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Abstract

Since Multiplicative Weights (MW) updates are the discrete analogue of the contin-
uous Replicator Dynamics (RD), some researchers had expected their qualitative
behaviours would be similar. We show that this is false in the context of graphical
constant-sum games, which include two-person zero-sum games as special cases.
In such games which have a fully-mixed Nash Equilibrium (NE), it was known that
RD satisfy the permanence and Poincaré recurrence properties, but we show that
MW updates with any constant step-size ε > 0 converge to the boundary of the
state space, and thus do not satisfy the two properties. Using this result, we show
that MW updates have a regret lower bound of Ω(1/(εT )), while it was known
that the regret of RD is upper bounded by O(1/T ).
Interestingly, the regret perspective can be useful for better understanding of the
behaviours of MW updates. In a two-person zero-sum game, if it has a unique NE
which is fully mixed, then we show, via regret, that for any sufficiently small ε,
there exist at least two probability densities and a constant Z > 0, such that for
any arbitrarily small z > 0, each of the two densities fluctuates above Z and below
z infinitely often.

1 Introduction

The concept of Nash Equilibrium (NE) has been central in game theory. The existential proof of
Nash [20] is non-constructive, while the definition of NE itself is also static, both of which shed no
insight how NE can be computed or reached. In turn, lots of researchers have devoted efforts to justify
the concept of NE by providing algorithms/dynamics which might compute/reach a NE. Among
them, Multiplicative Weights (MW) updates have drawn a lot of attention, due to its simplicity and
naturalness, and perhaps more importantly, its distributive implementability2 which is essential in
games we observe in reality, where information communicated between players is often very limited.
MW updates have also made profound impacts in algorithm design; see [1] for details. However,
various PPAD-hardness and communication complexity results [8, 6, 13] serve as strong indicators
that no efficient algorithm/dynamic, MW updates included, can efficiently compute/reach NE for
general games. But can MW updates do so for interesting sub-families of games?

The best we could hope for is pointwise convergence toward a NE, but it is known not to hold
even in the simplest scenario of two-person zero-sum games. A weaker notion of convergence,
called empirical convergence (i.e., the average of the time series history converges), has been sought.
While this notion might seem less natural, it is interesting from the perspective of statistics; this

∗Most work done while the author was at Max-Planck Institute for Informatics, Saarland Informatics Campus.
2In the context of game dynamics, distributive implementability means each player only needs information

she can observe locally (e.g., payoffs to each of her own strategies) to run the updates, and does not need to
know other global information such as the value of the underlying game matrix and the updates of other players.
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notion, coined as “ergodic convergence” in the study of dynamical systems, is central in a branch
of mathematics called ergodic theory, where its initial development was motivated by the study
of time-average behaviours of systems of interest in statistical physics. Freund and Schapire [10]
showed that MW updates converge to NE empirically in any two-person zero-sum game using the
notion of regret; their analysis also yields a simple and beautiful proof of John von Neumann’s
Minimax Theorem. Daskalakis and Papadimitriou [9] and Cai and Daskalakis [4] generalized to
graphical constant-sum games and separable zero-sum games.

It should be noted that, however, their precise result is actually the following: if the finishing time
T is known a priori3, then there is a step-size ε, which depends on T , such that the regret at time
T is O(1/

√
T ), hence the empirical average at time T forms an O(1/

√
T )-approximate NE. When

ε is a fixed constant and T ↗ ∞, their analyses can only show a regret bound of O(ε), and it
is not clear whether empirical convergence toward NE occurs. Recently there are several work
showing distributed dynamics achieve oT (1) regret in two-person zero-sum games [7, 24] and general
games [28], but all of them require the step-size to be diminishing or adaptive. However, in some
applications of biological system models, e.g., population dynamics (see [26, 15]) and evolution [5],
diminishing or adaptive step-size is unnatural. Also, from an algorithmic perspective, it is natural
to ask what happens if the step-size is constant, and if the use of diminishing or adaptive step-size
is unavoidable. Indeed, in last year, Palaiopanos et al. [21] have addressed the same question in the
context of congestion games.

In this paper, we study MW updates with constant step-size in graphical constant-sum games. It was
known that Replicator Dynamics (RD), the continuous analogue of MW updates, in such games are
permanent [14], i.e., all probability densities are bounded away from zero throughout. Also, RD in
such games satisfy the Poincaré recurrence property [23, 18]. In algorithm design and modelling of
biological systems, continuous-time dynamics like RD are hardly feasible, so we are interested in
the behaviours of MW updates. Due to the analog between MW updates and RD, it seems natural to
expect MW updates could retain the above good properties of RD. Unfortunately, this is not true. We
show that MW updates in such games do not satisfy permanence and Poincaré recurrence properties;
indeed, we show that MW updates converge toward the boundary of the state space (unless the
starting point is NE), which is stronger than non-satisfaction of the above two properties.

We note a recent independent work of Bailey and Piliouras [2], who show the same result in a more
general setting: first, they generalize to discrete Follow-The-Regularized-Leader (FTRL) dynamics,
and second, they allow the step-sizes to be mildly decreasing. Precisely, they show that if a FTRL
dynamic guarantees every update must stay in the interior of the state space (MW is an example
of such FTRL dynamic), then the dynamic converges toward the boundary; otherwise, they show
that the FTRL dynamic gets arbitrarily close to the boundary infinitely often (this is weaker than
“convergence toward the boundary”). In our paper, we proceed further by using the result to get a
better understanding of the behaviours of MW updates and the regret, as we will discuss next.

We show a regret lower bound of Ω(1/(εT )) plus a positive term, which is proportional to the average
variance of payoffs among strategies over time. This lower bound should be compared to RD’s regret
upper bound O(1/T ) by Sorin [27, Theorem 3.1].4 Mertikopoulos et al. [18] generalized Sorin’s
upper bound to continuous FTRL dynamics.

Interestingly, the regret perspective can be useful for better understanding of the behaviours of MW
updates. In a two-person zero-sum game, if it has a unique NE which is fully mixed, then we show,
via regret, that for any sufficiently small ε, there exist at least two probability densities and a constant
Z > 0, such that for any arbitrarily small z > 0, each of the two densities fluctuates above Z and
below z infinitely often.

Continuous vs. Discrete Dynamics. As we will see, from a high-level perspective, we are exploit-
ing the interplay between continuous dynamics and their analogous discrete dynamics. Such interplay
has been exploited before in other contexts; see, for instance, Sorin [27], Kwon and Mertikopou-
los [17] and Benaïm [3]. Briefly speaking, in [27, 17], they showed that the disparity between the two
dynamics is under control up to a certain time by choosing a suitable time-dependent step-size. Thus,

3Now it is standard that the knowing-the-finishing-time assumption can be get rid of by employing a
“doubling trick”, but the step-size will be diminishing over time.

4Sorin [27] showed this upper bound in the unilateral setting, i.e., the bound holds for any player which uses
RD, while how the environment (e.g., game payoffs, other players behaviours) varies over time does not matter.
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if a good property holds for the continuous dynamic (which is often easier to show in the continuous
time setting), it might carry over to the discrete analogue, sometimes with a depreciation due to the
disparity. In the contexts we study, we show that the disparity must accumulate indefinitely, and
eventually lead to very different qualitative behaviours between RD and MW updates.

Other Related Work. The long term (asymptotic) behaviours of learning/evolution dynamics
in games, biological and other systems have attracted attention from researchers across multiple
disciplines for decades; see the text of Hofbauer and Sigmund [15] for an extensive summary. A
large number of work have focused on continuous dynamics. Even in simple games like Paper-
Rock-Scissors or small three-player graphical games, learning dynamics exhibit rich and sometimes
surprising long term behaviours; see, for instance, [29, 11, 12, 25, 16, 22, 19]. Discrete dynamics
are more relevant from an algorithmic perspective, and certainly deserve more attention in this
algorithmic era. Our work suggests that the long term behaviours of continuous dynamics and their
discrete counterparts can be very different, and a better understanding of such behaviours might shed
insights on game-theoretic benchmarks such as regret.

2 Preliminary

Types of Games, and Nash Equilibrium. In a general bimatrix game with two players, suppose
Players A and B have strategy sets SA and SB respectively. The game is depicted by a bimatrix
M = [(aij , bij)]i∈SA,j∈SB

: when Player A chooses strategy i and Player B chooses strategy j,
aij , bij are the payoffs to Players A and B respectively. Such a game is called two-person constant-
sum game if for all i ∈ SA, j ∈ SB , aij + bij = C for some real number C; such a game is called
two-person zero-sum game if it is a two-person constant-sum game with C = 0.

In a game with m players, we number the players by 1, 2, · · · ,m, and let Si denote the strategy
set of Player i, and ni := |Si|. For any s = (s1, s2, · · · , sm) ∈ ×mi=1Si, where si is the choice
of strategy of Player i, let ui(s) denote the payoff to Player i. Such a game is called separable
zero-sum multiplayer game if for any s =∈ ×mi=1Si,

∑m
i=1 ui(s) = 0.

A game with m players is a graphical polymatrix game if the game is defined as follows: on an
undirected graph G = ([m], E), each edge (i, j) ∈ E corresponds to a bimatrix game between
Players i and j with strategy sets Si and Sj respectively. It is worth noting that the strategy set of a
Player i in different bimatrix games is the same, and every time she plays the game, she must choose
the same strategy for all these bimatrix games. Such a game is a graphical constant-sum game if
the bimatrix game corresponded by every edge is a two-person constant-sum game (different bimatrix
games may have different constants C).

Theorem 1 ([4]). Every separable zero-sum multiplayer game can be transformed into a graphical
constant-sum game, while preserving all the payoffs.

Due to the above theorem, we focus on developing our results on graphical constant-sum games; all
these results automatically carry over to separable zero-sum multiplayer games. Also, by suitable
scaling, we can assume that the payoff to every player always lie within the interval [−1,+1].

A mixed strategy of a Player i is a probability distribution over her strategy set, represented by
a vector xi ∈ Rni with

∑
j∈Si

xij = 1, where xij is the probability density that strategy j is
chosen. When each Player i chooses a mixed strategy xi independently, the payoff function extends
naturally by ui(x1,x2, · · · ,xm) = Es∼×m

j=1xj
[ui(s)]. The boundary of the mixed strategy space

is ∪i,j∈Si
{x | xij = 0}.

We say (x1,x2, · · · ,xm) is a Nash equilibrium (NE) if no player can change her mixed strategy for
achieving a higher payoff. Precisely, for any Player i, let x−i denote the mixed strategies chosen by
all players other than Player i, then for any mixed strategy x′i of Player i, ui(x′i,x−i) ≤ ui(xi,x−i).
A NE is said to be fully mixed if no probability density in any of the xi is zero. For any Player i, let
ej denote a pure strategy j of her (i.e., a mixed strategy with probability one on strategy j).

Replicator Dynamic and Multiplicative Weights Updates. In a game withm players where each
player employs a Replicator Dynamic (RD), each Player i maintains a mixed strategy xi(t) which is
updated continuously with time t. Let x(t) = (x1(t),x2(t), · · · ,xm(t)). The update rule is given
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by a differential equation system, for each strategy j ∈ Si,

d

dt
xij(t) = xij(t) · [ui(ej ,x−i(t)) − ui(x(t))] .

If times are discrete at non-negative integers, and if each Player i employs a Multiplicative Weights
(MW) updates with step-size εi > 0, the update rule is

xij(t+ 1) =
xij(t) · exp (εi · ui(ej ,x−i(t)))∑

k∈Si
xik(t) · exp (εi · ui(ek,x−i(t)))

.

It is well-known that MW updates are discrete analogue of RD.

Throughout this paper, we always assume that for all i ∈ [m] and j ∈ Si, every starting density xij(0)
is strictly positive, i.e., x(0) is fully mixed. Also, in all our results, we always assume εi ≤ 1/4.

The regret of Player i is

1

T

[(
max
j∈Si

∫ T

0

ui(ej ,x−i(t)) dt

)
−
∫ T

0

ui(x(t)) dt

]
for continuous-time model, T > 0;

1

T

[(
max
j∈Si

T−1∑
t=0

ui(ej ,x−i(t))

)
−

T−1∑
t=0

ui(x(t))

]
for discrete-time model, T ∈ N.

3 Permanence and Poincaré Recurrence

We first present two prior results concerning RD in general games and graphical constant-sum games.

Theorem 2 ([27]). In any multiplayer game where the payoff function to Player i is Lebesgue
integrable in the mixed strategies of all players and the game parameters, if Player i employs RD,
while the game parameters and mixed strategies of all other players are measurable functions of time,
then for any T > 0, the regret of Player i is at most 1

T ·maxj∈Si ln 1
xij(0)

.

Theorem 3 ([23]; see also [15, 18]). If a graphical constant-sum game admits a fully-mixed NE x∗

and all players employ RD, then for any fully mixed starting point x(0),H(t) := −
∑m
i=1

∑
j∈Si

x∗ij ·
ln(xij(t)) is a constant for all t ≥ 0. Consequently, for all t ≥ 0, xij(t) ≥ exp

(
−H(0)/x∗ij

)
> 0,

so the system is permanent (i.e., all xij’s are bounded away from zero throughout), and the ω-set of
the dynamic is bounded away from the boundary. Also, the dynamic satisfies the Poincaré recurrence
property.

For MW updates, to cope with the scenarios where different players use different step-sizes, we make
a slight modification of the Hamiltonian function H in [23]:

H(t) := −
m∑
i=1

1

εi
·
∑
j∈Si

x∗ij · ln(xij(t)).

Lemma 4. If a graphical constant-sum game admits a fully-mixed NE x∗ and all players employ
MW updates, then H(t+ 1) ≥ H(t). More specifically, let Vi(t) denote

∑
k∈Si

xik(t) · (exp (εi · ui(ek,x−i(t)))− 1)
2 −

(∑
k∈Si

xik(t) · (exp (εi · ui(ek,x−i(t)))− 1)

)2

,

then
∑m
i=1

Vi(t)
εi

≥ H(t+ 1)−H(t) ≥ 1
4

∑m
i=1

Vi(t)
εi

.

Before proving the lemma, we note that Vi(t) is indeed the variance of the following ran-
dom variable, and thus is always non-negative: the random variable realizes the value
(exp (εi · ui(ek,x−i(t)))− 1) with probability xik(t), for all k ∈ Si. Moreover, if xi(t) is fully
mixed, then Vi(t) is zero if and only if ui(ek,x−i(t)) is identical for all k ∈ Si.
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Proof. We first expand H(t+ 1)−H(t) = −
∑m
i=1

1
εi
·
∑
j∈Si

x∗ij · ln
xij(t+1)
xij(t)

as follows:

= −
m∑
i=1

1

εi
·
∑
j∈Si

x∗ij ·

[
εi · ui(ej ,x−i(t)) − ln

(∑
k∈Si

xik(t) · exp (εi · ui(ek,x−i(t)))

)]

= −
m∑
i=1


∑
j∈Si

x∗ij · ui(ej ,x−i(t))

− 1

εi
· ln

(∑
k∈Si

xik(t) · exp (εi · ui(ek,x−i(t)))

)
︸ ︷︷ ︸

L

 ;

the final equality holds since for each i ∈ [m],
∑
j∈Si

x∗ij = 1.

Noting that each (exp (εi · ui(ek,x−i(t)))− 1) is within the interval [e−εi − 1, eεi − 1], and noting
that in this interval the function ln(1+y)+y2/4 is concave but the function ln(1+y)+y2 is convex,
by the Jensen’s inequality, we have

m∑
i=1

Vi(t) ≥ L−
∑
k∈Si

xik(t) · εi · ui(ek,x−i(t)) ≥
m∑
i=1

Vi(t)

4
. (1)

Thus,
m∑
i=1

Vi(t)

εi
≥ H(t+ 1)−H(t)−

m∑
i=1

∑
k∈Si

(xik(t)− x∗ik) · ui(ek,x−i(t)) ≥
1

4

m∑
i=1

Vi(t)

εi
.

By following the proof of Theorem 3 in [23], one can show that the above double summation is zero.
We defer this part of the proof to Section 7.

Theorem 5. If a graphical constant-sum game admits a fully-mixed NE x∗ and all players employ
MW updates, while the starting point x(0) is not a NE, then

(a) for any δ > 0, there exists a time Tδ such that for all t ≥ Tδ , there exists some i ∈ [m] and
j ∈ Si with xij(t) ≤ δ. Thus, the ω-set of the dynamic is a subset of the boundary;

(b) let U be an open neighbourhood of x which is bounded away from the boundary, the MW
updates will enter U only finitely often, i.e., there exists a time T such that for all t ≥ T ,
x(t) /∈ U; in other words, Poincaré recurrence property does not hold.

Theorem 5 should be compared with Theorem 3. The key message is that although MW updates
are the discrete analogue of RD, their qualitative behaviours differ significantly. The main technical
reason behind is that the discretization from RD to MW updates introduces some second-order terms
which accumulate in the bad way and keep pushing the MW updates toward the boundary. Such
bad accumulation exists even when ε is arbitrarily tiny, which might be surprising to people not
familiar with numerical methods, since they might have the misconception that once the step-size ε
is sufficiently small, the discretization would always yield a good approximation of its continuous
counterpart. Theorem 5(b) is a direct corollary of Theorem 5(a).

Proof. Suppose that H(t) is bounded by some constant q throughout. By Lemma 4, H(t) ≥ H(0)
for all t ≥ 0. Thus, for all t ≥ 0, x(t) always lies in the domain

D :=

(x1,x2, · · · ,xm)

∣∣∣∣∣
− m∑

i=1

1

εi
·
∑
j∈Si

x∗ij · lnxij

 ∈ [H(0), q]

 .

Consider the function V (x1, · · · ,xm) :=

m∑
i=1

1

εi
·

∑
k∈Si

xik · (exp (εi · ui(ek,x−i))− 1)
2 −

(∑
k∈Si

xik · (exp (εi · ui(ek,x−i))− 1)

)2
 .

We argue that infx∈D V (x) is positive, which follows readily by the following sequence of observa-
tions. By definition of D, it is bounded away from the boundary. Note that D is a compact set, since
it is the inverse of a continuous function for some closed interval. Also, D is bounded away from
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any NE (this is a simple corollary of Lemma 4, since the set of NE is closed). Since for any fully
mixed point x, V (x) = 0 if and only if x is a NE, and since V is a continuous function on D, we can
conclude that {V (x) | x ∈ D} is bounded away from zero.

Let infx∈D V (x) = r > 0. By Lemma 4, after t =
⌈
4(q−H(0))

r

⌉
+ 1 steps of the MW updates,

H(t) > q, a contradiction.

Thus, we can conclude that for any q > 0, there exists a time Tq such that for all t ≥ Tq, H(t) > q.

This implies that for all t ≥ Tq , there exists i ∈ [m] and j ∈ Si such that
x∗ij
εi
·ln 1

xij(t)
> q∑m

i=1 ni
, and

hence xij(t) < exp
(
− εiq∑m

i=1 ni

)
. Theorem 5 follows by setting q = 1

mini εi
·
(
ln 1

δ

)
·
∑m
i=1 ni.

4 Regret Lower Bound

Theorem 6. In any graphical constant-sum game which admits a fully-mixed NE x∗ and all players
employ MW updates, while the starting point x(0) is not a NE, then there exists a sufficiently large
T such that for all t ≥ T , there exists a Player i (which can change w.r.t. t) with regret at least
1
εit
· ln
(

1 + 1
2(ni−1) ·

mink∈Si
xik(0)

maxk∈Si
xik(0)

)
. In particular, if xi(0) is uniform, then the regret is at least

1
4εi(ni−1)t .

We compare Theorem 6 with a lower bound result in Daskalakis et al. [7, Theorem 2]. Our result
focuses on MW updates, and it applies to any graphical constant-sum game with a fully-mixed NE.
The result in [7] focuses on a general lower bound of Ω(1/T ) regret for any type of distributed
protocol, which is more general than ours. To do so, they constructed a specific class of zero-sum
games and show that any distributed protocol must lead to an Ω(1/T ) regret in one of such games.

Proof. First, we show the following inequality; (*) follows from the fact ln(y) is a concave function
of y, and a use of the Jensen’s inequality.

lnxij(T )− lnxij(0)

T
=

T−1∑
t=0

ln
xij(t+ 1)

xij(t)

=
εi
T

T−1∑
t=0

ui(ej ,x−i(t)) −
1

T

T−1∑
t=0

ln

(∑
k∈Si

xik(t) · exp (εi · ui(ek,x−i(t)))

)
(∗)
≤ εi

T

T−1∑
t=0

ui(ej ,x−i(t)) −
1

T

T−1∑
t=0

∑
k∈Si

xik(t) · εi · ui(ek,x−i(t))

=
εi
T

T−1∑
t=0

ui(ej ,x−i(t)) −
εi
T

T−1∑
t=0

ui(x(t)).

Note that the final expression, when maximizing over all j ∈ Si, is exactly εi times the regret of
Player i.

By Theorem 5, for δ = 1
2 ·mini∈[m],j∈Si

xij(0), there exists a time T such that for all t ≥ T , there
exists i ∈ [m], j ∈ Si such that xij(t) ≤ xij(0)/2. Thus, for that Player i, there exists some strategy
k ∈ Si \ {j} such that xik(t) ≥ xik(0) + 1

2(ni−1) · xij(0), and hence

lnxik(T )−lnxik(0) ≥ ln

(
1 +

1

2(ni − 1)
· xij(0)

xik(0)

)
≥ ln

(
1 +

1

2(ni − 1)
· mink∈Si xik(0)

maxk∈Si
xik(0)

)
.

Thus, the regret of Player i is at least 1
εiT

times the RHS of the above inequality.

Indeed, by using (1), the inequality (*) can be improved, and then we have

lnxij(T )− lnxij(0)

εiT
+

1

4εiT

T−1∑
t=0

Vi(t) ≤
1

T

T−1∑
t=0

ui(ej ,x−i(t)) −
1

T

T−1∑
t=0

ui(x(t))
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Thus, 1
4εiT

∑T−1
t=0 Vi(t) can serve as a lower bound of regret. In the last section, we show that if

the starting point is fully mixed but not NE, if MW updates were to stay away from the boundary,
then Vi(t) is bounded away from zero, and thus a regret lower bound of Ωεi(1) could follow. But
MW updates do converge to the boundary, so it is not clear how to derive a tight lower bound on this
sum. In particular, we cannot rule out the possibility that MW updates converge to a subgame NE (a
subgame is obtained from the original game by removing at least one strategy of some player), and if
this happens, Vi(t) converges to zero.

We note that essentially the same proof yields the following more general result about general games,
which states that if the dynamic is not Poincaré recurrent, then the regret is at least Ω(1/T ) eventually.
Proposition 7. In any general game where all players employ MW updates with starting point x(0),
if there exists an open neighbourhood B around x(0) and a time T such that for all t ≥ T , x(t) /∈ B,
then for all t ≥ T , there exists a Player i (which can change w.r.t. t) with regret at least Ω(1/T ),
where the hidden constant in Ω(·) depends only on ε and the radius of B.

We do not have any improvement on the generic regret upper bound. In the next section, we will
use such the generic bound, which is 2εi + C(x(0))

εiT
for Player i, where C(x(0)) is a constant which

depends on the starting point. (See [10].)5 We bound this regret by 2.1 · εi for all sufficiently large T .

5 Infinitely Often Almost Extinction, Infinitely Often Resurgence

In this section, we focus on two-person zero-sum (or constant-sum) games. Theorem 5 applies, i.e.,
beyond some finite time, there must exist some tiny probability density. A natural question to ask is
will one density be tiny forever, or some densities take turn to be tiny? In this section, we prove that
the former case cannot happen when ε is sufficiently small. For any two-person zero-sum game G, let
val(G) denote its game value w.r.t. Player 1. In this section, we write ε = max{ε1, ε2}.
Given a two-person zero-sum game G, name the two players 1 and 2, and their strategy sets are S1

and S2 respectively. For i = 1, 2, and each j ∈ Si, let Gij denote the two-person zero-sum game
which is formed from G by removing the strategy j from Player i. Now, define

θ(G) := min

{
min
j∈S1

{
val(G)− val(G1j)

}
, min
k∈S2

{
val(G2k)− val(G)

}}
.

Using von Neumann’s Minimax Theorem, it is easy to prove that θ(G) ≥ 0. Intuitively this should be
also clear, since removing one strategy from Player 1 will surely not benefit her, and removing one
strategy from Player 2 provides less choices available to Player 2, and hence might benefit Player 1.

The following two lemmas can be easily proved using the linear program (LP) formulation of
two-person zero-sum game and the Minimax Theorem; see Section 7 for their proofs.
Lemma 8. If G is a two-person zero-sum game with a unique NE which is fully mixed, then θ(G) > 0.
Lemma 9. In a two-person zero-sum game G, if both players employ MW updates, for all sufficiently
large T , we have 1

T

∑T−1
t=0 u1(x(t)) ∈ val(G)± 2.1 · ε.

Theorem 10. In a two-person zero-sum game with a unique NE which is fully mixed, if both players
employ MW updates with step-size εi < θ(G)/7, then there exists at least two probability densities
xij(t) which exhibit the following pattern: (a) for any δ > 0, xij(t) < δ for infinitely many t; and
(b) xij(t) ≥ θ(G)/7 for infinitely many t.

We give some intuition before giving the proof. By Theorem 5, there exists T such that for all t ≥ T ,
there must exist a density at time t which is below δ. Thus, it is possible to find a fixed i and j ∈ Si
such that the property (a) holds. Suppose this i = 2; the case i = 1 is symmetric. Suppose that for
this xij , property (b) does not hold, i.e., xij(t) remains below some κ after some time T ′. Intuitively,
this implies that from time T ′ onwards, the game essentially becomes Gij , modulo perturbation of
magnitude O(κ). By Lemma 9, the long-run average payoff to Player 1 from time T ′ onward is
within the interval val(Gij) ± O(κ) ± O(ε). On the other hand, by Lemma 9 again, the long-run
average payoff to Player 1 from time 0 onward is within the interval val(G) ± O(ε). These two
average payoffs should match, but when ε, κ are both small, the two intervals do not overlap, a
contradiction.

5The well-known O(1/
√
T ) upper bound is indeed coming from this bound and pick εi = Θ(1/

√
T ).
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Proof. To avoid cluster of algebra, we let v := val(G) and vij := val(Gij). Let κ := θ(G)/7.

Suppose that the concerned density is x1j . By the regret upper bound, for all k ∈ S1, and for all
sufficiently large T ′′ > T ′,

1

T ′′ − T ′ + 1

 T ′′∑
t=T ′

u1(ek,x2(t)) −
T ′′∑
t=T ′

u1(x(t))

 ≤ 2.1 · ε.

Note that we can rewrite 1
T ′′−T ′+1

∑T ′′

t=T ′ u1(ek,x2(t)) as u1(ek,
1

T ′′−T ′+1

∑T ′′

t=T ′ x2(t)). By
the Minimax Theorem, we can guarantee that there is some k ∈ S1 \ {j} such that
u1(ek,

1
T ′′−T ′+1

∑T ′′

t=T ′ x2(t)) ≥ v1j . Thus,

1

T ′′ − T ′ + 1

T ′′∑
t=T ′

u1(x(t)) ≥ v1j − 2.1 · ε. (2)

Next, consider Player 2. By the regret upper bound, for all k ∈ S2, and for all sufficiently large
T ′′ > T ′,

u2

ek,
1

T ′′ − T ′ + 1

T ′′∑
t=T ′

x1(t)


︸ ︷︷ ︸

Wk

+
1

T ′′ − T ′ + 1

T ′′∑
t=T ′

u1(x(t))

=
1

T ′′ − T ′ + 1

 T ′′∑
t=T ′

u2(ek,x1(t)) −
T ′′∑
t=T ′

u2(x(t))

 ≤ 2.1 · ε.

Note that in the summation in the termWk, x1j(t) < κ by assumption. For each t, we construct a new
probability distribution on S1, denoted by x′1(t), as follows: x′1j(t) = 0, and for any k ∈ S1 \ {j},
x′1k(t) = x1k(t) + 1

|S1|−1 · x1j(t). Since the payoff value is always within the interval ±1, we have

W ′k − 2κ := u2

ek,
1

T ′′ − T ′ + 1

T ′′∑
t=T ′

x′1(t)

 − 2κ ≤ Wk.

By the Minimax Theorem, we can guarantee that there is some k ∈ S2 such that W ′k ≥ −v1j .
Combining all the inequalities above yields

1

T ′′ − T ′ + 1

T ′′∑
t=T ′

u1(x(t)) ≤ v1j + 2.1 · ε+ 2κ. (3)

Inequalities (2) and (3) imply that the long-run average payoff to Player 1 from time T ′ onward is
within the interval v1j ± 2.1 · ε± 2κ. But Lemma 9 states that the long-run average payoff to Player
1 from time 0 onward is within the interval v ± 2.1 · ε. Since the former average is obtained by only
ignoring finitely many terms in the beginning, these two averages are essentially the same in the long
run, i.e., the two intervals must overlap. However, this is not possible when ε, κ ≤ θ(G)/7.

Finally, note that among the times t where xij(t) ≥ θ(G)/7, there must be another density, say
xi′j′ , satisfying xi′j′(t) < δ infinitely often. By reiterating the above argument for this xi′j′ , we are
done.

6 Discussion and Some Open Problems

In this paper, we provide a better understanding of MW updates with constant step-size in graphical
constant-sum games. Yet, a number of interesting problems are still unsolved. We raise some:

• While we provide a lower bound on the regret, the best upper bound we know is still the generic
ε+ oT (1) one, which applies in rather general scenarios and has not exploited any structure of
graphical constant-sum games. Will better lower/upper bound be admissible?
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• We can only prove that the fluctuating pattern described in Theorem 10 exists for two-person
constant-sum games, but not general graphical constant-sum games. The technical reason is we
need several nice properties of von Neumann’s LP formulation and Minimax Theorem6 to establish
Lemmas 8 and 9, which are not known for graphical constant-sum games. Can we generalize?

• Even for two-person zero-sum games, Theorem 10 has not yet provided the complete picture. Will
all densities exhibit such fluctuating pattern, or only some of them do? If it is the latter, given the
game and the starting point, can we determine (by a mathematical proof, or by a polynomial time
algorithm) which densities exhibit such fluctuating phenomenon?

7 Missing Proofs

The Double Summation in the Proof of Lemma 4. In a graphical constant-sum game, suppose
the underlying graph is G = ([m], E), and each edge (i, `) ∈ E corresponds to a constant-sum game;
we will use the matrix Ai` to denote the payoffs to Player i in this game.

In the calculation below, we write x• ≡ x•(t), i.e., we ignore the parameter t.

First, we rewrite the double summation as below:
m∑
i=1

∑
k∈Si

(xik − x∗ik) · ui(ek,x−i) =

m∑
i=1

∑
`:(i,`)∈E

(xi − x∗i )
TAi`x`.

Since x∗ is fully mixed, by the definition of NE, every entry in the vector
(∑

`:(i,`)∈EAi`x∗`

)
must

be identical. Thus, ∑
`:(i,`)∈E

(xi − x∗i )
TAi`x∗` = 0,

and hence
m∑
i=1

∑
k∈Si

(xik − x∗ik) · ui(ek,x−i) =

m∑
i=1

∑
`:(i,`)∈E

(xi − x∗i )
TAi`(x` − x∗` )

=
∑

(i,`)∈E

[
(xi − x∗i )

TAi`(x` − x∗` ) + (x` − x∗` )
TA`i(xi − x∗i )

]
=

∑
(i,`)∈E

[ (
(xi)

TAi`x` + (x`)
TA`ixi

)
+
(
(x∗i )

TAi`x∗` + (x∗` )
TA`ix∗i

)
−
(
(x∗i )

TAi`x` + (x`)
TA`ix∗i

)
−
(
(xi)

TAi`x∗` + (x∗` )
TA`ixi

) ]
.

Note that in the final expression, there are four terms, while each term is the sum of payoffs to the
Players i and ` in the two-person constant-sum game corresponded by the edge (i, `) assuming the
players are using some mixed strategies. Therefore, the four terms are equal, and thus the overall
expression is zero.

Proof of Lemma 8. We prove the case when Player 1 has strategy j removed; the case for Player 2
is symmetric.

The game value val(G) can be described to be the following: Player 1 picks a probability distribution
x∗1 such that no matter what Player 2’s choice x2 is, u1(x∗1,x2) is always at least v, and val(G) is
the maximum possible value of v, while x∗1 forms the mixed strategy of the player in a NE. Due to
the assumption that the unique NE is fully mixed, there is a unique fully mixed x∗1 that attains the
maximum possible value of v; in other words, any x1 with x1j = 0 (which is equivalent to strategy j
being removed) must attain a value of v strictly less than val(G), i.e., val(G1j) < val(G).

Proof of Lemma 9. The proof follows closely the logic behind the derivations of inequalities (2)
and (3).

6The root of these properties is the “absolute conflict” nature of two-person constant-sum games, which does
not exist in general graphical constant-sum games.
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