Multivariate Time Series Imputation with
Generative Adversarial Networks

Yonghong Luo Xiangrui Cai
College of Computer Science College of Computer Science
Nankai University Nankai University
Tianjin, China Tianjin, China
luoyonghong@dbis.nankai.edu.cn caixiangrui@dbis.nankai.edu.cn
Ying Zhang * Jun Xu Xiaojie Yuan
College of Computer Science School of Information College of Computer Science
Nankai University Renmin University of China Nankai University
Tianjin, China Beijing, China Tianjin, China
yingzhang@nankai.edu.cn junxu@ruc.edu.cn yuanxj@nankai.edu.cn
Abstract

Multivariate time series usually contain a large number of missing values, which
hinders the application of advanced analysis methods on multivariate time series
data. Conventional approaches to addressing the challenge of missing values,
including mean/zero imputation, case deletion, and matrix factorization-based im-
putation, are all incapable of modeling the temporal dependencies and the nature of
complex distribution in multivariate time series. In this paper, we treat the problem
of missing value imputation as data generation. Inspired by the success of Gener-
ative Adversarial Networks (GAN) in image generation, we propose to learn the
overall distribution of a multivariate time series dataset with GAN, which is further
used to generate the missing values for each sample. Different from the image
data, the time series data are usually incomplete due to the nature of data recording
process. A modified Gate Recurrent Unit is employed in GAN to model the tem-
poral irregularity of the incomplete time series. Experiments on two multivariate
time series datasets show that the proposed model outperformed the baselines in
terms of accuracy of imputation. Experimental results also showed that a simple
model on the imputed data can achieve state-of-the-art results on the prediction
tasks, demonstrating the benefits of our model in downstream applications.

1 Introduction

The real world is filled with multivariate time series data such as network records, medical logs and
meteorologic observations. Time series analysis is useful in many situations such as forecasting the
stock price [22] and indicating fitness and diagnosis category of patients [7]. However, some of these
time series are incomplete due to the broken of collective devices, the collecting errors and willful
damages [15]. Besides, the time intervals of the observations in time series are not always fixed.
Figure [I]and Figure 2] demonstrate the high missing rate of the Physionet [42] dataset. As time goes
by, the maximum missing rate at each timestamp is always higher than 95%. We can also observe
that most variables’ missing rate are above 80% and the mean of the missing rate is 80.67%. The
missing values in time series data make it hard to analyze and mine [[14]. Therefore, the processing
of missing values in time series has become a very important problem.

*Corresponding author.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

maxxmeanmin

g AR TR ARATAR AR g
v }-5‘
T A A A A A A

..%4 o0.75
=3 c
s2 ‘@ 0.5
> 0

1 =>0.25

0

0 6 12 18 24 30 36 42 6 12 18 24 30 36 42 48

Hours Hours

Figure 1: Missing rates in the Physionet dataset. Figure 2: The lines stand for maximum, min-
The X-axis is the time. The Y-axis is the se- imum and average missing rates at each hour.
lected 7 variables. Redder the color, higher the = The global missing rate is 80.67%.

missing rate.

Usually there are two ways to handle the missing values of the dataset. Some researches try to
directly model the dataset with missing values [48]. However, for every dataset, we need to model
them separately. The second way is to impute the missing values to get the complete dataset and
then use conventional methods to analyze the dataset. Existing missing values processing methods
can be categorized into 3 classes. The very first one is case deletion methods [26} 43]]. Its main
idea is to discard the incomplete observations. However, these case deletion methods will ignore
some important information. Additionally, the higher the missing rate, the worse the result [18]. The
second kind of algorithms is simple imputation methods such as mean imputation, median imputation,
and the most common value imputation. The main drawback of these statistical imputation methods
is the lack of the utilization of the temporal information. The last kind of methods is machine
learning based imputation algorithms [4] (19, [34]. These methods contain maximum likelihood
Expectation-Maximization (EM) based imputation, KNN based imputation and Matrix Factorization
based imputation. However, all of these methods rarely take into account the temporal relations
between two observations.

In recent years, Goodfellow et al. [[17] have introduced the generative adversarial networks (GAN)
which learns the latent distribution of a dataset and is able to generate “real” samples from a random
“noise”. GAN has been successfully applied to face completion and sentence generation [5 30} 33}
31,113, 147]. However, before completion of the faces or generation of the sentences, these methods
require the complete training dataset which is impossible in our scenario. There also exists a few
works that use GAN to impute the missing values [46]. However, what these works focused is
non-sequential dataset and they have not adopted pertinent measures to process the temporal relations.
Hence, these algorithms can not be applied to the imputation of time series data well.

Inspired by the success of GAN in image imputation, we take the advantage of the adversarial model to
generate and impute the original incomplete time series data. In order to learn the latent relationships
between observations with non-fixed time lags, we propose a novel RNN cell called GRUI which can
take into account the non-fixed time lags and fade the influence of the past observations determined
by the time lags. In the first phase, by adopting the GRUI in the discriminator and generator in
GAN, the well trained adversarial model can learn the distribution of the whole dataset, the implicit
relationships between observations and the temporal information of the dataset. In the second phase,
we train the input “noise” of the generator of the GAN so that the generated time series is as close
as possible to the original incomplete time series and the generated data’s probability of being real
is the biggest. To the best of our knowledge, this is the first work that uses adversarial networks to
impute time series dataset. We evaluate our method on a real-world medical dataset and a real-world
meteorologic dataset. The results show the superiority of our approach compared to the baselines in
terms of imputation accuracy. Our model is also superior to the baselines in prediction and regression
tasks using the imputed datasets.

2 Method
Given a collection of multivariate time series with d dimensions, one time series X observed
in T=(tg,. . .,tn_1), is denoted by X=(x4,,...,T¢,,..., 2, ,) € R"™™? where x, is the t;th

observation of X, and x{l is the jth variable of ;,. In the following example, d=4, n=3 and “none”
is missing value,

1 6 none 9 0
5 .
13

X = |7 none 7 none
9 none none 79

T =

)

The time series X is incomplete, we introduce the mask matrix M € R™*¢ to present whether the
values of X exist or not, i.e., M{ =1, if] exists, otherwise M; =0.

In order to replace missing values in time series data with reasonable values, we first train a GAN
based model to learn the distribution of the original time series dataset. In this custom GAN model,
the generator which generates fake time series from a random input vector and the discriminator which
distinguishes between fake data and real data, will achieve an equilibrium that not only increases the
representative ability of the generator but also upgrades the discernment ability of the discriminator
(see Figure [3). Next, we fix the network structure and optimize the input random vector of the
generator so that the generated fake time series can best replace the missing values. In subsection 2.1,
we show the details of the GAN Architecture. Subsection 2.2 demonstrates the method to impute the

missing values.
Generated D
complete data

Z

Real samples

G
Generate
Random LT

noise - R
Figure 3: The structure of the proposed model.

L ZERNY
N

Features .5

2.1 GAN Architecture

A GAN is made up of a generator (G) and a discriminator (D). The G learns a mapping G(z) that
tries to map the random noise vector z to a realistic time series. The D tries to find a mapping D(.)
that tell us the input data’s probability of being real. It is noteworthy that the input of the D contains
the real but incomplete samples and the fake but complete samples generated by G. Because of the
mode collapse problem [3]], the traditional GAN is hard to train [20} 32, 37]. WGAN [3] is another
training way of GAN which uses the Wasserstein distance that is easier to train than the original.
WGAN can improve the stability of the learning stage, get out of the problem of mode collapse
and make it easy for the optimization of the GAN model. In our method, we prefer WGAN [3] to
traditional GAN. The following is the loss function of WGAN.

L =E.wp, [-D(G(2))] , (1)
Lp =E.p, [D(G(2))] = Eznp, [D(2)] . 2

When we design the detail structure of the GAN, we adopt Gated Recurrent Unit (GRU) [10], a
state-of-the-art RNN cell, as the basic network of G and D. It is worth noting that, others RNN variants
can also be used in this work, such as the Long Short-Term Memory (LSTM) [21] cell. However, the
time lags between two consecutive valid observations vary a lot due to data incompleteness, which
makes traditional GRU cell or LSTM cell not applicable to our senario. In order to effectively handle
the irregular time lags and to learn the implicit information from the time intervals, we propose the
GRUI cell based on GRU.

GRUI. To appropriate learn the distribution and characteristic of the original incomplete time series
dataset, we find that, the time lag between two consecutive valid observations is always in changing
because of the “none” values. The time lags between observations are very important since they
follow an unknown nonuniform distribution. These changeable time lages remind us that the influence
of the past observations should decay with time if the variable has been missing for a while. In order
to fit this decayed influence of the past observations, we propose the Gated Recurrent Unit for data
Imputation (GRUI) cell to model the temporal irregularity of the incomplete time series.

In order to record the time lag of two adjacent existent values of X, we introduce the time lag matrix
& € R™*4 to record the time lag between current value and last valid value. The followings is the
calculation way and calculated results of § of the sample dataset.

, ti—ti1, Mi’:H == 00 0 0
&, =9 o, +ti—ti, M, ==0&i>0 ; 6=|5 5 5 5 |.
0, j == 8 13 8 13

We introduce a time decay vector 3 to control the influence of the past observations. Each value of
the 3 should be bigger than zero and smaller than one, and the larger the §, the smaller the decay
vector. So we model the time decay vector 3 as a combination of J:

/Bti — 1/emaX(O,W35ti+bg) , (3)

where W3 and bg are parameters that need to learn. We use the negative exponential formulation
to make sure that 3;, € (0, 1]. Besides, in order to capture the interactions of the d’s variables, we
prefer full weight matrix to diagonal matrix for Wg. After we have got the decay vector, we update
the GRU hidden state h,;, , by element-wise multiplying the decay factor 3. Since we have used
the batch normalization [24] technology, the hidden state h is smaller than 1 with a high probability.
We choose multiplicative decay way rather than some other decay ways such as h. The update
functions of GRUI are:

hy, =B Ohs_,, “)

e, = o(W, [h;i,lthi} +b,), ry, = o(W, [h;iil,scti} +b.), (5

By, = tanh(W; [rti ® h;iil,xti} +b;), hy=(1—p,)0hy Ap,ORy, (6

where p is update gate, 7 is reset gate, & is candidate hidden state, o is the sigmoid activation function,
Wi, W,, W, b,, b, and b;, are training parameters and © is an element-wise multiplication.

N
€
r—In

Out

Figure 4: GRU cell. Figure 5: GRUI cell.

D and G structure. The D is first composed by a GRUI layer to learn the incomplete or complete
time series. Then a full-connection layer is stacked on the top of the last hidden state of GRUI. To
prevent overfit, we adopt dropout [44] to the full-connection layer. When we feed original incomplete
real time series into D, values at one row of § are not the same. When we feed fake time series
generated by G, values in each row of § are the same (because there is no missing value). We want to
make sure that the time lags of the generated samples are the same as those of the original samples,
so the G is also made up of a GRUI layer and a full-connection layer. The G is a self-feed network, it
means that the current output of the G will be fed into the next iteration of the same cell. The very
first input of G is the random noise vector z and every row of the d of fake sample is a constant value.
That batch normalization [24] is applied both to G and D.

2.2 Missing Values Imputation by GAN

From the GAN architecture, we can know that, the generator G can learn a mapping G(z) = z —
that maps the random noise vector z to a complete time series which contains no missing value.
However, the problem is the random noise vector z is randomly sampled from a latent space, e.g.,
Gaussian distribution. It means that, the generated samples may change a lot with the changing of the
input random noise z. Although the generated samples obey the distribution of the original samples,
the distance between the generated samples and the original samples may also be large. In other
words, the degree of similarity between « and G(z) is not large enough. For example, the original
incomplete time series contains two classes, and the G learns a distribution that can fit these two
classes very well. Given a incomplete sample & and a random input vector z, the G(z) may belong
to the opposite class of wx, this is not what we want. Although the G(z) may belong to the true class,
the similarity of samples within a class could also be large.

For any incomplete time series @, we try to find a best vector z from the latent input space so
that the generated sample G(z) is most similar to . How to replace the missing values with the
most reasonable values? Inspired by [41], we introduce a way to measure the degree of imputation
fitness. We define a two-part loss function to evaluate the fitness of imputation. The first part of this
loss function is the masked reconstruction losB means that the generated sample G(z) should be

