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1 Some Traditional Filtrations for Persistence Diagrams
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Figure 1: An illustration for persistence diagrams with some popular filtrations. (a) A set of points as
an input. (b) A ball model filtration. (c) Cech complex filtration. (d) Vietoris-Rips complex filtration
(it has only 1 ring since it contains a 2-simplex, illustrated as the orange triangle). (e) An illustration
of a birth of a ring in the ball model filtration. (f) An illustration of a death for a ring in the ball model
filtration. (g) A sub-level set filtration (a connected component has a birth at Fp, and a death at Fq).
In this illustration, both the ball model filtration and Cech complex filtration have 2 rings, but there
is only 1 ring for Vietoris-Rips complex filtration due to the 2-simplex. For sub-level set filtration,
there are 2 connected components (p, q) and (t,∞). Hence, the persistence diagram of 0-dimension
topological feature is that Dg = {(p, q); (t,∞)}.

We provide some traditional filtrations to illustrate persistence diagrams as follows,

Ball model filtration. Let X = {x1, x2, ..., xm} be a finite set in a metric space as in Figure 1 (a),
and B(x, a) be a ball with a center x and a radius a. We denote Xa := ∪xi∈XB(xi, a) for a ≥ 0.
For a < 0, we define Xa := ∅. Therefore, {Xa | a ∈ R} can be used as a filtration, illustrated in

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



Figure 1 (b). For example, Figure 1 (e) shows a birth for a ring at Xp while Figure 1 (f) illustrates
that the ring is death at Xq. Therefore, a point (p, q) is in the persistence diagram of 1-dimensional
topological feature for the set X .

Cech complex filtration. Given a set X = {x1, x2, ..., xm} in a metric space (T, dT ). For a ≥ 0,
we form a t-simplex from a (t + 1)-point subset Xt+1 of X if there exist x′ ∈ M , such that
dT (x, x′) ≤ a,∀x ∈ Xt+1. The set of all these simplices is called the Cech complex of X
with parameter a ≥ 0, denoted as C(X, a). For a < 0, we definite C(X, a) := ∅. Therefore,
{C(X, a) | a ∈ R} can be considered as a filtration and illustrated in Figure 1 (c). When T ⊂ Rq,
the topology of C(X, a) is homotopy equivalent to Xa [Hatcher, 2002] (p. 257). Consequently, the
persistence diagrams with Cech complex filtration equals to the persistence diagrams with ball model
filtration.

Vietoris-Rips complex (a.k.a. Rips complex) filtration. Given a set X = {x1, x2, ..., xm} in a
metric space (T, dT ). For a ≥ 0, we form a t-simplex from a (t+ 1)-point subset Xt+1 of X which
satisfies dT (x, z) ≤ 2a,∀x, z ∈ Xt+1. The set of all these simplices is called Vietoris-Rips complex
of X with parameter a ≥ 0, denoted as R(X, a). For a < 0, we define R(X, a) = ∅. Therefore,
{R(X, a) | a ∈ R} can be used as a filtration as illustrated in Figure 1 (d).

Sub-level set filtration. Let T be a topological space, given a function f : T → R as an input, and
defined a sub-level set Fa := f−1 ((−∞, a]). Thus, {Fa | a ∈ R} can be regarded as a filtration as
in Figure 1 (g). For example, it is easy to see that a connected component has a birth at Fp and it
is death at Fq as in Figure 1 (g). Thus, a point (p, q) is in persistence diagrams of 0-dimensional
topological feature for the given function f. In Figure 1 (g), persistence diagram of 0-dimensional
topological feature for f is Dg = {(p, q); (t,∞)}.

2 Kernels

We review some important definitions and theorems about kernels.

Positive definite kernels. A function k : X × X → R is called a positive definite kernel if
∀n ∈ N∗,∀x1, x2, ..., xn ∈ X ,

∑
i,j cicjk(xi, xj) ≥ 0, ∀ci ∈ R.

Negative definite kernels. A function k : X × X → R is called a negative definite kernel if
∀n ∈ N∗,∀x1, x2, ..., xn ∈ X ,

∑
i,j cicjk(xi, xj) ≤ 0, ∀ci ∈ R such that

∑
i ci = 0.

Berg-Christensen-Ressel Theorem. In [Berg et al., 1984] (Theorem 3.2.2, p.74), if κ is a negative
definite kernel, then kt(x, z) := exp (−tκ(x, z)) is a positive definite kernel for all t > 0. For
example, Gaussian kernel kt(x, z) = exp

(
−t ‖x− z‖22

)
is positive definite since it is easy to check

that squared Euclidean distance is indeed a negative definite kernel1.

Schoenberg Theorem. In [Schoenberg, 1942] (Theorem 2, p. 102), a function f(〈·, ·〉) defined on
the unit sphere in a Hilbert space is positive definite if and only if its Taylor series expansion has only
nonnegative coefficients,

f(ξ) =

∞∑
i=0

aiξ
i, with ai ≥ 0. (1)

3 Related Kernels for Persistence Diagrams

Persistence Scale Space kernel (kPSS). Reininghaus et al. [2015] proposed the Persistence
Scale Space (PSS) kernel, motivated by a heat diffusion problem with a Dirichlet boundary
condition. The PSS kernel between two PDs Dgi and Dgj is defined as kPSS

(
Dgi,Dgj

)
:=

1∀n ∈ N∗, ∀x1, x2, ..., xn ∈ X , and ∀ci ∈ R such that
∑

i ci = 0, we have
∑

i,j cicj ‖xi − xj‖22 =∑
i cix

2
i

∑
j cj +

∑
i ci
∑

j cjx
2
j − 2

∑
i,j cicjxixj = −2

(∑
i cixi

)2 ≤ 0 .
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Table 1: Averaged accuracy results (%) on SVM classification. The result of MTF with SVM is cited
from [Cang et al., 2015].

MTF kPSS kPWG kSW Prob+kG kPF
Accuracy (%) 84.50 83.33 88.89 88.89 83.95 97.53

1
8πσ

∑
pi∈Dgi
pj∈Dgj

exp
(
−‖pi−pj‖

2
2

8σ

)
− exp

(
−‖pi−p̄j‖

2
2

8σ

)
, where σ is a scale parameter and if p = (a, b),

then p̄ = (b, a), mirrored at the diagonal ∆. The time complexity is O(N2) where N is the
bounded cardinality of PDs. By using the Fast Gauss Transform [Greengard and Strain, 1991] for
approximation with bounded error, the time complexity can be reduced to O(N).

Persistence Weighted Gaussian kernel (kPWG). Kusano et al. [2016] proposed the Persistence
Weighted Gaussian (PWG) kernel by using kernel embedding into the reproducing kernel Hilbert
space. Let kGσ be the Gaussian kernel with a positive parameter σ, and associated reproducing
kernel Hilbert space Hσ. Let µi :=

∑
p∈Dgi

arctan (Cpers(p)q) kGσ (·, p) ∈ Hσ, where C, q are
positive parameter, and for p = (a, b), a persistence of p is that pers(p) := b− a. Let µj be defined
similarly for Dgj . Given a parameter τ > 0, the persistence weighted Gaussian kernel is defined

as kPWG(Dgi,Dgj) := exp

(
−‖µi−µj‖

2
Hσ

2τ2

)
. The time complexity is O(N2). Furthermore, Kusano

et al. [2016] also proposed to use the random Fourier features [Rahimi and Recht, 2008] for computing
the Gram matrix of m persistent diagrams with O(mNu+m2u) complexity, where u is the number
of random variables using for random Fourier features. Thus, the time complexity can be reduced to
be linear in N .

Sliced Wasserstein kernel (kSW). Carriere et al. [2017] proposed the Sliced Wasserstein (SW)
kernel, motivated from Wasserstein geometry for PDs. However, it is well-known that the Wasserstein
distance is not negative definite. Therefore, it may be necessary to approximate the Wasserstein
distance to design positive definite kernels on Wasserstein geometry for PDs. Indeed, Carriere et al.
[2017] use the SW distance, which is an approximation of Wasserstein distance, for proposing the
positive definite SW kernel, defined as kSW(Dgi,Dgj) := exp

(
−dSW(Dgi,Dgj)

2σ2

)
. The time complexity

for the SW distance dSW(Dgi,Dgj) is O(N2 logN), and for its M -projection approximation, it is
O(MN logN).

Metric preservation. For those kernel methods for PDs, only the SW kernel preserves the metric
between PDs, that is the Wasserstein geometry. Furthermore, Carriere et al. [2017] argued that this
property should lead to improve the classification power. In this work, we explore an alternative
Riemannian manifold geometry for PDs, namely the Fisher information metric which is also known
as a particular pull-back metric on Riemannian manifold [Le and Cuturi, 2015]. Moreover, the
proposed positive definite Persistence Fisher kernel is directly built upon the Fisher information
metric for PDs without approximation while it may be necessary to approximate the Wasserstein
distance for designing positive definite kernels on Wasserstein geometry for PDs. Additionally, the
time complexity of the Persistence Fisher kernel is also better than the Sliced Wasserstein kernel in
term of computation.

4 More Experiments on Hemoglobin Classification

We evaluated the Persistence Fisher kernel on Hemoglobin classification for the taunt and relaxed
forms [Cang et al., 2015]. For each form, there are 9 data points, collected by the X-ray crystallogra-
phy. As in [Kusano et al., 2018], we selected 1 data point from each class for test and used the rest
for training. There are totally 81 runs. We also compared with the molecular topological fingerprint
(MTF) for SVM [Cang et al., 2015]. We summarize averaged accuracy results on SVM in Table
1. The Persistence Fisher kernel again outperformances other baseline kernels, and also SVM with
MTF.

3



References
Christian Berg, Jens Peter Reus Christensen, and Paul Ressel. Harmonic analysis on semigroups.

Springer-Verlag, 1984.

Zixuan Cang, Lin Mu, Kedi Wu, Kristopher Opron, Kelin Xia, and Guo-Wei Wei. A topological
approach for protein classification. Molecular Based Mathematical Biology, 3(1), 2015.

Mathieu Carriere, Marco Cuturi, and Steve Oudot. Sliced Wasserstein kernel for persistence dia-
grams. In Proceedings of the 34th International Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pages 664–673, 2017.

Leslie Greengard and John Strain. The fast gauss transform. SIAM Journal on Scientific and Statistical
Computing, 12(1):79–94, 1991.

Allen Hatcher. Algebraic topology. Cambridge University Press, 2002.

Genki Kusano, Yasuaki Hiraoka, and Kenji Fukumizu. Persistence weighted gaussian kernel for
topological data analysis. In International Conference on Machine Learning, pages 2004–2013,
2016.

Genki Kusano, Kenji Fukumizu, and Yasuaki Hiraoka. Kernel method for persistence diagrams via
kernel embedding and weight factor. Journal of Machine Learning Research, 18(189):1–41, 2018.

Tam Le and Marco Cuturi. Unsupervised riemannian metric learning for histograms using aitchison
transformations. In International Conference on Machine Learning, pages 2002–2011, 2015.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances in
neural information processing systems, pages 1177–1184, 2008.

Jan Reininghaus, Stefan Huber, Ulrich Bauer, and Roland Kwitt. A stable multi-scale kernel for
topological machine learning. In Proceedings of the IEEE conference on computer vision and
pattern recognition (CVPR), pages 4741–4748, 2015.

I. J. Schoenberg. Positive definite functions on spheres. Duke Mathematical Journal, 9:96–108, 1942.

4


	Some Traditional Filtrations for Persistence Diagrams
	Kernels
	Related Kernels for Persistence Diagrams
	More Experiments on Hemoglobin Classification

