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Abstract

Automatic neural architecture design has shown its potential in discovering power-
ful neural network architectures. Existing methods, no matter based on reinforce-
ment learning or evolutionary algorithms (EA), conduct architecture search in a
discrete space, which is highly inefficient. In this paper, we propose a simple and
efficient method to automatic neural architecture design based on continuous opti-
mization. We call this new approach neural architecture optimization (NAO). There
are three key components in our proposed approach: (1) An encoder embeds/maps
neural network architectures into a continuous space. (2) A predictor takes the
continuous representation of a network as input and predicts its accuracy. (3) A
decoder maps a continuous representation of a network back to its architecture.
The performance predictor and the encoder enable us to perform gradient based
optimization in the continuous space to find the embedding of a new architecture
with potentially better accuracy. Such a better embedding is then decoded to a
network by the decoder. Experiments show that the architecture discovered by
our method is very competitive for image classification task on CIFAR-10 and
language modeling task on PTB, outperforming or on par with the best results of
previous architecture search methods with a significantly reduction of computa-
tional resources. Specifically we obtain 2.11% test set error rate for CIFAR-10
image classification task and 56.0 test set perplexity of PTB language modeling
task. The best discovered architectures on both tasks are successfully transferred to
other tasks such as CIFAR-100 and WikiText-2. Furthermore, combined with the
recent proposed weight sharing mechanism, we discover powerful architecture on
CIFAR-10 (with error rate 3.53%) and on PTB (with test set perplexity 56.6), with
very limited computational resources (less than 10 GPU hours) for both tasks.

1 Introduction

Automatic design of neural network architecture without human intervention has been the interests of
the community from decades ago [12, 22] to very recent [45, 46, 27, 36, 7]. The latest algorithms for
automatic architecture design usually fall into two categories: reinforcement learning (RL) [45, 46,
34, 3] based methods and evolutionary algorithm (EA) based methods [40, 32, 36, 27, 35]. In RL
based methods, the choice of a component of the architecture is regarded as an action. A sequence
of actions defines an architecture of a neural network, whose dev set accuracy is used as the reward.
In EA based method, search is performed through mutations and re-combinations of architectural
components, where those architectures with better performances will be picked to continue evolution.

It can be easily observed that both RL and EA based methods essentially perform search within
the discrete architecture space. This is natural since the choices of neural network architectures are
∗The work was done when the first author was an intern at Microsoft Research Asia.
†The first two authors contribute equally to this work.
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typically discrete, such as the filter size in CNN and connection topology in RNN cell. However,
directly searching the best architecture within discrete space is inefficient given the exponentially
growing search space with the number of choices increasing. In this work, we instead propose to
optimize network architecture by mapping architectures into a continuous vector space (i.e., network
embeddings) and conducting optimization in this continuous space via gradient based method. On
one hand, similar to the distributed representation of natural language [33, 25], the continuous repre-
sentation of an architecture is more compact and efficient in representing its topological information;
On the other hand, optimizing in a continuous space is much easier than directly searching within
discrete space due to better smoothness.

We call this optimization based approach Neural Architecture Optimization (NAO), which is briefly
shown in Fig. 1. The core of NAO is an encoder model responsible to map a neural network
architecture into a continuous representation (the blue arrow in the left part of Fig. 1). On top of
the continuous representation we build a regression model to approximate the final performance
(e.g., classification accuracy on the dev set) of an architecture (the yellow surface in the middle part
of Fig. 1). It is noteworthy here that the regression model is similar to the performance predictor
in previous works [4, 26, 10]. What distinguishes our method is how to leverage the performance
predictor: different with previous work [26] that uses the performance predictor as a heuristic to select
the already generated architectures to speed up searching process, we directly optimize the module to
obtain the continuous representation of a better network (the green arrow in the middle and bottom
part of Fig. 1) by gradient descent. The optimized representation is then leveraged to produce a new
neural network architecture that is predicted to perform better. To achieve that, another key module
for NAO is designed to act as the decoder recovering the discrete architecture from the continuous
representation (the red arrow in the right part of Fig. 1). The decoder is an LSTM model equipped
with an attention mechanism that makes the exact recovery easy. The three components (i.e., encoder,
performance predictor and decoder) are jointly trained in a multi task setting which is beneficial to
continuous representation: the decoder objective of recovering the architecture further improves the
quality of the architecture embedding, making it more effective in predicting the performance.

We conduct thorough experiments to verify the effectiveness of NAO, on both image classification
and language modeling tasks. Using the same architecture space commonly used in previous
works [45, 46, 34, 26], the architecture found via NAO achieves 2.11% test set error rate (with
cutout [11]) on CIFAR-10. Furthermore, on PTB dataset we achieve 56.0 perplexity, also surpassing
best performance found via previous methods on neural architecture search. Furthermore, we show
that equipped with the recent proposed weight sharing mechanism in ENAS [34] to reduce the large
complexity in the parameter space of child models, we can achieve improved efficiency in discovering
powerful convolutional and recurrent architectures, e.g., both take less than 10 hours on 1 GPU.

Our codes and model checkpoints are available at https://github.com/renqianluo/NAO.

2 Related Work

Recently the design of neural network architectures has largely shifted from leveraging human
knowledge to automatic methods, sometimes referred to as Neural Architecture Search (NAS) [40,
45, 46, 26, 34, 6, 36, 35, 27, 7, 6, 21]. As mentioned above, most of these methods are built upon
one of the two basic algorithms: reinforcement learning (RL) [45, 46, 7, 3, 34, 8] and evolutionary
algorithm (EA) [40, 36, 32, 35, 27]. For example, [45, 46, 34] use policy networks to guide the
next-step architecture component. The evolution processes in [36, 27] guide the mutation and
recombination process of candidate architectures. Some recent works [17, 18, 26] try to improve
the efficiency in architecture search by exploring the search space incrementally and sequentially,
typically from shallow to hard. Among them, [26] additionally utilizes a performance predictor
to select the promising candidates. Similar performance predictor has been specifically studied in
parallel works such as [10, 4]. Although different in terms of searching algorithms, all these works
target at improving the quality of discrete decision in the process of searching architectures.

The most recent work parallel to ours is DARTS [28], which relaxes the discrete architecture space
to continuous one by mixture model and utilizes gradient based optimization to derive the best
architecture. One one hand, both NAO and DARTS conducts continuous optimization via gradient
based method; on the other hand, the continuous space in the two works are different: in DARTS
it is the mixture weights and in NAO it is the embedding of neural architectures. The difference in
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Figure 1: The general framework of NAO. Better viewed in color mode. The original architecture x
is mapped to continuous representation ex via encoder network. Then ex is optimized into ex′ via
maximizing the output of performance predictor f using gradient ascent (the green arrow). Afterwards
ex′ is transformed into a new architecture x′ using the decoder network.

optimization space leads to the difference in how to derive the best architecture from continuous
space: DARTS simply assumes the best decision (among different choices of architectures) is the
argmax of mixture weights while NAO uses a decoder to exactly recover the discrete architecture.

Another line of work with similar motivation to our research is using bayesian optimization (BO) to
perform automatic architecture design [37, 21]. Using BO, an architecture’s performance is typically
modeled as sample from a Gaussian process (GP). The induced posterior of GP, a.k.a. the acquisition
function denoted as a : X → R+ where X represents the architecture space, is tractable to minimize.
However, the effectiveness of GP heavily relies on the choice of covariance functions K(x, x′) which
essentially models the similarity between two architectures x and x′. One need to pay more efforts
in setting good K(x, x′) in the context of architecture design, bringing additional manual efforts
whereas the performance might still be unsatisfactory [21]. As a comparison, we do not build our
method on the complicated GP setup and empirically find that our model which is simpler and more
intuitive works much better in practice.

3 Approach

We introduce the details of neural architecture optimization (NAO) in this section.

3.1 Architecture Space

Firstly we introduce the design space for neural network architectures, denoted as X . For fair
comparison with previous NAS algorithms, we adopt the same architecture space commonly used in
previous works [45, 46, 34, 26, 36, 35].

For searching CNN architecture, we assume that the CNN architecture is hierarchical in that a cell
is stacked for a certain number of times (denoted as N ) to form the final CNN architecture. The
goal is to design the topology of the cell. A cell is a convolutional neural network containing B
nodes. Each of the nodes contains two branches, with each branch taking the output of one of the
former nodes as input and applying an operation to it. The operation set includes 11 operators listed
in Appendix. The node adds the outputs of its two branches as its output. The inputs of the cell are
the outputs of two previous cells, respectively denoted as node −2 and node −1. Finally, the outputs
of all the nodes that are not used by any other nodes are concatenated to form the final output of the
cell. Therefore, for each of the B nodes we need to: 1) decide which two previous nodes are used as
the inputs to its two branches; 2) decide the operation to apply to its two branches. We set B = 5 in
our experiments as in [46, 34, 26, 35].

For searching RNN architecture, we use the same architecture space as in [34]. The architecture
space is imposed on the topology of an RNN cell, which computes the hidden state ht using input it
and previous hidden state ht−1. The cell contains B nodes and we have to make two decisions for
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each node, similar to that in CNN cell: 1) a previous node as its input; 2) the activation function to
apply. For example, if we sample node index 2 and ReLU for node 3, the output of the node will be
o3 = ReLU(o2 ·Wh

3 ). An exception here is for the first node, where we only decide its activation
function a1 and its output is o1 = a1(it ·W i + ht−1 ·Wh

1 ). Note that all W matrices are the weights
related with each node. The available activation functions are: tanh, ReLU, identity and sigmoid.
Finally, the output of the cell is the average of the output of all the nodes. In our experiments we set
B = 12 as in [34].

We use a sequence consisting of discrete string tokens to describe a CNN or RNN architecture.
Taking the description of CNN cell as an example, each branch of the node is represented via three
tokens, including the node index it selected as input, the operation type and operation size. For
example, the sequence “node-2 conv 3x3 node1 max-pooling 3x3 ” means the two branches of
one node respectively takes the output of node −2 and node 1 as inputs, and respectively apply
3 × 3 convolution and 3 × 3 max pooling. For the ease of introduction, we use the same notation
x = {x1, · · · , xT } to denote such string sequence of an architecture x, where xt is the token at t-th
position and all architectures x ∈ X share the same sequence length denoted as T . T is determined
via the number of nodes B in each cell in our experiments.

3.2 Components of Neural Architecture Optimization

The overall framework of NAO is shown in Fig. 1. To be concrete, there are three major parts that
constitute NAO: the encoder, the performance predictor and the decoder.

Encoder. The encoder of NAO takes the string sequence describing an architecture as input, and maps
it into a continuous space E . Specifically the encoder is denoted as E : X → E . For an architecture
x, we have its continuous representation (a.k.a. embedding) ex = E(x). We use a single layer
LSTM as the basic model of encoder and the hidden states of the LSTM are used as the continuous
representation of x. Therefore we have ex = {h1, h2, · · · , hT } ∈ RT×d where ht ∈ Rd is LSTM
hidden state at t-th timestep with dimension d3.

Performance predictor. The performance predictor f : E → R+ is another important module
accompanied with the encoder. It maps the continuous representation ex of an architecture x into
its performance sx measured by dev set accuracy. Specifically, f first conducts mean pooling on
ex = {h1, · · · , hT } to obtain ex = 1

T

∑T
t ht, and then maps ex to a scalar value using a feed-forward

network as the predicted performance. For an architecture x and its performance sx as training data,
the optimization of f aims at minimizing the least-square regression loss (sx − f(E(x)))2 .

Considering the objective of performance prediction, an important requirement for the encoder is
to guarantee the permutation invariance of architecture embedding: for two architectures x1 and
x2, if they are symmetric (e.g., x2 is formed via swapping two branches within a node in x1), their
embeddings should be close to produce the same performance prediction scores. To achieve that, we
adopt a simple data augmentation approach inspired from the data augmentation method in computer
vision (e.g., image rotation and flipping): for each (x1, sx), we add an additional pair (x2, sx) where
x2 is symmetrical to x1, and use both pairs (i.e., (x1, sx) and (x2, sx)) to train the encoder and
performance predictor. Empirically we found that acting in this way brings non-trivial gain: on
CIFAR-10 about 2% improvement when we measure the quality of performance predictor via the
pairwise accuracy among all the architectures (and their performances).

Decoder. Similar to the decoder in the neural sequence-to-sequence model [38, 9], the decoder in
NAO is responsible to decode out the string tokens in x, taking ex as input and in an autoregressive
manner. Mathematically the decoder is denoted as D : E → x which decodes the string tokens x
from its continuous representation: x = D(ex). We set D as an LSTM model with the initial hidden
state s0 = hT (x). Furthermore, attention mechanism [2] is leveraged to make decoding easier, which
will output a context vector ctxr combining all encoder outputs {ht}Tt=1 at each timestep r. The
decoder D then induces a factorized distribution PD(x|ex) =

∏T
r=1 PD(xr|ex, x<r) on x, where the

distribution on each token xr is PD(xr|ex, x<r) =
exp(Wxr [sr,ctxr])∑

x′∈Vr
exp(Wx′ [sr,ctxr])

. Here W is the output
embedding matrix for all tokens, x<r represents all the previous tokens before position r, sr is the

3For ease of introduction, even though some notations have been used before (e.g., ht in defining RNN
search space), they are slightly abused here.
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LSTM hidden state at r-th timestep and [, ] means concatenation of two vectors. Vr denotes the space
of valid tokens at position r to avoid the possibility of generating invalid architectures.

The training of decoder aims at recovering the architecture x from its continuous representation ex =

E(x). Specifically, we would like to maximize logPD(x|E(x)) =
∑T

r=1 logPD(xr|E(x), x<r). In
this work we use the vanilla LSTM model as the decoder and find it works quite well in practice.

3.3 Training and Inference

We jointly train the encoder E, performance predictor f and decoder D by minimizing the combina-
tion of performance prediction loss Lpp and structure reconstruction loss Lrec:

L = λLpp + (1− λ)Lrec = λ
∑
x∈X

(sx − f(E(x))2 − (1− λ)
∑
x∈X

logPD(x|E(x)), (1)

where X denotes all candidate architectures x (and their symmetrical counterparts) that are evaluated
with the performance number sx. λ ∈ [0, 1] is the trade-off parameter. Furthermore, the performance
prediction loss acts as a regularizer that forces the encoder not optimized into a trivial state to simply
copy tokens in the decoder side, which is typically eschewed by adding noise in encoding x by
previous works [1, 24].

When both the encoder and decoder are optimized to convergence, the inference process for better
architectures is performed in the continuous space E . Specifically, starting from an architecture x
with satisfactory performance, we obtain a better continuous representation ex′ by moving ex =
{h1, · · · , hT }, i.e., the embedding of x, along the gradient direction induced by f :

h′t = ht + η
∂f

∂ht
, ex′ = {h′1, · · · , h′T }, (2)

where η is the step size. Such optimization step is represented via the green arrow in Fig. 1. ex′
corresponds to a new architecture x′ which is probably better than x since we have f(ex′) ≥ f(ex),
as long as η is within a reasonable range (e.g., small enough). Afterwards, we feed ex′ into decoder to
obtain a new architecture x′ assumed to have better performance 4. We call the original architecture x
as ‘seed’ architecture and iterate such process for several rounds, with each round containing several
seed architectures with top performances. The detailed algorithm is shown in Alg. 1.

Algorithm 1 Neural Architecture Optimization
Input: Initial candidate architectures set X to train NAO model. Initial architectures set to be evaluated
denoted as Xeval = X . Performances of architectures S = ∅. Number of seed architectures K. Step size η.
Number of optimization iterations L.
for l = 1, · · · , L do

Train each architecture x ∈ Xeval and evaluate it to obtain the dev set performances Seval = {sx},∀x ∈
Xeval. Enlarge S: S = S

⋃
Seval.

Train encoder E, performance predictor f and decoder D by minimizing Eqn.(1), using X and S.
Pick K architectures with top K performances among X , forming the set of seed architectures Xseed.
For x ∈ Xseed, obtain a better representation ex′ from ex′ using Eqn. (2), based on encoder E and
performance predictor f . Denote the set of enhanced representations as E′ = {ex′}.
Decode each x′ from ex′ using decoder, set Xeval as the set of new architectures decoded out: Xeval =
{D(ex′), ∀ex′ ∈ E′}. Enlarge X as X = X

⋃
Xeval.

end for
Output: The architecture within X with the best performance

3.4 Combination with Weight Sharing

Recently the weight sharing trick proposed in [34] significantly reduces the computational complexity
of neural architecture search. Different with NAO that tries to reduce the huge computational
cost brought by the search algorithm, weight sharing aims to ease the huge complexity brought by
massive child models via the one-shot model setup [5]. Therefore, the weight sharing method is
complementary to NAO and it is possible to obtain better performance by combining NAO and weight

4If we have x′ = x, i.e., the new architecture is exactly the same with the previous architecture, we ignore it
and keep increasing the step-size value by η

2
, until we found a different decoded architecture different with x.
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sharing. To verify that, apart from the aforementioned algorithm 1, we try another different setting of
NAO by adding the weight sharing method. Specifically we replace the RL controller in ENAS [34]
by NAO including encoder, performance predictor and decoder, with the other training pipeline of
ENAS unchanged. The results are reported in the next section 4.

4 Experiments

In this section, we report the empirical performances of NAO in discovering competitive neural
architectures on benchmark datasets of two tasks, the image recognition and the language modeling.

4.1 Results on CIFAR-10 Classification

We move some details of model training for CIFAR-10 classification to the Appendix. The architecture
encoder of NAO is an LSTM model with token embedding size and hidden state size respectively set
as 32 and 96. The hidden states of LSTM are normalized to have unit length, i.e., ht = ht

||ht||22
, to

constitute the embedding of the architecture x: ex = {h1, · · · , hT }. The performance predictor f is
a one layer feed-forward network taking 1

T

∑T
t=1 ht as input. The decoder is an LSTM model with

an attention mechanism and the hidden state size is 96. The normalized hidden states of the encoder
LSTM are used to compute the attention. The encoder, performance predictor and decoder of NAO
are trained using Adam for 1000 epochs with a learning rate of 0.001. The trade-off parameters in
Eqn. (1) is λ = 0.9. The step size to perform continuous optimization is η = 10. Similar to previous
works [45, 34], for all the architectures in NAO training phase (i.e., in Alg. 1), we set them to be small
networks with B = 5, N = 3, F = 32 and train them for 25 epochs. After the best cell architecture
is found, we build a larger network by stacking such cells 6 times (set N = 6), and enlarging the filter
size (set F = 36, F = 64 and F = 128), and train it on the whole training dataset for 600 epochs.

We tried two different settings of the search process for CIFAR-10: without weight sharing and
with weight sharing. For the first setting, we run the evaluation-optimization step in Alg. 1 for three
times (i.e., L = 3), with initial X set as 600 randomly sampled architectures, K = 200, forming
600 + 200 + 200 = 1000 model architectures evaluated in total. We use 200 V100 GPU cards
to complete all the process within 1 day. For the second setting, we exactly follow the setup of
ENAS [34] and the search process includes running 150 epochs on 1 V100 GPU for 7 hours.

The detailed results are shown in Table 1, where we demonstrate the performances of best experts
designed architectures (in top block), the networks discovered by previous NAS algorithm (in middle
block) and by NAO (refer to its detailed architecture in Appendix), which we name as NAONet (in
bottom block). We have several observations. (1) NAONet achieves the best test set error rate (2.11)
among all architectures. (2) When accompanied with weight sharing (NAO-WS), NAO achieves
3.53% error rate with much less parameters (2.5M) within only 7 hours (0.3 day), which is more
efficient than ENAS. (3) Compared with the previous strongest architecture, the AmoebaNet, within
smaller search space (#op = 11), NAO not only reduces the classification error rate (3.34→ 3.18),
but also needs an order of magnitude less architectures that are evaluated (20000 → 1000). (3)
Compared with PNAS [26], even though the architecture space of NAO is slightly larger, NAO is
more efficient (M = 1000) and significantly reduces the error rate of PNAS (3.41→ 3.18).

We furthermore conduct in-depth analysis towards the performances of NAO. In Fig. 2(a) we show
the performances of performance predictor and decoder w.r.t. the number of training data, i.e., the
number of evaluated architectures |X|. Specifically, among 600 randomly sampled architectures, we
randomly choose 50 of them (denoted as Xtest) and the corresponding performances (denoted as
Stest = {sx,∀x ∈ Xtest}) as test set. Then we train NAO using the left 550 architectures (with their
performances) as training set. We vary the number of training data as (100, 200, 300, 400, 500, 550)
and observe the corresponding quality of performance predictor f , as well as the decoder D. To
evaluate f , we compute the pairwise accuracy on Xtest and Stest calculated via f , i.e., accf =∑

x1∈Xtest,x2∈Xtest
1f(E(x1))≥f(E(x2))1sx1≥sx2∑

x1∈Xtest,x2∈Xtest
1 , where 1 is the 0-1 indicator function. To evaluate

decoderD, we compute the Hamming distance (denoted asDist) between the sequence representation
of decoded architecture usingD and original architecture to measure their differences. Specifically the
measure is distD = 1

|Xtest|
∑

x∈Xtest
Dist(D(E(x)), x). As shown in Fig. 2(a), the performance

predictor is able to achieve satisfactory quality (i.e., > 78% pairwise accuracy) with only roughly
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Model B N F #op Error(%) #params M GPU Days
DenseNet-BC [19] 100 40 / 3.46 25.6M / /
ResNeXt-29 [41] / 3.58 68.1M / /
NASNet-A [45] 5 6 32 13 3.41 3.3M 20000 2000
NASNet-B [45] 5 4 N/A 13 3.73 2.6M 20000 2000
NASNet-C [45] 5 4 N/A 13 3.59 3.1M 20000 2000
Hier-EA [27] 5 2 64 6 3.75 15.7M 7000 300

AmoebaNet-A [35] 5 6 36 10 3.34 3.2M 20000 3150
AmoebaNet-B [35] 5 6 36 19 3.37 2.8M 27000 3150
AmoebaNet-B [35] 5 6 80 19 3.04 13.7M 27000 3150
AmoebaNet-B [35] 5 6 128 19 2.98 34.9M 27000 3150

AmoebaNet-B + Cutout [35] 5 6 128 19 2.13 34.9M 27000 3150
PNAS [26] 5 3 48 8 3.41 3.2M 1280 225
ENAS [34] 5 5 36 5 3.54 4.6M / 0.45

Random-WS 5 5 36 5 3.92 3.9M / 0.25
DARTS + Cutout [28] 5 6 36 7 2.83 4.6M / 4

NAONet 5 6 36 11 3.18 10.6M 1000 200
NAONet 5 6 64 11 2.98 28.6M 1000 200

NAONet + Cutout 5 6 128 11 2.11 128M 1000 200
NAONet-WS 5 5 36 5 3.53 2.5M / 0.3

Table 1: Performances of different CNN models on CIFAR-10 dataset. ‘B’ is the number of nodes
within a cell introduced in subsection 3.1. ‘N’ is the number of times the discovered normal cell
is unrolled to form the final CNN architecture. ‘F’ represents the filter size. ‘#op’ is the number
of different operation for one branch in the cell, which is an indicator of the scale of architecture
space for automatic architecture design algorithm. ‘M’ is the total number of network architectures
that are trained to obtain the claimed performance. ‘/’ denotes that the criteria is meaningless for a
particular algorithm. ‘NAONet-WS’ represents the architecture discovered by NAO and the weight
sharing method as described in subsection 3.4. ‘Random-WS’ represents the random search baseline,
conducted in the weight sharing setting of ENAS [34].

500 evaluated architectures. Furthermore, the decoder D is powerful in that it can almost exactly
recover the network architecture from its embedding, with averaged Hamming distance between the
description strings of two architectures less than 0.5, which means that on average the difference
between the decoded sequence and the original one is less than 0.5 tokens (totally 60 tokens).

(a) (b)

Figure 2: Left: the accuracy accf of performance predictor f (red line) and performance distD of
decoder D (blue line) on the test set, w.r.t. the number of training data (i.e., evaluated architectures).
Right: the mean dev set accuracy, together with its predicted value by f , of candidate architectures
set Xeval in each NAO optimization iteration l = 1, 2, 3. The architectures are trained for 25 epochs.

Furthermore, we would like to inspect whether the gradient update in Eqn.(2) really helps to generate
better architecture representations that are further decoded to architectures viaD. In Fig. 2(b) we show
the average performances of architectures in Xeval discovered via NAO at each optimization iteration.
Red bar indicates the mean of real performance values 1

|Xeval|
∑

x∈Xeval
sx while blue bar indicates
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the mean of predicted value 1
|Xeval|

∑
x∈Xeval

f(E(x)). We can observe that the performances of
architectures in Xeval generated via NAO gradually increase with each iteration. Furthermore, the
performance predictor f produces predictions well aligned with real performance, as is shown via the
small gap between the paired red and blue bars.

4.2 Transferring the discovered architecture to CIFAR-100

To evaluate the transferability of discovered NAOnet, we apply it to CIFAR-100. We use the best
architecture discovered on CIFAR-10 and exactly follow the same training setting. Meanwhile, we
evaluate the performances of other automatically discovered neural networks on CIFAR-100 by
strictly using the reported architectures in previous NAS papers [35, 34, 26]. All results are listed
in Table 2. NAONet gets test error rate of 14.75, better than the previous SOTA obtained with
cutout [11](15.20). The results show that our NAONet derived with CIFAR-10 is indeed transferable
to more complicated task such as CIFAR-100.

Model B N F #op Error (%) #params
DenseNet-BC [19] / 100 40 / 17.18 25.6M
Shake-shake [15] / / / / 15.85 34.4M

Shake-shake + Cutout [11] / / / / 15.20 34.4M
NASNet-A [45] 5 6 32 13 19.70 3.3M

NASNet-A [45] + Cutout 5 6 32 13 16.58 3.3M
NASNet-A [45] + Cutout 5 6 128 13 16.03 50.9M

PNAS [26] 5 3 48 8 19.53 3.2M
PNAS [26] + Cutout 5 3 48 8 17.63 3.2M
PNAS [26] + Cutout 5 6 128 8 16.70 53.0M

ENAS [34] 5 5 36 5 19.43 4.6M
ENAS [34] + Cutout 5 5 36 5 17.27 4.6M
ENAS [34] + Cutout 5 5 36 5 16.44 52.7M
AmoebaNet-B [35] 5 6 128 19 17.66 34.9M

AmoebaNet-B [35] + Cutout 5 6 128 19 15.80 34.9M
NAONet + Cutout 5 6 36 11 15.67 10.8M
NAONet + Cutout 5 6 128 11 14.75 128M

Table 2: Performances of different CNN models on CIFAR-100 dataset. ‘NAONet’ represents the
best architecture discovered by NAO on CIFAR-10.

4.3 Results of Language Modeling on PTB

Models and Techniques #params Test Perplexity GPU Days
Vanilla LSTM [43] 66M 78.4 /
LSTM + Zoneout [23] 66M 77.4 /
Variational LSTM [14] 19M 73.4
Pointer Sentinel-LSTM [31] 51M 70.9 /
Variational LSTM + weight tying [20] 51M 68.5 /
Variational Recurrent Highway Network + weight tying [44] 23M 65.4 /
4-layer LSTM + skip connection + averaged
weight drop + weight penalty + weight tying [29] 24M 58.3 /

LSTM + averaged weight drop + Mixture of Softmax
+ weight penalty + weight tying [42] 22M 56.0 /

NAS + weight tying [45] 54M 62.4 1e4 CPU days
ENAS + weight tying + weight penalty [34] 24M 58.65 0.5
Random-WS + weight tying + weight penalty 27M 58.81 0.4
DARTS+ weight tying + weight penalty [28] 23M 56.1 1
NAONet + weight tying + weight penalty 27M 56.0 300
NAONet-WS + weight tying + weight penalty 27M 56.6 0.4

Table 3: Performance of different models and techniques on PTB dataset. Similar to CIFAR-10
experiment, ‘NAONet-WS’ represents NAO accompanied with weight sharing,and ‘Random-WS’ is
the corresponding random search baseline.

5We adopt the number reported via [28] which is similar to our reproduction.
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We leave the model training details of PTB to the Appendix. The encoder in NAO is an LSTM with
embedding size 64 and hidden size 128. The hidden state of LSTM is further normalized to have unit
length. The performance predictor is a two-layer MLP with each layer size as 200, 1. The decoder is
a single layer LSTM with attention mechanism and the hidden size is 128. The trade-off parameters
in Eqn. (1) is λ = 0.8. The encoder, performance predictor, and decoder are trained using Adam
with a learning rate of 0.001. We perform the optimization process in Alg 1 for two iterations (i.e.,
L = 2). We train the sampled RNN models for shorter time (600 epochs) during the training phase
of NAO, and afterwards train the best architecture discovered yet for 2000 epochs for the sake of
better result. We use 200 P100 GPU cards to complete all the process within 1.5 days. Similar to
CIFAR-10, we furthermore explore the possibility of combining weight sharing with NAO and the
resulting architecture is denoted as ‘NAO-WS’.

We report all the results in Table 3, separated into three blocks, respectively reporting the results
of experts designed methods, architectures discovered via previous automatic neural architecture
search methods, and our NAO. As can be observed, NAO successfully discovered an architecture
that achieves quite competitive perplexity 56.0, surpassing previous NAS methods and is on par
with the best performance from LSTM method with advanced manually designed techniques such
as averaged weight drop [29]. Furthermore, NAO combined with weight sharing (i.e., NAO-WS)
again demonstrates efficiency to discover competitive architectures (e.g., achieving 56.6 perplexity
via searching in 10 hours).

4.4 Transferring the discovered architecture to WikiText-2

We also apply the best discovered RNN architecture on PTB to another language modelling task
based on a much larger dataset WikiText-2 (WT2 for short in the following). Table 4 shows the result
that NAONet discovered by our method is on par with, or surpasses ENAS and DARTS.

Models and Techniques #params Test Perplexity
Variational LSTM + weight tying [20] 28M 87.0
LSTM + continuos cache pointer [16] - 68.9
LSTM [30] 33 66.0
4-layer LSTM + skip connection + averaged
weight drop + weight penalty + weight tying [29] 24M 65.9

LSTM + averaged weight drop + Mixture of Softmax
+ weight penalty + weight tying [42] 33M 63.3

ENAS + weight tying + weight penalty [34] (searched on PTB) 33M 70.4
DARTS + weight tying + weight penalty (searched on PTB) 33M 66.9
NAONet + weight tying + weight penalty (searched on PTB) 36M 67.0

Table 4: Performance of different models and techniques on WT2 dataset. ‘NAONet’ represents the
best architecture discovered by NAO on PTB.

5 Conclusion

We design a new automatic architecture design algorithm named as neural architecture optimization
(NAO), which performs the optimization within continuous space (using gradient based method)
rather than searching discrete decisions. The encoder, performance predictor and decoder together
makes it more effective and efficient to discover better architectures and we achieve quite competitive
results on both image classification task and language modeling task. For future work, first we would
like to try other methods to further improve the performance of the discovered architecture, such as
mixture of softmax [42] for language modeling. Second, we would like to apply NAO to discovering
better architectures for more applications such as Neural Machine Translation. Third, we plan to
design better neural models from the view of teaching and learning to teach [13, 39].
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