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Abstract

Multivariate time series usually contain a large number of missing values, which
hinders the application of advanced analysis methods on multivariate time series
data. Conventional approaches to addressing the challenge of missing values,
including mean/zero imputation, case deletion, and matrix factorization-based im-
putation, are all incapable of modeling the temporal dependencies and the nature of
complex distribution in multivariate time series. In this paper, we treat the problem
of missing value imputation as data generation. Inspired by the success of Gener-
ative Adversarial Networks (GAN) in image generation, we propose to learn the
overall distribution of a multivariate time series dataset with GAN, which is further
used to generate the missing values for each sample. Different from the image
data, the time series data are usually incomplete due to the nature of data recording
process. A modified Gate Recurrent Unit is employed in GAN to model the tem-
poral irregularity of the incomplete time series. Experiments on two multivariate
time series datasets show that the proposed model outperformed the baselines in
terms of accuracy of imputation. Experimental results also showed that a simple
model on the imputed data can achieve state-of-the-art results on the prediction
tasks, demonstrating the benefits of our model in downstream applications.

1 Introduction

The real world is filled with multivariate time series data such as network records, medical logs and
meteorologic observations. Time series analysis is useful in many situations such as forecasting the
stock price [22] and indicating fitness and diagnosis category of patients [7]. However, some of these
time series are incomplete due to the broken of collective devices, the collecting errors and willful
damages [15]. Besides, the time intervals of the observations in time series are not always fixed.
Figure 1 and Figure 2 demonstrate the high missing rate of the Physionet [42] dataset. As time goes
by, the maximum missing rate at each timestamp is always higher than 95%. We can also observe
that most variables’ missing rate are above 80% and the mean of the missing rate is 80.67%. The
missing values in time series data make it hard to analyze and mine [14]. Therefore, the processing
of missing values in time series has become a very important problem.

∗Corresponding author.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



Figure 1: Missing rates in the Physionet dataset.
The X-axis is the time. The Y-axis is the se-
lected 7 variables. Redder the color, higher the
missing rate.
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Figure 2: The lines stand for maximum, min-
imum and average missing rates at each hour.
The global missing rate is 80.67%.

Usually there are two ways to handle the missing values of the dataset. Some researches try to
directly model the dataset with missing values [48]. However, for every dataset, we need to model
them separately. The second way is to impute the missing values to get the complete dataset and
then use conventional methods to analyze the dataset. Existing missing values processing methods
can be categorized into 3 classes. The very first one is case deletion methods [26, 43]. Its main
idea is to discard the incomplete observations. However, these case deletion methods will ignore
some important information. Additionally, the higher the missing rate, the worse the result [18]. The
second kind of algorithms is simple imputation methods such as mean imputation, median imputation,
and the most common value imputation. The main drawback of these statistical imputation methods
is the lack of the utilization of the temporal information. The last kind of methods is machine
learning based imputation algorithms [4, 19, 34]. These methods contain maximum likelihood
Expectation-Maximization (EM) based imputation, KNN based imputation and Matrix Factorization
based imputation. However, all of these methods rarely take into account the temporal relations
between two observations.

In recent years, Goodfellow et al. [17] have introduced the generative adversarial networks (GAN)
which learns the latent distribution of a dataset and is able to generate “real” samples from a random
“noise”. GAN has been successfully applied to face completion and sentence generation [5, 30, 33,
31, 13, 47]. However, before completion of the faces or generation of the sentences, these methods
require the complete training dataset which is impossible in our scenario. There also exists a few
works that use GAN to impute the missing values [46]. However, what these works focused is
non-sequential dataset and they have not adopted pertinent measures to process the temporal relations.
Hence, these algorithms can not be applied to the imputation of time series data well.

Inspired by the success of GAN in image imputation, we take the advantage of the adversarial model to
generate and impute the original incomplete time series data. In order to learn the latent relationships
between observations with non-fixed time lags, we propose a novel RNN cell called GRUI which can
take into account the non-fixed time lags and fade the influence of the past observations determined
by the time lags. In the first phase, by adopting the GRUI in the discriminator and generator in
GAN, the well trained adversarial model can learn the distribution of the whole dataset, the implicit
relationships between observations and the temporal information of the dataset. In the second phase,
we train the input “noise” of the generator of the GAN so that the generated time series is as close
as possible to the original incomplete time series and the generated data’s probability of being real
is the biggest. To the best of our knowledge, this is the first work that uses adversarial networks to
impute time series dataset. We evaluate our method on a real-world medical dataset and a real-world
meteorologic dataset. The results show the superiority of our approach compared to the baselines in
terms of imputation accuracy. Our model is also superior to the baselines in prediction and regression
tasks using the imputed datasets.

2 Method
Given a collection of multivariate time series with d dimensions, one time series X observed
in T=(t0,. . .,tn−1), is denoted by X=(xt0 , . . . ,xti , . . . ,xtn−1

)> ∈ Rn×d, where xti is the tith
observation ofX , and xjti is the jth variable of xti . In the following example, d=4, n=3 and “none”
is missing value,

X =

[
1 6 none 9
7 none 7 none
9 none none 79

]
, T =

[
0
5
13

]
.
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The time seriesX is incomplete, we introduce the mask matrixM ∈ Rn×d to present whether the
values ofX exist or not, i.e., M j

ti=1, if xjti exists, otherwise M j
ti=0.

In order to replace missing values in time series data with reasonable values, we first train a GAN
based model to learn the distribution of the original time series dataset. In this custom GAN model,
the generator which generates fake time series from a random input vector and the discriminator which
distinguishes between fake data and real data, will achieve an equilibrium that not only increases the
representative ability of the generator but also upgrades the discernment ability of the discriminator
(see Figure 3). Next, we fix the network structure and optimize the input random vector of the
generator so that the generated fake time series can best replace the missing values. In subsection 2.1,
we show the details of the GAN Architecture. Subsection 2.2 demonstrates the method to impute the
missing values.
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Figure 3: The structure of the proposed model.

2.1 GAN Architecture

A GAN is made up of a generator (G) and a discriminator (D). The G learns a mapping G(z) that
tries to map the random noise vector z to a realistic time series. The D tries to find a mapping D(.)
that tell us the input data’s probability of being real. It is noteworthy that the input of the D contains
the real but incomplete samples and the fake but complete samples generated by G. Because of the
mode collapse problem [3], the traditional GAN is hard to train [20, 32, 37]. WGAN [3] is another
training way of GAN which uses the Wasserstein distance that is easier to train than the original.
WGAN can improve the stability of the learning stage, get out of the problem of mode collapse
and make it easy for the optimization of the GAN model. In our method, we prefer WGAN [3] to
traditional GAN. The following is the loss function of WGAN.

LG = Ez∼Pg [−D(G(z))] , (1)

LD = Ez∼Pg [D(G(z))]− Ex∼Pr [D(x)] . (2)

When we design the detail structure of the GAN, we adopt Gated Recurrent Unit (GRU) [10], a
state-of-the-art RNN cell, as the basic network of G and D. It is worth noting that, others RNN variants
can also be used in this work, such as the Long Short-Term Memory (LSTM) [21] cell. However, the
time lags between two consecutive valid observations vary a lot due to data incompleteness, which
makes traditional GRU cell or LSTM cell not applicable to our senario. In order to effectively handle
the irregular time lags and to learn the implicit information from the time intervals, we propose the
GRUI cell based on GRU.

GRUI. To appropriate learn the distribution and characteristic of the original incomplete time series
dataset, we find that, the time lag between two consecutive valid observations is always in changing
because of the “none” values. The time lags between observations are very important since they
follow an unknown nonuniform distribution. These changeable time lages remind us that the influence
of the past observations should decay with time if the variable has been missing for a while. In order
to fit this decayed influence of the past observations, we propose the Gated Recurrent Unit for data
Imputation (GRUI) cell to model the temporal irregularity of the incomplete time series.

In order to record the time lag of two adjacent existent values ofX , we introduce the time lag matrix
δ ∈ Rn×d to record the time lag between current value and last valid value. The followings is the
calculation way and calculated results of δ of the sample dataset.

δjti =


ti − ti−1, M j

ti−1
== 1

δjti−1
+ ti − ti−1, M j

ti−1
== 0 & i > 0

0, i == 0

; δ =

[
0 0 0 0
5 5 5 5
8 13 8 13

]
.

3



We introduce a time decay vector β to control the influence of the past observations. Each value of
the β should be bigger than zero and smaller than one, and the larger the δ, the smaller the decay
vector. So we model the time decay vector β as a combination of δ:

βti = 1/emax(0,Wβδti+bβ) , (3)

where Wβ and bβ are parameters that need to learn. We use the negative exponential formulation
to make sure that βti ∈ (0,1]. Besides, in order to capture the interactions of the δ’s variables, we
prefer full weight matrix to diagonal matrix forWβ . After we have got the decay vector, we update
the GRU hidden state hti−1 by element-wise multiplying the decay factor β. Since we have used
the batch normalization [24] technology, the hidden state h is smaller than 1 with a high probability.
We choose multiplicative decay way rather than some other decay ways such as hβ. The update
functions of GRUI are:

h′ti−1
= βti � hti−1 , (4)

µti = σ(Wµ

[
h′ti−1

,xti

]
+ bµ) , rti = σ(Wr

[
h′ti−1

,xti

]
+ br) , (5)

h̃ti = tanh(Wh̃

[
rti � h′ti−1

,xti

]
+ bh̃) , hti = (1− µti)� ht′i−1

+ µti � h̃ti , (6)

whereµ is update gate, r is reset gate, h̃ is candidate hidden state, σ is the sigmoid activation function,
Wh̃,Wr,Wµ, bµ, br and bh̃ are training parameters and � is an element-wise multiplication.
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Figure 4: GRU cell.
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Figure 5: GRUI cell.

D and G structure. The D is first composed by a GRUI layer to learn the incomplete or complete
time series. Then a full-connection layer is stacked on the top of the last hidden state of GRUI. To
prevent overfit, we adopt dropout [44] to the full-connection layer. When we feed original incomplete
real time series into D, values at one row of δ are not the same. When we feed fake time series
generated by G, values in each row of δ are the same (because there is no missing value). We want to
make sure that the time lags of the generated samples are the same as those of the original samples,
so the G is also made up of a GRUI layer and a full-connection layer. The G is a self-feed network, it
means that the current output of the G will be fed into the next iteration of the same cell. The very
first input of G is the random noise vector z and every row of the δ of fake sample is a constant value.
That batch normalization [24] is applied both to G and D.

2.2 Missing Values Imputation by GAN

From the GAN architecture, we can know that, the generator G can learn a mapping G(z) = z 7→ x
that maps the random noise vector z to a complete time series which contains no missing value.
However, the problem is the random noise vector z is randomly sampled from a latent space, e.g.,
Gaussian distribution. It means that, the generated samples may change a lot with the changing of the
input random noise z. Although the generated samples obey the distribution of the original samples,
the distance between the generated samples and the original samples may also be large. In other
words, the degree of similarity between x and G(z) is not large enough. For example, the original
incomplete time series contains two classes, and the G learns a distribution that can fit these two
classes very well. Given a incomplete sample x and a random input vector z, the G(z) may belong
to the opposite class of x, this is not what we want. Although the G(z) may belong to the true class,
the similarity of samples within a class could also be large.

For any incomplete time series x, we try to find a best vector z from the latent input space so
that the generated sample G(z) is most similar to x. How to replace the missing values with the
most reasonable values? Inspired by [41], we introduce a way to measure the degree of imputation
fitness. We define a two-part loss function to evaluate the fitness of imputation. The first part of this
loss function is the masked reconstruction loss. It means that the generated sample G(z) should be
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close enough to the original incomplete time series x. The another part of this loss function is the
discriminative loss. This part forces the generated sample G(z) as real as possible. The following
paragraphs will describe the masked reconstruction loss and the discriminative loss in details.
Masked Reconstruction Loss. The masked reconstruction loss is defined by the masked squared
errors between the original sample x and the generated sample G(z). It is noteworthy that we only
calculate the non-missing part of the data.

Lr(z) = ||X �M −G(z)�M ||2 . (7)

Discriminative Loss. The discriminative loss stands for the generated sample G(z)’s degree of
authenticity. It is based on the output of the discriminator D which represents the confidence level of
the input sample G(z)’s being real. We feed the noise vector z into G, then we get the generated
sample G(z), next, we feed G(z) into D, finally we get the discriminative loss.

Ld(z) = −D(G(z)) . (8)

Imputation Loss. We define the imputation loss to optimize the random noise vector z. The
imputation loss is a combination of the masked reconstruction loss and the discriminative loss.

Limputation(z) = Lr(z) + λLd(z) , (9)

where λ is a hyper-parameter that controls the proportion between the masked reconstruction loss
and the discriminative loss.

For each original time series x, we randomly sample a z from the Gaussian distribution with zero
mean and unit variance and feed it into the well trained generator G to get G(z). Then we begin
to train the noise z with the loss function Limputation(z) by back propagation method. After the
imputation loss converging to the optimal solution, we replace the missing values of x with the
generated G(z) just as the following equation shows,

ximputed = x�M + (1−M)�G(z) . (10)

3 Experiments

We evaluate the proposed method in two real-world datasets which include a medical dataset and a air
quality dataset. In order to demonstrate the imputation results of the proposed method, we compare
our algorithm with simple imputation methods, matrix factorization based imputation method and
KNN based imputation method. We also compare our GAN based imputation method against some
other baselines in the prediction and regression tasks.

3.1 Datasets and Tasks

Physionet Challenge 2012 dataset (PhysioNet). The Physionet dataset is a public electronic med-
ical record dataset that comes from the PhysioNet Challenge 2012 [42]. This dataset consists of
records from 4,000 intensive care unit (ICU) stays. Every ICU stay is a roughly 48 hours time
series with 41 variables such as age, weight, albumin, heart-rate, glucose, etc. One task of the
PhysioNet Challenge 2012 is the mortality prediction task that predicts whether the patient dies in
the hospital. There are 554 (13.85%) patients with positive mortality label. This task is a binary
classification problem with non-balance dataset, so the AUC score is used to judge the performance
of the classifier. Because of the lack of complete dataset, the direct evaluation of missing values
filling accuracy is impossible. Therefore, we use the mortality prediction results calculated by the
same classifier but trained on different imputed datasets to determine the performance of imputation
methods. Machine learning methods must have enough training dataset to learn the potential relation
between samples. We do not use the dataset processed by case deletion methods to train the classifier
when we use the PhysioNet dataset because of its high missing rate (80.67%).

KDD CUP 2018 Dataset (KDD). The KDD CUP 2018 dataset is a public air quality dataset that
comes from the KDD CUP Challenge 2018 [11]. KDD dataset contains the historical air quality data
of Beijing. We select 11 common air quality and weather data observatories for our experiments. Each
observatory owns records observed every one hour from January 1, 2017 to December 30, 2017. The
records have total 12 variables which include PM2.5 (ug/m3), PM10 (ug/m3), CO (mg/m3), weather,
temperature and so on. We split this dataset for every 48 hours just like the PhysioNet dataset, then
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we get about 182 time series. For the split dataset, we conduct two tasks as the following described.
1) Time series imputation task: For every 48 hours length time series, we randomly discard p percent
of the dataset. Then we fill the missing values and calculate the imputation accuracy, where p
∈ {20, 30, . . . , 90}. The imputation accuracy is defined as the mean squared error (MSE) between
original values and imputed values. 2) Air quality prediction task: For every 48 hours length time
series, we randomly discard 50 percent of the dataset. Then we predict the mean air quality of the
next 6 hours. Just like what we did previously, we use the air quality prediction results calculated by
the same regression model but trained on different imputed datasets to determine the performance of
imputation methods.

Dataset # of Features # of Samples Missing Rate

Physionet 41 4000 80.67%
KDD 132 182 1%

Table 1: Dataset Statistics.

3.2 Training Settings

Network details and training strategies. The discriminator consists of a GRUI layer and a full-
connection layer. We feed the real incomplete time series x, the fake but complete time series G(z)
and their corresponding δ into GRUI layer. Then the the last hidden state of GRUI layer will be
fed into full-connection layer with a dropout to get the discriminator’s output. The generator is a
self-feed network that consists of a GRUI layer and a full-connection layer too. The current hidden
state of GRUI layer is fed into full-connection layer with a dropout, then the output of full-connection
layer will be treated as the input of the next iteration. All the outputs of full-connection layer are
concatenated and batch normalized into the G(z). The very first input of the generator is the random
noise z. Before the training of the GAN, the generator is pretrained for some epochs with a squared
error loss for predicting the next value in the training time series. For the PhysioNet dataset, the input
dimension is 41 (we use all the variables of the PhysioNet dataset), batch size is 128, the hidden
units number in GRUI of G and D is 64 and the dimension of random noise is also 64. For the KDD
dataset, the input dimension is 132 (11 observatories × 12 variables), the batch size is 16, the number
of hidden units in GRUI of G and D is 64 and the dimension of z is 256.

Comparative Methods. When it is feasible to directly evaluate the imputation accuracy (task
1 of the KDD dataset), we compare the proposed method with simple imputation methods, the
matrix factorization imputation method and the KNN imputation method. If it is impractica-
ble to get the complete dataset, we use two tasks to indirectly measure the imputation accuracy.
1) Classification task (mortality prediction task): we use different datasets imputed by proposed
method and some other methods to train logistic regression classifier, SVM classifier, random forest
classifier and RNN classifier. Then we indirectly compare the filling accuracy of these methods.
2) Regression task (air quality prediction task): we use datasets imputed by different imputation
methods to train linear regression model, decision tree regression model, random forest regression
model and RNN based regression model. Then we indirectly compare the filling accuracy of these
methods.

3.3 Results

Experimental results on Physionet dataset. For the PhysioNet dataset, we can not access the
complete samples. Therefore, we measure the filling accuracies of our proposed method and some
other imputation methods indirectly. The hyper-parameters of our method are: the train epochs is
30, pretrain epochs is 5, learning rate is 0.001, λ is 0.15 and the number of optimization iterations
of the imputation loss is 400. Figure 6 is the comparison results of the classification task (mortality
prediction task). We first complete the dataset by filling last value, zero value, mean value and GAN
generated value. The standardization of input dataset is conducted when we impute the missing
values with mean value, last value and GAN generated value. If we also conduct standardization on
zero value imputation, the zero value imputation will be same as the mean imputation. So we do
not standardize the input dataset when we impute with zero value. We train the logistic regression
classifier, SVM (with RBF kernel, Linear kernel, Poly kernel and Sigmoid kernel) classifiers, random
forest classifier and RNN classifier on these above imputed complete datasets to indirectly compare
the filling accuracy of these filling methods. The RNN classifier is composed by a GRUI layer that
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processes complete time series and a full-connection layer that outputs classification results. We can
see that, except for the SVM classifier with RBF kernel, the classifiers trained on dataset imputed
by proposed method always gain the best AUC score. These results can prove the success of GAN
based imputation method indirectly because of the lack of complete dataset. It is worth noting that,
we achieve the new state-of-the-art mortality prediction result with AUC score of 0.8603 by using
the dataset imputed by the GAN based imputation method, while the previous state-of-the-art AUC
score is 0.848 [25]. Table 2 is the detail description of mortality prediction task results produced by
different methods.

Model Result

Neural Network model called GRUD [7] 0.8424
Hazard Markov Chain model [29] 0.8381

Regularized Logistic Regression model [25] 0.848
GAN based imputation & RNN model 0.8603

Table 2: The AUC score of the mortality prediction task on the Physionet dataset. The RNN model
that uses the dataset imputed by our method achieves the highest AUC score.

Experimental results on KDD dataset. Table 3 shows the comparison results between the proposed
GAN based method and some other imputation methods which include imputation method that uses
the last observed value to impute missing values (last imputation), method that uses mean value to
fill missing values (mean imputation), KNN based method and matrix factorization based method.
Before the starting of the experiments, we have standardized the input dataset. Therefore, filling zero
value is the same as filling mean value. The hyper-parameters of our method are: the train epochs is
25, pretrain epochs is 20, learning rate is 0.002, λ is 0.0 and the number of optimization iterations of
the imputation loss is 800.
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Figure 6: The AUC score of mortality prediction by
different classification models trained on different
imputed datasets.
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Figure 7: The MSE of air quality prediction by
different regression models trained on different
imputed datasets.

The first column of the table 3 is the missing-rate which indicates there are how many percent missing
values in the dataset. The remaining columns are the mean squared errors (MSE) of the corresponding
imputation methods. We can see that, with most missing-rates of the dataset, the proposed method
owns the best filling accuracy. This is because the proposed GAN based method can automatically
learn the temporal relationship of the same sample, the similarities between the similar samples, the
association rules of two variables and the distribution of the dataset. By this way, the proposed GAN
based method can fill the missing holes with the most reasonable values.

Figure 7 is the experimental results of the regression task. We use the KDD dataset with 50% percent
missing values. Just like the settings of the classification task, we first fill the missing values. Then
we train some regression models that include decision tree model, linear regression model, random
forest model and RNN regression model. The RNN regression model is also made up of a GRUI
layer and a full-connection layer. The hyper-parameters are the same as direct comparison. Because
we have standardized the input dataset, zero filling is the same as mean filling. Figure 7 shows that
the regression model trained with dataset which is imputed by the proposed method always gains the
minimum MSE value. These results prove the success of GAN based imputation method.
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Missing-rate Last filling Mean filling KNN filling MF filling GAN filling

90% 2.870 1.002 1.243 1.196 1.018
80% 1.689 0.937 0.873 0.860 0.837
70% 1.236 0.935 0.852 0.805 0.780
60% 1.040 0.973 0.856 0.834 0.803
50% 0.990 0.923 0.798 0.772 0.743
40% 0.901 0.914 0.776 0.787 0.753
30% 0.894 0.907 0.803 0.785 0.780
20% 1.073 0.916 0.892 0.850 0.844

Table 3: The MSE results of the proposed method and other imputation methods on the KDD dataset.
In most cases, the proposed method owns the best imputation accuracy.

Comparison with GAN using a non-modified GRU. We have also compared the proposed method
with a GAN that use a non-modified GRU. In this situation, we do not take the advantage of the time
interval information and then treat the time series as fixed interval data. So we do not model the time
decay vector β to control the influence of the past observations. We find that, with a non-modified
GRU, the final AUC score of the Physionet dataset is 0.8029 while the GRUI is 0.8603. At the mean
time, Table 4 shows the advantages of the GRUI cell tested on the KDD dataset. We can see that
with the damping of the hidden state, the final performance of the imputation will increase a lot in all
situations. The reason is that our model can learn and make use of the flexible time lags of the dataset
and then produces better results than a non-modified GRU cell.

Missing-rate 90% 80% 70% 60% 50% 40% 30% 20%

GRU 1.049 0.893 0.841 0.823 0.794 0.767 0.820 0.849
GRUI 1.018 0.837 0.780 0.803 0.743 0.753 0.780 0.844

Table 4: The MSE comparison of a GAN with GRU and a GAN with GRUI on KDD dataset.

3.4 Discussions

The proportion between discriminative loss and masked reconstruction loss. In this part, we
investigate the most influential hyper-parameter λ. Figure 8 and 9 show the impact of the λ, that is,
the impact of the proportion between discriminative loss and masked reconstruction loss. We sample
13 values from 0.0 to 16.0 for λ and compare the experimental results of these varied λ. When we
perform the regression task on KDD dataset, we can conclude that with the growth of λ, the MSE
of the KDD dataset grows near-linearly. It can be interpreted that the masked reconstruction loss
dominates the imputation loss and the discriminative loss helps a little for the regression task on
KDD dataset. The classification task results on PhysioNet dataset show that, the AUC score is small
when the λ is 0.0, and the AUC score reaches the maximum at the point of 0.15, then it decreases over
the growth of λ. This phenomenon shows that the discriminative loss helps a lot for the classification
task on PhysioNet dataset, especially with the λ value of 0.15.
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Figure 8: The influence of λ in classification
task. AUC score reaches the maximum at λ =
0.15.
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Figure 9: The influence of λ in regression
task. MSE reaches the minimum at λ = 0.0.

4 Related Work

This part will introduce the related works about missing value processing methods and generative
adversarial networks.
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4.1 Missing Value Processing Methods

The presence of missing values in datasets will significantly degrade the data analyses results [8].
In order to deal with the missing values in datasets, researchers have proposed many missing data
handling methods in recent years. These methods can be classified into case deletion based methods,
simple imputation methods and machine learning based imputation methods.

Deletion based methods erase all observations/records with missed values, including Listwise
deletion [45] and Pairwise deletion [35]. The common drawback of the deletion methods is the loss
of power when the missing rate is large enough (i.e. bigger than 5%) [18].

Simple imputation algorithms impute the missing values with some statistical attributes, such as
replace missing value with mean value [27], impute with median value [1], impute with most common
value [12] and complete the dataset with last observed valid value [2].

Machine learning based imputation methods include maximum likelihood Expectation-
Maximization (EM) based imputation [38], K-Nearest Neighbor (KNN) based imputation [40],
Matrix Factorization (MF) based imputation and Neural Network (NN) based imputation. The
EM imputation algorithm is made up of the “expectation” step and the “maximization” step which
iteratively updates model parameters and imputed values so that the model best fits the dataset. The
KNN based imputation method uses the mean value of the k nearest samples to impute missing
values. The MF based imputation factorizes the incomplete matrix into low-rank matrices ‘U’ and
‘V’ solved by gradient descent algorithm, with a L1 sparsity penalty on the elements of ‘U’ and a L2
penalty on the elements of ‘V’. Neural Network based imputation [16] uses the numerous parameters
of the neural network to learn the distribution of train dataset and then fills the missing values.

4.2 Generative Adversarial Networks

At the year of 2014, Goodfellow et al [17] introduced the generative adversarial networks (GAN),
which is a framework for estimating generative model via an adversarial process. The generative
adversarial networks is made up of two components: a generator and a discriminator. The generator
tries to fool the discriminator by generating fake samples from a random “noise” vector. The
discriminator tries to distinguish between fake and real samples, i.e., to produce the probability that a
sample comes from real datasets rather than the generator. However, the traditional GAN is hard to
train, WGAN [3] is another training way of GAN, WGAN can improve the stability of learning and
get out of the problem of mode collapse.

Many works have shown that the well trained GAN can produce realistic images in computer vision
field [9, 23, 28, 36]. GAN is also successfully used to complete faces [5, 30, 33, 31]. Only A few
works has introduced GAN into sequences generating field [6, 13, 39, 47], such as SeqGAN [47] and
MaskGAN [13]. However, these works are not suitable for missing values imputation field. That is,
before the generating of the sequences, these methods require the complete train dataset which is
impossible in our scenario, yet our model needn’t complete train datasets. Besides, most of GAN
based sequence generation methods produce new samples from a random “noise” vector. With the
changing of the random “noise” vector, the generated samples will change a lot. However, the data
imputation task requires the imputed value as close as possible to the original incomplete data. There
also exists a few work that uses GAN to impute the missing values such as GAIN [46]. The drawback
of GAIN is the lack of consideration for the imputation of time series.

5 Conclusion

In this paper, we propose a novel generative adversarial networks for data imputation. In order to
learn the unfixed time lags of two observed values, a modified GRU cell (called GRUI) is proposed
for processing the incomplete time series. After the training of the GAN model with GRUI cell, the
“noise” input vector of the generator is trained and generating reasonable values for imputation. In this
way, the temporal relationships, the inner-class similarities, and the distribution of the dataset can be
automatically learned under the adversarial architecture. Experimental results show that our method
can outperform the baselines in terms of accuracy of missing value imputation, and has benefits for
downstream applications.
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