training Procedure We collect 100k frames by following a random policy. Using an Adam
optimizer [18] with learning rate 1⇥ 10�4 and batch size 16, we minimize Ltotal for 250k steps.

4.2 Transferring for Deep Reinforcement Learning

Model Architecture We present a motion-oriented actor critic algorithm. Our architecture is
illustrated in Figure 2. To learn a good policy, our RL agent must receive information about both
moving objects and static objects. Although our segmentation network provides a disentangled
representation of the moving objects in a frame, it is not designed to capture static objects — which
in some games can nonetheless be important for achieving high reward. To capture information about
static objects, we add a downsampling network with the same architecture used in Figure 1. We
concatenate the embeddings from the segmentation and the static object networks, and then add a
fully-connected layer to combine this information and produce further higher-level features. From
this, a final fully-connected layer outputs our policy and state value as in [24].
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To initialize our RL agent, we transfer the weights in the motion path from our segmentation network
and randomly initialize the weights of the static path. By only imposing a motion-oriented prior on
one subnetwork, we allow the static network to learn complementary features.

Joint Optimization Our segmentation network is trained on a dataset which is collected by follow-
ing a uniform random policy. It provides a strong prior with which to initialize the motion-oriented
path of our reinforcement learning agent. During training, however, it is beneficial to continue
updating the transferred weights on the object segmentation task. The benefits are threefold. Firstly,
this allows the object segmentation path to continue improving as it sees more data from the environ-
ment. Secondly, it allows the agent to retain its ability to segment out objects, which can be useful
for visualization. Finally, for many games, there is a distribution shift in the input that occurs as
the agent’s policy improves. Concretely, if a game has multiple levels, an agent that is continually
improving will encounter levels that were difficult to reach via the random policy. On these inputs,
the transferred weights from the segmentation network become less meaningful since these examples
can be drastically different from the training set. Thus, we utilize joint optimization to update the
agent by minimizing Lseg alongside the policy and value function in an online fashion.

Input

84x84x2

Segmentation Network
Downsample fc 512

Segmentation Network
Upsample Optical Flow

conv
8x8x32
stride 4

conv
4x4x64
stride 2

conv
3x3x64
stride 1

fc 512 concat
1024 fc 512

Actor

Critic

Figure 2: MOREL model architecture. We concatenate the results of our segmentation network (top)
and static object network (bottom), and use this representation to predict a policy and state value
function. The static object network uses the same network architecture as our segmentation network.
The segmentation network downsampling and upsamping architecture is shown in Figure 1.

5 Experimental Results

We perform a qualitative evaluation of our unsupervised video object segmentation network to analyze
the quality of the produced object masks. Then, we perform an ablation study to provide insight
into our reinforcement learning results on a standard set of Atari games, as chosen in [24, 25, 38].
Finally, we show the results of MOREL on all 59 Atari games which were available at the time of
this publication in our supplementary materials. Since our approach is orthogonal to the choice of
RL algorithm, it can in principle be combined with any RL algorithm. To verify this empirically, we
show results using two different reinforcement learning algorithms, A2C and PPO.

5.1 Unsupervised Video Object Segmentation

Figure 3 shows object masks and optical flow predicted by our unsupervised video object segmentation
network. Since there are K = 20 object masks, we only display the most salient object mask
individually, which we define as the one with the highest kM (k) ⇥ tkk1. This is the object mask
with the highest flow regularization penalty, and consequently the one in which the model was most
confident. To get an overall visualization of the 20 masks, we also display a weighted sum of the
masks, where each mask is weighted by the L1-norm of its corresponding predicted object translation.
This weighting corresponds to model confidence - since the flow regularization penalizes the network
heavily when it predicts large translations, the model has more confidence that an object is there if
the predicted translation is large.

Overall, our network picks out all the moving objects in the scene, a remarkable feat considering that
our method is completely unsupervised. There are a few interesting observations about the object
masks that are of note. Firstly, since many objects in Atari games have no texture, small translations
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Figure 3: Unsupervised video object segmentation results. The first and second frames are the inputs
to the network, pre-processed as in [24]. The masks are shown overlaid on the frame in green. The
intensity of the green indicates the confidence of the model that there is an object present at each
pixel. The hue of the optical flow image indicates direction and the intensity of the color denotes the
magnitude of the flow (normalized per image).

of these objects do not actually change the pixels located at their centers. Correspondingly, the
model is free to ignore these stationary portions of the object. In our Breakout results, the network
learns to split the paddle into a left and right side, and does not move the middle portion. Another
interesting quirk in Atari games is that separate objects are often programmed to move in the same
way. In Space Invaders, many enemies traverse the screen in a single formation, and as a result
our model merges them all on one object mask and treats them as a single entity. Finally, there are
some Atari games where our model trains well but our fundamental assumption that motion is a
helpful cue for understanding the game is not satisfied. On Beam Rider, our network achieves low
loss after learning to segment the game’s light beams, however these beams are purely visual effects
and are unimportant for action selection. Consequently, the game enemies, which are much smaller
in size, are ignored by the network, and the resulting learned representation is not that useful for a
reinforcement learning agent. Further visualizations in the form of videos are available for all 59
Atari games in the supplementary material. The segmentations in each video provide insights into
what the agent understands and whether it is making decisions based on sensible information.

5.2 Reinforcement Learning Experimental Setup

Following the experimental setup from [24], we train each agent for 10 million timesteps with one
timestep for each frame. The hyperparameters for our A2C and PPO agents were taken from [24]
and [31] respectively. PPO defines a surrogate loss function which uses clipping to control the size
of policy updates [31]. When composing MOREL with PPO, we must also ensure that we limit the
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magnitude of our weight updates after the addition of our segmentation loss during joint training. We
achieve this by clipping our segmentation loss whenever the policy or value loss is clipped by PPO.
Other than this change, our method is applied identically to A2C and PPO in our experiments.

5.3 Ablation Study

To provide insight into our algorithm, we ablate MOREL and compare against suitable baselines
using A2C. The results are shown in Figure 4. We train three baselines on A2C. One baseline uses the
standard architecture from [24] with randomly initialized weights. The second baseline uses the same
architecture as our model, again initialized randomly, to control for any differences in architecture
and the number of parameters. Finally, we compare to an agent initialized with weights transferred
from an autoencoder [12] trained on the same dataset as our segmentation network. The autoencoder
architecture is the same as our network, only modified to output one frame instead of K object masks,
and without the object translation and camera motion prediction. We also follow the same training
procedure while minimizing the L2 reconstruction error instead.

We ablate MOREL in two steps while comparing to the baselines. First, we do a simple transfer
of the object segmentation network, and use only the motion path without joint training. Then, in
addition to transferring the weights, we add in joint optimization using the architecture from Figure 2.

Figure 4: Comparison of our approach against several baselines over 3 random seeds. Methods which
were pre-trained are shown offset by 100k frames to account for the size of the pre-training dataset.

Overall, we see empirically that MOREL significantly improves the sample complexity of A2C.
Without our object segmentation method, the architecture shown in Figure 2 does not perform better
than the baseline, despite having twice the number of parameters. Additionally, we see that our
approach provides a superior prior compared to a trained autoencoder. We did not expect MOREL to
perform well on Beam Rider because our assumption that moving objects are relevant to the policy
is not satisfied. We hypothesize that a different learned prior would be needed to improve sample
complexity. However, it is encouraging that even then, MOREL with joint optimization performs
no worse than the baseline. MOREL’s strong performance on Q*bert also provides a strong case for
joint training. On Q*bert, the second level is never reached in the pre-training dataset when executing
random actions. However, the agent eventually reaches this level, and here joint optimization offers a
strong performance boost by correcting for the shift in input distribution caused by this new level.

Figure 5 shows the results of MOREL where each modification that we did to SfM-Net is removed
individually. This demonstrates the necessity of the curriculum, flow regularization, and using DSSIM
as a loss function.
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Figure 5: Comparison of our approach where MOREL is modified to remove each improvement that
we did to SfM-Net.

5.4 Broad comparison

In the supplementary material, we showcase the performance of MOREL on all 59 Atari games
when combined with A2C (Figures 5 and 6) and PPO (Figures 7 and 8). We observe a notable
improvement on the A2C runs for 26 of the games, and a worse performance in only 3 games. For
PPO, composition with MOREL provides a benefit on 25 games, and a deterioration in 9 games.

6 Conclusion

In summary, this paper describes an unsupervised technique for object segmentation and motion
estimation in reinforcement learning from raw images. This approach reduces the amount of in-
teraction with the environment when moving objects are important features. The accuracy of the
resulting object masks also provide support to interpret and explain the performance of some policies.
In future work, we plan to extend this framework to fixed objects and explicitly learn about salient
(fixed or moving) objects with an attention model. It would also be interesting to combine this work
with object-oriented frameworks [21], physics-based dynamics [29] and model-based reinforcement
learning [27] to reason about and plan object interactions. We plan to further extend this work to 3D
environments such as Doom and real-world environments (e.g., autonomous vehicles and robotics).
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