Appendix

A Proof of Theorem 1]

We analyze the convergence of ADAM for general minibatch size here. Theorem [I]is obtained by
setting b = 1. Recall that the update of ADAM is the following
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for all ¢ € [d]. Since the function f is L-smooth, we have the following:
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The second step follows simply from ADAM’s update. We take the expectation of f(z;41) in the
above inequality:
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The second equality follows from the fact that g; is an unbiased estimate of V f(x;) i.e., E[g:] =
V f(z). This is possible because v;_1 ; is independent of S; sampled at time step ¢. The terms T3
in the above inequality needs to be bounded in order to show convergence. We obtain the following
bound on the term 77 :
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The third equality is due to the definition of v;_1 ; and v, ; in ADAM i.e., vy ; = Bov—1,;+(1 —Bg)gf
We further bound 77 in the following manner:
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Here, the third inequality is obtained by dropping v; ; from the denominator to obtain an upper bound.
The second inequality is due to the fact that
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Note that the bound of coordinates of gradient of ¢ automatically provides a bound on [V f(x)]; i.e.,

[[Vf(z:)]:| < G foralli € [d] . Substituting the above bound on T} in Equation (3] and using the
bound on [V f(z;)];, we have the following:
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The first inequality follows from the fact that |[V f(z+)];| < G. The third inequality follows from
Lemmal(l} The application of Lemmais possible because v;_1 ; is independent of random variables
in |S;|. The second inequality is due to the following inequality : vy ; > S2v;—1,;. This is obtained
from the definition of v, ; in ADAM i.e., vy ; = Bavy_1,; + (1 — ,Bg)gf’i. From the parameters 7, €
and [, stated in our theorem, we see that the following conditions hold: LQ—? < % and
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Using these inequalities in Equation (3)), we obtain
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The second inequality follows from the fact that 0 < v;_1,; < GZ. Using telescoping sum and
rearranging the inequality, we obtain
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Multiplying with (‘/E’WGJ“) on both sides and using the fact that f(z*) < f(x;+1), we obtain the
following:
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which gives us the desired result.

B Proof of Theorem 2]

The proof follows along similar lines as Theorem [T] with some important differences. We, again,
analyze the convergence of YOGI for general minibatch size here. Theorem [J]is obtained by setting
b = 1. We start with the following observation:
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The first step follows from the L-smoothness of the function f. The second step follows from the
definition of YOGT update step i.e.,
gf [
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for all ¢ € [d]. Taking the expectation at time step ¢ in Equation (2), we get the following:
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The second equality follows from the fact that g; is an unbiased estimate of V f(x;) i.e., E[g:] =
Vf (:vt) The key difference here in comparison to proof of Theoreml is that the deviation to bound

in Ty is from —2~—— as opposed to ——Z-—— in proof of ADAM. Our aim is to bound the terms
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Ty and T5 in the above inequality. We bound the term 77 in the following manner:
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The second equality is from the update rule of YOGI which is vy ; = v;—1,; — (1 — B2)sign(vi_1,; —
97:)9¢ ;- The last inequality is due to the fact that
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The above inequality in turn follows from the fact that either

lgt.il 1 . .
o < Ve when v, ; < gm. We next bound the term 75 as follows:
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The inequality is due to the following : v¢; > B2v:—1,;. To see this, first note that vy ; = vi_1; —
(1= Ba)sign(vi—1: — 97:)97: M v—1,s < g7, then it is easy to see that vy ; > v;_1,;. Consider the
case where vy_1; > g7, then we have
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Therefore, v; ; > [Bov¢_1 ;. Substituting the above bounds on T and 75 in Equation @, we obtain
the following bound:
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The first inequality follows from the fact that |[V f(x¢)];| < G. The second inequality follows from
Lemmal[T] Now, from our theorem result, we observe that,

Using these inequalities in Equation (6]), we obtain
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The second inequality follows from the fact that 0 < v;_1,; < 2G2. Using telescoping sum and
rearranging the inequality, we obtain
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Multiplying with on both sides and using the fact that f(z*) < f(xy41) gives us the

desired result.
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C Auxiliary Lemma

The following result is useful for bounding the variance of the updates of the algorithms in this paper.
Lemma 1. For the iterates x; where t € [T in Algorithmand IZI the following inequality holds:
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Using this notation, we obtain the following bound:
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The second equality is due to the fact that (; is a mean O random variable. The third equality follows
from Lemma The last inequality is due to the fact that B, p[([V£(x¢, 5)]; — [V.f(24)]:)°] < 02
for all z € R“. O

Lemma 2. For random variables z1, . . ., z, are independent and mean 0, we have
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Proof. We have the following:
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The second equality follows from the fact that z;’s are independent and mean 0. O
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D More Experiment Results

Table 5: Train and test loss comparison for Deep AutoEncoders. Standard errors with 20 are shown
over 6 runs are shown. All our experiments were run for 5000 epochs utilizing the ReduceLRonPlateau
schedule with patience of 20 epochs and decay factor of 0.5 with a batch size of 128. Also we report
numbers from prior work for reference, but their experimental setup (batch-size, learning rate, etc)
are different.

CURVES
Method LR b Ba € Train Loss Test Loss
PT + NCG [20] - - - - 0.74 0.82
RAND+HF [20] - - - - 0.11 0.20
PT + HF [20] - - - - 0.10 0.21
KSD [36] - - - - 0.17 0.25
HF [36] - - - - 0.13 0.19

ADAM (Default) 1072 09 0999 10=% 0.094+0.16 0.16 £0.02
ADAM (Modified) 107* 0.9 0.999 10=% 0.1240.17 0.17£0.01
YOGI (Ours) 1072 09 0.9 1073 0.11+£0.01 0.15+0.01
YoGI1 (Ours) 1072 0.9 0999 1072 0.2040.01  0.25+0.02

Table 6: Test accuracy for DeepSets on ModelNet40. Standard errors with 20 are shown over 6 runs
are shown. All our experiments were run for 500 epochs utilizing the ReduceLRonPlateau schedule
with patience of 20 epochs and decay factor of 0.5 with a batch size of 128. Also we report numbers
from original paper for reference, which employs a highly tuned learning rate schedule.

Method LR 51 B2 € Test Accuracy (%)
Adam [39] - - - - 87.0+1.0
ADAM (Default) 10-3 09 0999 10°% 87.71 £0.25
ADAM (Modified) 10-3 0.9 0999 10°3 88.41 £0.33
YOGl (Ours) 1072 09 0999 1073 87.65+0.15
YOGI (Ours) 5%x 1073 0.9 0999 1073 88.73 +0.28

Table 7: Test F1 score for Named Entity Recognition task using CNN-LSTM-CRF model on BCSCDR
bio-medical dataset. Standard errors with 20 calculated over 6 runs are shown. All our experiments
were run for 50 epochs utilizing the ReduceLLRonPlateau schedule with patience of 10 epochs and
decay factor of 0.5 with a batch size of 2000 words. We also report performance score from one the
best performing approaches for reference, which employs a highly tuned learning rate schedule.

Method LR 5 Bo € Test F1 (%)
SGD [37]] - - - - 88.78

ADAM (Default) 1072 09 0999 1078 88.75 £ 0.23
ADAM (Modified) 1072 0.9 0.999 1073 88.86 £ 0.22
YOoGI (Ours) 1072 0.9 0999 107 89.20+0.17
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