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Abstract

Generative adversarial training for imitation learning has shown promising results
on high-dimensional and continuous control tasks. This paradigm is based on
reducing the imitation learning problem to the density matching problem, where
the agent iteratively refines the policy to match the empirical state-action visitation
frequency of the expert demonstration. Although this approach can robustly learn
to imitate even with scarce demonstration, one must still address the inherent
challenge that collecting trajectory samples in each iteration is a costly operation. To
address this issue, we first propose a Bayesian formulation of generative adversarial
imitation learning (GAIL), where the imitation policy and the cost function are
represented as stochastic neural networks. Then, we show that we can significantly
enhance the sample efficiency of GAIL leveraging the predictive density of the
cost, on an extensive set of imitation learning tasks with high-dimensional states
and actions.

1 Introduction

Imitation learning is the problem where an agent learns to mimic the demonstration provided by the
expert, in an environment with unknown cost function. Imitation learning with policy gradients [Ho
et al., 2016] is a recently proposed approach that uses gradient-based stochastic optimizers. Along
with trust-region policy optimization (TRPO) [Schulman et al., 2015] as the optimizer, it is shown
to be one of the most practical approaches that scales well to large-scale environments, i.e. high-
dimensional state and action spaces. Generative adversarial imitation learning (GAIL) [Ho and Ermon,
2016], which is of our primary interest, is a recent instance of imitation learning algorithms with
policy gradients. GAIL reformulates the imitation learning problem as a density matching problem,
and makes use of generative adversarial networks (GANs) [Goodfellow et al., 2014]. This is achieved
by generalizing the representation of the underlying cost function using neural networks, instead
of restricting it to the class of linear functions for the sake of simpler optimization. As a result, the
policy being learned becomes the generator, and the cost function becomes the discriminator. Based
on the promising results from GAIL, a number of improvements appeared in the literature [Wang
et al., 2017, Li et al., 2017].

Yet, one of the fundamental challenges lies in the fact that obtaining trajectory samples from the
environment is often very costly, e.g., physical robots situated in real-world. Among a number of
improved variants of GAIL, we remark that generative moment matching imitation learning (GM-
MIL) [Kim and Park, 2018], which uses kernel mean embedding to improve the discriminator training
just as in generative moment matching networks (GMMNs) [Li et al., 2015], was experimentally
shown to converge much faster and more stable compared to GAIL. This gives us a hint that a robust
discriminator is an important factor in improving the sample efficiency of generative-adversarial
approaches to imitation learning.
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In this work, we also aim to enhance the sample efficiency of the generative-adversarial approach to
imitation learning. Our main idea is to use a Bayesian discriminator in GAIL, e.g. using a Bayesian
neural network, thus referring to our algorithm as Bayes-GAIL (BGAIL). To achieve this, we first
reformulate GAIL in the Bayesian framework. As a result, we show that GAIL can be seen as
optimizing a surrogate objective in our approach, with iterative updates being maximum-likelihood
(ML) point estimations. In our work, instead of using the ML point estimate, we propose to use the
predictive density of the cost. This gives more informative cost signals for the policy training and
makes BGAIL significantly more sample-efficient compared to the original GAIL.

2 Preliminaries

2.1 Reinforcement Learning (RL) and Notations

We first define the basic notions from RL. The RL problem considers an agent that chooses an action
after observing an environment state and the environment that reacts with a cost and a successor
state to the agent’s action. The agent-environment interaction is modeled by using a Markov decision
process (MDP)M := 〈S,A, c, PT , ν, γ〉; S is a state space, A is an action space, c(s, a) is a cost
function, PT (s′|s, a) is the state transition distribution, ν(s) is the initial state distribution, γ ∈ [0, 1]
is a discount factor.M− denotes an MDPM without the cost function (MDP\C), i.e., 〈S,A, P, ν, γ〉.
The (stochastic) policy π(a|s) is defined as the probability of choosing action a in state s.

Given the cost function c, the objective of RL is to find the policy π that minimizes the expected
long-term cost η(π, c) := Eπ [

∑∞
t=0 γ

tc(ssst, aaat)], where the subscript π in the expectation im-
plies that the trajectory (sss0, aaa0, sss1, aaa1, ...) is generated from the policy π with the transition dis-
tribution of M−. The state value function V cπ and the action value function Qcπ are defined as
V cπ (s) := Eπ [

∑∞
t=0 c(ssst, aaat)|sss0 = s] and Qcπ(s, a) := Eπ [

∑∞
t=0 c(ssst, aaat)|sss0 = s,aaa0 = a], respec-

tively. The optimal value functions V c∗ , Q
c
∗ for c are the value functions for the optimal policy

πc∗ := arg minπη(π, c) under the cost function c. The γ-discounted state visitation occupancy
ρπ for policy π is defined as ρπ(s) := Eπ [

∑∞
t=0 γ

tδ(s− ssst)] for Dirac delta function δ when
the state space S is assumed to be continuous. For convenience, we denote the γ-discounted
state-action visitation occupancy for π as ρπ(s, a) := ρπ(s)π(a|s). It can be simply shown that
η(π, c) = E(sss,aaa)∼ρπ [c(sss,aaa)] :=

∑
s,a ρπ(s, a)c(s, a). Throughout this paper, bold-math letters are

used to indicate random variables, and their realizations are written as non-bold letters.

2.2 Imitation Learning

Historically, behavioral cloning (BC) [Pomerleau, 1991] is one of the simplest approach to imitation
learning, which learns to map the states to demonstrated actions using supervised learning. However,
BC is susceptible to compounding error, which refers to small prediction error accumulated over time
to a catastrophic level [Bagnell, 2015]. Inverse reinforcement learning (IRL) [Russell, 1998, Ng and
Russell, 2000, Ziebart et al., 2008] is a more modern approach, where the objective is to learn the
underlying unknown cost function that makes the expert optimal. Although this is a more principled
approach to imitation learning, IRL algorithms usually involve planning as an inner loop, which
usually requires the knowledge of transition distribution and mainly increases the computational
complexity of IRL. In addition, IRL is fundamentally an ill-posed problem, i.e., there exist infinitely
many cost functions that can describe identical policies, and thus requires some form of preferences
on the choice of cost functions [Ng and Russell, 2000]. The Bayesian approach to IRL [Ramachandran
and Amir, 2007, Choi and Kim, 2011] is one way of encoding the cost function preferences, which
will be introduced in the following section.

Finally, imitation learning with policy gradients [Ho et al., 2016] is one of the most recent approaches,
which replaces the costly planning inner loop with the policy gradient update in RL, making the
algorithm practical and scalable. Generative adversarial imitation learning (GAIL) [Ho and Ermon,
2016] is an instance of this approach, based on the adversarial training objective

arg min
π

max
D∈(0,1)S×A

{
E(sss,aaa)∼ρπE [logD(sss,aaa)] + E(sss,aaa)∼ρπ [log(1−D(sss,aaa))]

}
, (1)

for a set (0, 1)S×A of functions D : S × A → (0, 1). This is essentially the training objective of
GAN, where the generator is the policy π, and the discriminator D is the intermediate cost function
to be used in policy gradient update to match ρπ to ρπE .
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Figure 1: Graphical model for GAIL. The state-action pairs are denoted by zzz := (sss,aaa). Note that
p(z1) = ν(s1)πθ(a1|s1) and p(zt+1|zt) = πθ(at+1|st+1)PT (st+1|st, at). Also, the discriminator
parameter φφφ and the policy parameter θθθ are regarded as random variables.

2.3 Bayesian Inverse Reinforcement Learning (BIRL)

The Bayesian framework for IRL was proposed by Ramachandran and Amir [2007], where the
cost function c is regarded as a random function. For the expert demonstration set D := {τn =

(s
(n)
t , a

(n)
t )T

(n)

t=1 |n = 1, ..., N} collected underM−, the cost function preference and the optimality
confidence on the expert’s trajectoriesD are encoded as prior p(c) and likelihood p(D|c), respectively.
As for the likelihood, the samples inD are assumed independent Gibbs distribution with potential func-
tion Qc∗, i.e. p(D|c) :=

∏N
n=1

∏T (n)

t=1 p(a
(n)
t |s

(n)
t , c) for p(a(n)t |s

(n)
t , c) ∝ exp(Qc∗(s

(n)
t , a

(n)
t )/β)

with the temperature parameter β. Under this model, reward inference and imitation learning using
the posterior mean reward were suggested. Choi and Kim [2011] suggested a BIRL approach using
maximum a posterior (MAP) inference. Based on the reward optimality region [Ng and Russell,
2000], the authors found that there are cases where the posterior mean reward exists outside the
optimality region, whereas MAP reward is posed inside the region. In addition, it was shown that
the existing works on IRL [Ng and Russell, 2000, Ratliff et al., 2006, Syed et al., 2008, Neu and
Szepesvári, 2007, Ziebart et al., 2008] can be viewed as special cases of MAP inference if we choose
the likelihood and a prior properly.

3 Bayesian Generative Adversarial Imitation Learning

In order to formally present our approach, let us denote the agent’s policy as πA and the expert’s
policy as πE . In addition, let us denote sets DA and DE of trajectories generated by πA and πE ,
respectively, underM− for

DA :=

{
τ
(n)
A = (s

(n)
A,t, a

(n)
A,t)

T
t=1

∣∣∣∣n = 1, ..., NA

}
, (2)

where the quantities for expert are defined in a similar way. In the remainder of this work, we drop
the subscripts A and E if there is no confusion. Also, note that DE will be given as input to the
imitation learning algorithm, whereas DA will be generated in each iteration of optimization. It is
natural to assume that the agent’s and the expert’s trajectories τA and τE are independently generated,
i.e., p(τA, τE) = p(τA)p(τE), with p(τ) := ν(s1)π(a1|s1)

∏T
t=2 PT (st|st−1, at−1)π(at|st). In this

work, we reformulate GAIL [Ho and Ermon, 2016] in the Bayesian framework as follows.

3.1 Bayesian Framework for Adversarial Imitation Learning

Agent-expert discrimination Suppose πA is fixed for simplicity, which will be later parameterized
for learning. Let us consider binary auxiliary random variables oooA,t, oooE,t for all t, where ooot becomes
1 if given state-action pair (ssst, aaat) is generated by the expert, and becomes 0 otherwise. Then, the
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joint distribution of (τττA, τττE , oooA, oooE) can be written as

p(τA, τE , oA, oE) = p(τA)p(τE)

[
T∏
t=1

p(oA,t|sA,t, aE,t)

][
T∏
t=1

p(oE,t|sA,t, aE,t)

]
. (3)

for ooo := (ooot)
T
t=1 := (ooo1, ..., oooT ), where ot is a realization of a random variable ooot. Although

p(ot|st, at) cannot be the same for both agent and expert and all t, we can simplify the problem by
applying a single approximate discriminator Dφ(s, a) with parameter φ such that

p(ot|st, at) ≈ p̂(ot|st, at;φ) := (1−Dφ(st, at))
otDφ(st, at)

1−ot =

{
1−Dφ(st, at), if ot = 1,

Dφ(st, at), otherwise.
(4)

Using the approximation in (4), the distribution in (3) is given by

p(τA, τE , oA, oE) ≈ p̂(τA, τE , oA, oE ;φ) (5)

:= p(τA)p(τE)

T∏
t=1

p̂(oA,t|sA,t, aA,t;φ)
T∏
t=1

p̂(oE,t|sE,t, aE,t;φ). (6)

It should be noted that the distribution in (6) works for the arbitrary choice of τA, τE , oA, oE . Also,
the graphical model for those random variables is shown in Figure 1 to clarify the dependencies
between random variables.

Now, suppose a discrimination optimality event oooA = 0 , oooE = 1 is observed for some fixed
trajectories τA, τE , where 1 := (1)Tt=1 := (1, ..., 1) and 0 is defined in a similar way. Intuitively, the
discrimination optimality event is an event such that the discriminator perfectly recognizes the policy
that generates given state-action pairs. By introducing a prior p(φ) on the discriminator parameter φ
and the agent policy πA(·|·; θ) parameterized with θ, we obtain the following posterior distribution
conditioned on the discrimination optimality event and θ:

p(φ, τA, τE |0A, 1E ; θ) ∝ p(φ)p(τA; θ)p(τE)p(0A|τA;φ)p(1E |τE ;φ). (7)

Here, 0A and 1E is defined as the events oooA = 0 and oooE = 1 , respectively. By using the posterior
p(φ|0A, 1E ; θ) which marginalizes out τA and τE in (7), we can consider the full distribution of φ or
select an appropriate point estimate for φ that maximizes the posterior.

Discrimination-based imitation Suppose we want to find the parameter θ of πA that well approx-
imates πE based on the discrimination results. By considering parameters (θ, φ) as random variables
(θθθ,φφφ), the distribution for (τττA, τττE , oooA, oooE , θθθ,φφφ) is

p(τA, τE , oA, oE , θ, φ) = p(θ)p(φ)p(τA, τE , oA, oE ; θ, φ) (8)

= p(θ)p(φ)p(τA; θ)p(τE)

T∏
t=1

p̂(oA,t|sA,t, aA,t;φ)
T∏
t=1

p̂(oE,t|sE,t, aE,t;φ), (9)

where φφφ is assumed to be independent with θθθ. Similar to the optimism for the agent-expert discrimi-
nation, suppose we observe the imitation optimality event oooA 6= 0 that is irrespective of oooE . Note
that the imitation optimality event implies preventing the occurrence of discrimination optimality
events. To get the optimal policy parameter by using the discriminator, we can consider the following
(conditional) posterior:

p(θ, τA|0̃A;φ) ∝ p(θ)p(τA; θ)p(0̃A|τA;φ). (10)

Here, 0̃A is defined as an probabilistic event oooA 6= 0 . Finally by using p(θ|0̃A;φ) that comes from
the marginalization of τA in (10), either the full distribution of θ or corresponding point estimate can
be used.

3.2 GAIL as an Iterative Point Estimator

Under our Bayesian framework, GAIL can be regarded as an algorithm that iteratively uses (7) and
(10) for updating θ and φ using their point estimates. For the discriminator update, the objective of
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GAIL is to maximize the expected log-likelihood with θprev given from the previous iteration and τττA
generated by using πA(a|s; θprev):

arg max
φ

EτττA,τττE |θθθ=θprev
[log p(0A|τττA, φ)p(1E |τττE , φ)] (11)

= arg max
φ

EτττA,τττE |θθθ=θprev

[
T∑
t=1

logDφ(sssA,t, aaaA,t) +

T∑
t=1

log(1−Dφ(sssE,t, aaaE,t))

]
. (12)

This can be regarded as a surrogate objective with an uninformative prior p(φ) since

log p(0A, 1E |φ, θprev) = logEτττA,τττE |θθθ=θprev [p(0A|τττA, φ)p(1E |τττE , φ)] + constant (13)

≥ EτττA,τττE |θθθ=θprev [log p(0A|τττA, φ)p(1E |τττE , φ)] + constant, (14)

where the inequality in (14) follows from the Jensen’s inequality. For the policy update, the objective
of GAIL is

arg max
θ

EτττA|θθθ=θ
[
log p(0̃A|τττA, φprev)

]
= arg min

θ
EτττA|θθθ=θ

[
T∑
t=1

logDφprev
(sssA,t, aaaA,t)

]
. (15)

Similarly, for the uninformative prior p(θ), we can show that

log p(0̃A|θ, φprev) = logEτττA|θθθ=θ
[
p(0̃A|τττA, φprev)

]
+ constant (16)

≥ EτττA|θθθ=θ
[
log p(0̃A|τττA, φprev)

]
+ constant, (17)

and thus, the objective in (15) can be regarded as a surrogate objective. In addition, since the form
of the objective in (15) is the same as the policy optimization with an immediate cost function
logDφprev(·, ·), GAIL uses TRPO, a state-of-the-art policy gradient algorithm, for updating θ.

Note that our approach shares the same insight behind the probabilistic inference formulation of
reinforcement learning, in which the reinforcement learning problem is casted into the probabilistic
inference problem by introducing the auxiliary return optimality event [Toussaint, 2009, Neumann,
2011, Abdolmaleki et al., 2018]. Also, if we consider the maximization of log p(1A|θ, φprev), which
result from defining the imitation optimality event as oooA = 1 , it can be shown that the corresponding
surrogate objective becomes the policy optimization with an immediate reward function log(1 −
Dφprev(·, ·)). This is in line with speeding up GAN training by either maximizing log(1−D(·)) or
minimizing logD(·), suggested in Goodfellow et al. [2014]. Some recent work on adversarial inverse
reinforcement learning also support the use of such reward function [Finn et al., 2016, Fu et al.,
2018].

3.3 Sample-efficient Imitation Learning with Predictive Cost Function

Since model-free imitation learning algorithms (e.g. GAIL) require experience samples obtained
from the environment, improving the sample-efficiency is critical. From the Bayesian formulation in
the previous section, GAIL can be seen as maximizing (minimizing) the expected log-likelihood in a
point-wise manner for discriminator (policy) updates, and this makes the algorithm quite inefficient
compared to using the full predictive distribution.

We thus propose to use the posterior of the discriminator parameter so that more robust cost signals
are available for policy training. Formally, let us consider the iterative updates for the policy parameter
θ and the discriminator parameter φ, where the point estimate of θ is obtained using the distribution
over φ in each iteration. In other words, given θprev from the previous iteration, we want to utilize
pposterior(φ) := p(φ|0A, 1E , θprev) that satisfies

log pposterior(φ) = log
{
p(φ)EτττA|θθθ=θprev [p(0A|τττA, φ)]EτττE [p(1E |τττE , φ)]

}
+ constant. (18)

By using Monte-Carlo estimations for the expectations over trajectories in (18), the log posterior in
(18) can be approximated as

log p(φ) + log

N∑
n=1

exp(F
(n)
A,φ) + log

N∑
n=1

exp(F
(n)
E,φ) + constant, (19)
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where F (n)
A,φ :=

∑T
t=1 logDφ(s

(n)
A,t, a

(n)
A,t) and F (n)

E,φ :=
∑T
t=1 log(1−Dφ(s

(n)
E,t, a

(n)
E,t)). Note that we

can also use the surrogate objective of GAIL in (14) with prior on p(φ), which might be suitable for
the infinite-horizon problems.

At each iteration of our algorithm, we try to find policy parameter θ that maximizes the log of the
posterior log p(θ|0̃A). For an uninformative prior on θ, the objective can be written as

arg maxθ log p(θ|0̃A) = arg minθ log p(0A|θ) = arg minθ logEτττA|θθθ=θ,φφφ∼pposterior
[p(0A|τττA,φφφ)].

(20)

By applying the Jensen’s inequality to (20), we have EτττA|θθθ=θ,φφφ∼pposterior
[log p(0A|τττA,φφφ)], which

can be minimized by policy optimization. In contrast to GAIL that uses the single point estimate
for the maximization of pposterior, multiple parameters φ1, ..., φK that are randomly sampled from
pposterior are used to estimate the objective:

EτττA|θθθ=θ

{
1

K

K∑
k=1

log p(0A|τττA, φk)

}
= EτττA|θθθ=θ

{
1

K

K∑
k=1

T∑
t=1

logDφk(sssA,t, aaaA,t)

}
(21)

= EτττA|θθθ=θ

{
T∑
t=1

(
1

K

K∑
k=1

logDφk(sssA,t, aaaA,t)

)}
. (22)

Note that (22) implies we can perform RL policy optimization with the predictive cost function
1
K

∑K
k=1 logDφk(s, a). In addition, if we consider p(1A|τττA, φk) rather than p(0̃A|τττA, φk), the

optimization problem becomes RL with the predictive reward function 1
K

∑K
k=1(1− logDφk(s, a)).

The remaining question is how to get the samples from the posterior, and this will be discussed in the
next section.

4 Posterior Sampling Based on Stein Variational Gradient Descent (SVGD)

SVGD [Liu and Wang, 2016] is a recently proposed Bayesian inference algorithm based on the
particle updates, which we briefly review as follows: suppose that random variable xxx follows the
distribution q(0), and target distribution p is known up to the normalization constant. Also, consider a
sequence of transformations T (0), T (1), ..., where

T (i)(x) := x+ ε(i)ψq(i),p(x), ψq,p(x
′) := Exxx∼q[k(xxx, x′)∇xxx log p(xxx) +∇xxxk(xxx, x′)] (23)

with sufficiently small step size ε(i), probability distribution q(i) of (T (i−1) ◦ · · ·T (0))(xxx) and some
positive definite kernel k(·, ·). Interestingly, the deterministic transformation (23) turns out to be an
iterative update to the probability distribution towards the target distribution p, and ψq(i),p can be
interpreted as the functional gradient in the reproducing kernel Hilbert space (RKHS) defined by the
kernel k(·, ·). SVGD was shown to minimize the kernelized Stein discrepancy S(q(i), p) between
q(i) and p [Liu et al., 2016] in each iteration. In practice, SVGD uses a finite number of particles.
More formally, for K particles {x(0)k }Kk=1 that are initially sampled, SVGD iteratively updates those
particles by the following transformation that approximates (23):

T (i)(x) := x+ ε(i)ψ̂(i)
p (x), ψ̂(i)

p (x) :=
1

K

K∑
k=1

(
k(x

(i)
k , x)∇

x
(i)
k

log p(x
(i)
k ) +∇

x
(i)
k

k(x
(i)
k , x)

)
.

(24)

Even with the approximate deterministic transform and a few particles, SVGD was experimentally
shown to significantly outperform common Bayesian inference algorithms. In the extreme case, if a
single particle is used, SVGD is equivalent to MAP inference.

In our work, we use SVGD to draw the samples of the discriminator parameters from the posterior (19).
Specifically, we first choose a set of K initial particles (discriminator parameters) {φ(0)k }Kk=1. Then,
we use the gradient of (19) for those particles and apply the update rule in (24) to get the particles
generated from the posterior distribution in (19). Finally, by using those particles, the predictive
cost function is derived. The complete BGAIL algorithm leveraging SVGD and the predictive cost
function is summarized in Algorithm 1.
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Algorithm 1 Bayesian Generative Adversarial Imitation Learning (BGAIL)
1: Input: Expert trajectories DE , initial policy parameter θ, a set of initial discriminator parameters
{φk}Kk=1, p(φ) for preference of φ

2: for each iteration do
3: Sample trajectories by using policy πθ.
4: Update θ using policy optimization, e.g., TRPO, with cost function 1

K

∑K
k=1 logDφ

(i)
k

(s, a).
5: Sample trajectories from DE .
6: for k = 1, ...,K do
7: Calculate gradient δk of either (19) or its surrogate objective (17) for φk.
8: end for
9: for k = 1, ...,K do . SVGD

10: Update φk ← φk + αψ̂(φk) for a step size parameter α, where

ψ̂(φ) :=
1

K

K∑
j=1

(
k(φj , φ)δj +∇φjk(φj , φ)

)
.

11: end for
12: end for

5 Experiments

We evaluated our BGAIL on five continuous control tasks (Hopper-v1, Walker2d-v1, HalfCheetah-
v1, Ant-v1, Humanoid-v1) from OpenAI Gym, implemented with the MuJoCo physics simula-
tor [Todorov et al., 2012]. We summarize our experimental setting as follows. For all tasks, neural
networks with 2 hidden layers were used for all policy and discriminator networks, where 100 hidden
units for each hidden layer and tanh activations are used. Before training, expert’s trajectories were
collected from the expert policy released by the authors of the original GAIL1, but our code was
built on the GAIL implementation in OpenAI Baselines [Dhariwal et al., 2017] which uses Tensor-
Flow [Abadi et al., 2016]. For the policy, Gaussian policy was used with both mean and variance
dependent on the observation. For the discriminator, the number of particles K was chosen to be 5.
All discriminator parameters φ1, ..., φK were initialized independently and randomly. For training, we
used uninformative prior and SVGD along with the Adam optimizer [Kingma and Ba, 2014], whereas
Adagrad was used in the SVGD paper [Liu and Wang, 2016]. Our SVGD was implemented using
the code released by the authors2, with the radial basis function (RBF) kernel (squared-exponential
kernel) k(·, ·) and the median heuristic for choosing the bandwidth parameter. In addition, 5 inner
loops were used for updating discriminator parameters, which corresponds to the inner loop from
line 6 to line 11 in Algorithm 1.

First, we compare BGAIL to two different settings for GAIL. The first setting is the same as in
the authors’ code, where the variance of the Gaussian policy is learnable constant parameter and
a single discriminator update is performed in each iteration. Also, the state-action pairs of the
expert demonstration were subsampled from complete trajectories. In the second setting, we made
changes to the original setting to improve sample efficiency by (1) state-dependent variance and
(2) 5 disciminator updates per iteration, and (3) use the whole trajectories without sub-sampling.
In the remainder of this paper, these two settings shall be referred to as vanilla GAIL and tuned
GAIL, respectively. In all settings of our experiments, the maximum number of expert trajectories
was chosen as in Ho and Ermon [2016], i.e. 240 for Humanoid and 25 for all other tasks, and 50000
state-action pairs were used for each iteration in the first experiment. The number of training iterations
were also also chosen as the same as written in GAIL paper. The imitation performances of vanilla
GAIL, tuned GAIL and our algorithm are summarized in Table 1. Note that the evaluation in Table 1
was done in the exactly same setting as the original GAIL paper. In that paper, the imitation learner
was evaluated over 50 independent trajectories using the single trained policy, and the mean and the
standard deviation of those 50 trajectories were given. Similarly, we evaluated each of the 5 trained
policies over 50 independent trajectories, and we reported the mean and the standard deviation over 50
trajectories of the 3rd best policy in terms of the mean score for fair comparison. As we can see, tuned

1https://github.com/openai/imitation
2https://github.com/DartML/Stein-Variational-Gradient-Descent
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Figure 2: Comparison with GAIL when either 1000 (Hopper-v1, Walker-v1, HalfCheetah-v1) or 5000
(Ant-v1, Humanoid-v1) state-action pairs are used for each training iteration. The numbers inside the
bracket on the titles indicate (from left to right) the state dimension and the action dimension of the
task, respectively. The tasks are ordered by following the ascending order of the state dimension.

Task Dataset size GAIL (released) GAIL (tuned) BGAIL
Hopper-v1 25 3560.85± 3.09 3595.30± 5.89 3613.94± 10.25
Walker2d-v1 25 6832.01± 254.64 7011.02± 25.18 7017.46± 33.32
HalfCheetah-v1 25 4840.07± 95.36 5022.93± 81.46 4970.77± 363.48
Ant-v1 25 4132.90± 878.67 4759.12± 416.15 4808.90± 78.10
Humanoid-v1 240 10361.94± 61.28 10329.66± 59.37 10388.34± 99.03

Table 1: Imitation Performances for vanilla GAIL, tuned GAIL and BGAIL

GAIL and BGAIL perform slightly better than vanilla GAIL for most of the tasks and hugely better
at Ant-v1. We think this is due to (1) the expressive power by using the policy with state-dependent
variance, (2) the stabilization of the algorithm due to the multiple iteration for discriminator training
and (3) the efficient use of expert’s trajectories without sub-sampling procedure.

Second, we checked the sample efficiency of our algorithm by reducing the number of state-action
pairs used for each training iteration from 50000 to 1000 for Hopper-v1, Walker2d-v1, HalfCheetah-
v1 and to 5000 for other much high-dimensional tasks. Note that the vanilla GAIL in this experiment
used 50000 state-action pairs to see the sample efficiency of the original work, whereas the tuned
GAIL was trained with either 1000 or 5000 state-action pairs per each iteration to compare its sample
efficiency with our algorithm. Compared to vanilla GAIL, the performances of both tuned GAIL and
BGAIL converge to the optimal (expert’s performance) much faster as depicted in Figure 2. Note
that 5 different policies were trained for both BGAIL and tuned GAIL, whereas a single policy was
trained for vanilla GAIL. The shades in Figure 2 indicate the standard deviation of scores over these
5 policies. Also, it can be shown that the performances of tuned GAIL and BGAIL are almost similar
at Hopper-v1 that is relatively a low-dimensional task. On the other hand, as the dimension of tasks
increases, BGAIL becomes much more sample-efficient compared to tuned GAIL.
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6 Discussion

In this work, GAIL is analyzed in the Bayesian approach, and such approach can lead to highly sample-
efficient model-free imitation learning. Our Bayesian approach is related to Bayesian GAN [Saatci
and Wilson, 2017] that considered the posterior distributions of both generator and discriminator
parameters in the generative adversarial training. Similarly in our work, the posterior for the agent-
expert discriminator was used for the predictive density of the cost during training, whereas only
a point estimate for the policy parameter was used for simplicity. We think our algorithm can be
simply extended to the multi-policy imitation learning, and the sample efficiency of our algorithm
may be enhanced by utilizing the posterior of the policy parameter as shown in Stein variational
policy gradient (SVPG) [Liu et al., 2017]. Also for the theoretical analysis, ours slightly differs from
the analysis in Bayesian GAN due to the inter-trajectory correlation from MDP formulation in our
work. This makes the objective of original GAIL regarded as the surrogate objective in our Bayesian
approach, whereas the objective of Bayesian GAN is exactly reduced into that of original GAN for ML
point estimation. In addition, we think our analysis fills the gap between theory and experiments in
GAIL since GAIL was theoretically analyzed based on the discounted occupancy measure, which can
be defined in the infinite-horizon setting, but their experiments were only done on the finite-horizon
tasks in MuJoCo simulator. Finally, while BGAIL effectively works with uninformative prior in our
experiments, the proper choice of the prior such as Gaussian prior with Fisher information covariance
in [Abdolmaleki et al., 2018]. may also enhance the sample efficiency.
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