
Transfer of Value Functions via Variational Methods

Andrea Tirinzoni∗
Politecnico di Milano

andrea.tirinzoni@polimi.it

Rafael Rodriguez Sanchez∗
Politecnico di Milano

rafaelalberto.rodriguez@polimi.it

Marcello Restelli
Politecnico di Milano

marcello.restelli@polimi.it

Abstract

We consider the problem of transferring value functions in reinforcement learning.
We propose an approach that uses the given source tasks to learn a prior distribution
over optimal value functions and provide to an efficient variational approximation
of the corresponding posterior in a new target task. We show our approach to be
general, in the sense that it can be combined with complex parametric function
approximators and distribution models, while providing two practical algorithms
based on Gaussians and Gaussian mixtures. We theoretically analyze them by
deriving a finite-sample analysis and provide a comprehensive empirical evaluation
in four different domains.

1 Introduction

Recent advances have allowed reinforcement learning (RL) [34] to achieve impressive results in a
wide variety of complex tasks, ranging from Atari [26] through the game of Go [33] to the control of
sophisticated robotic systems [17, 24, 23]. The main limitation is that these RL algorithms still require
an enormous amount of experience samples before successfully learning such complicated tasks. One
of the most promising solutions to alleviate this problem is transfer learning, which focuses on reusing
past knowledge available to the agent in order to reduce the sample complexity for learning new tasks.
In the typical settings of transfer in RL [36], it is assumed that the agent has already solved a set of
source tasks generated from some unknown distribution. Then, given a target task (which is drawn
from the same distribution, or a slightly different one), the agent can rely on the knowledge from
the source tasks to speed up the learning process. This reuse of knowledge is a significant advantage
over plain RL, in which the agent learns each new task from scratch regardless of any previous
learning experience. Several algorithms have been proposed in the literature to transfer different
elements involved in the learning process: experience samples [22, 35, 37], policies/options [11, 19],
rewards [18], features [6], parameters [10, 16, 12]. We refer the reader to [36, 20] for a thorough
survey on transfer in RL.

Assuming that the tasks follow a specific distribution, an intuitive choice to design a transfer algorithm
is to try to characterize the uncertainty over the target task. Then, an ideal algorithm would leverage
prior knowledge from the source tasks to interact with the target task to reduce uncertainty as quickly
as possible. This simple intuition makes Bayesian methods appealing approaches for transfer in
RL, and many previous works have been proposed in this direction. In [39], the authors assume
that the tasks share similarities in their dynamics and rewards and propose a hierarchical Bayesian
model for the distribution of these two elements. Similarly, in [21], the authors assume that tasks are
similar in their value functions and design a different hierarchical Bayesian model for the transfer
of such information. More recently, [10], and its extension [16], consider tasks whose dynamics
are governed by some hidden parameters and propose efficient Bayesian models to quickly learn
such parameters in new tasks. However, most of these algorithms require specific, and sometimes
restrictive, assumptions (e.g., on the distributions involved or the function approximators adopted),
which might limit their practical applicability. The importance of having transfer algorithms that
∗Equal contribution

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

alleviate the need for strong assumptions and easily adapt to different contexts motivates us to take a
more general approach.

Similarly to [21], we assume that the tasks share similarities in their value functions and use the given
source tasks to learn a distribution over such functions. Then, we use this distribution as a prior for
learning the target task and we propose a variational approximation of the corresponding posterior
which is computationally efficient. Leveraging recent ideas from randomized value functions [27, 4],
we design a Thompson Sampling-based algorithm that efficiently explores the target task by sampling
repeatedly from the posterior and acting greedily w.r.t. (with respect to) the sampled value function.
We show that our approach is very general, in the sense that it can work with any parametric function
approximator and any prior/posterior distribution models (in this paper we focus on the Gaussian
and Gaussian mixture models). In addition to the algorithmic contribution, we also give a theoretical
contribution by providing a finite-sample analysis of our approach and an experimental contribution
that shows its empirical performance on four domains with an increasing level of difficulty.

2 Preliminaries

We consider a distribution D over tasks, where each taskMτ is modeled as a discounted Markov
Decision Process (MDP). We define an MDP as a tupleMτ = 〈S,A,Pτ ,Rτ , p0, γ〉, where S is the
state-space, A is a finite set of actions, Pτ (·|s, a) is the distribution of the next state s′ given that
action a is taken in state s,Rτ : S ×A → R is the reward function, p0 is the initial-state distribution,
and γ ∈ [0, 1) is the discount factor. We assume the reward function to be uniformly bounded by a
constant Rmax > 0. A deterministic policy π : S → A is a mapping from states to actions. At the
beginning of each episode of interaction, the initial state s0 is drawn from p0. Then, the agent takes
the action a0 = π(s0), receives a rewardRτ (s0, a0), transitions to the next state s1 ∼ Pτ (·|s0, a0),
and the process is repeated. The goal is to find the policy maximizing the long-term return over
a possibly infinite horizon: maxπ J(π) , EMτ ,π[

∑∞
t=0 γ

tRτ (st, at)]. To this end, we define the
optimal value function of taskMτ , Q∗τ (s, a), as the expected return obtained by taking action a in
state s and following an optimal policy thereafter. Then, an optimal policy π∗τ is a policy that is
greedy with respect to the optimal value function, i.e., π∗τ (s) = argmaxaQ

∗
τ (s, a) for all states s. It

can be shown (e.g., [28]) that Q∗τ is the unique fixed-point of the optimal Bellman operator Tτ defined
by TτQ(s, a) = Rτ (s, a) + γEs′∼Pτ [maxa′ Q(s′, a′)] for any value function Q. From now on, we
adopt the term Q-function to denote any plausible value function, i.e., any function Q : S ×A → R
uniformly bounded by Rmax

1−γ . In the following, to avoid cluttering the notation, we will drop the
subscript τ whenever there is no ambiguity.

We consider a parametric family of Q-functions, Q =
{
Qw : S ×A → R | w ∈ Rd

}
, and we

assume each function in Q to be uniformly bounded by Rmax
1−γ . When learning the optimal value

function, a quantity of interest is how close a given function Qw is to the fixed-point of the Bellman
operator. A possible measure is its Bellman error (or Bellman residual), defined byBw , TQw−Qw.
Notice that Qw is optimal if and only if Bw(s, a) = 0 for all s, a. If we assume the existence of
a distribution ν over S × A, a sound objective is to directly minimize the squared Bellman error
of Qw under ν, denoted by ‖Bw‖2ν . Unfortunately, it is well known that an unbiased estimator
of this quantity requires two independent samples of the next state s′ for each s, a (e.g., [25]). In
practice, the Bellman error is typically replaced by the TD error b(w), which approximates the
former using a single transition sample 〈s, a, s′, r〉, b(w) = r + γmaxa′ Qw(s′, a′) − Qw(s, a).
Finally, given a dataset D = 〈si, ai, ri, s′i〉Ni=1 of N samples, the squared TD error is computed as
‖Bw‖2D = 1

N

∑N
i=1(ri + γmaxa′ Qw(s′i, a

′) − Qw(si, ai))
2 = 1

N

∑N
i=1 bi(w)2. Whenever the

distinction is clear from the context, with a slight abuse of terminology, we refer to the squared
Bellman error and to the squared TD error as Bellman error and TD error, respectively.

3 Variational Transfer Learning

In this section, we describe our variational approach to transfer in RL. In Section 3.1, we begin by
introducing our algorithm from a high-level perspective, so that any choice of prior and posterior
distributions is possible. Then, in Sections 3.2 and 3.3, we propose practical implementations based
on Gaussians and mixtures of Gaussians, respectively. We conclude with some considerations on
how to optimize the proposed objective in Section 3.4.

2

3.1 Algorithm

Let us observe that the distribution D over tasks induces a distribution over optimal Q-functions. Fur-
thermore, for any MDP, learning its optimal Q-function is sufficient to solve the problem. Thus, we
can safely replace the distribution over tasks with the distribution over their optimal value functions.
In our parametric settings, we reduce the latter to a distribution p(w) over weights.
Assume, for the moment, that we know the distribution p(w) and consider a dataset D =
〈si, ai, ri, s′i〉Ni=1 of samples from some task Mτ ∼ D that we want to solve. Then, we can
compute the posterior distribution over weights given such dataset by applying Bayes theorem as
p(w|D) ∝ p(D|w)p(w). Unfortunately, this cannot be directly used in practice since we do not have
a model of the likelihood p(D|w). In such case, it is very common to make strong assumptions on the
MDPs or theQ-functions to get tractable posteriors. However, in our transfer settings, all distributions
involved depend on the family of tasks under consideration and making such assumptions is likely
to limit the applicability to specific problems. Thus, we take a different approach to derive a more
general, but still well-grounded, solution. Note that our final goal is to move the total probability
mass over the weights while minimizing some empirical loss measure, which in our case is the TD
error ‖Bw‖2D. Then, given a prior p(w), we know from PAC-Bayesian theory that the optimal Gibbs
posterior q which minimizes an oracle upper bound on the expected loss takes the form (e.g., [9]):

q(w) =
e−Λ‖Bw‖2Dp(w)∫
e−Λ‖Bw′‖2Dp(dw′)

, (1)

for some parameter Λ > 0. Since Λ is typically chosen to increase with the number of samples
N , in the remaining, we set it to λ−1N , for some constant λ > 0. Note that, whenever the term
e−Λ‖Bw‖2D can be interpreted as the actual likelihood of D, q becomes a classic Bayesian posterior.
Although we now have an appealing distribution, the integral at the denominator of (1) is intractable
to compute even for simple Q-function models. Thus, we propose a variational approximation qξ by
considering a simpler family of distributions parameterized by ξ ∈ Ξ. Then, our problem reduces to
finding the variational parameters ξ such that qξ minimizes the Kullback-Leibler (KL) divergence
w.r.t. the Gibbs posterior q. From the theory of variational inference (e.g., [7]), this can be shown to
be equivalent to minimizing the well-known (negative) evidence lower bound (ELBO):

min
ξ∈Ξ
L(ξ) = Ew∼qξ

[
‖Bw‖2D

]
+
λ

N
KL (qξ(w) || p(w)) . (2)

Intuitively, the approximate posterior balances between placing probability mass over those weightsw
that have low expected TD error (first term), and staying close to the prior distribution (second term).
Assuming that we can compute the gradients of (2) w.r.t. the variational parameters ξ, our objective
can be optimized using any stochastic optimization algorithm, as shown in the next subsections.

Algorithm 1 Variational Transfer
Require: Target taskMτ , source weightsWs

1: Estimate prior p(w) fromWs

2: Initialize parameters: ξ ← argminξKL(qξ||p)
3: Initialize dataset: D = ∅
4: repeat
5: Sample initial state: s0 ∼ p0
6: while sh is not terminal do
7: Sample weights: w ∼ qξ(w)
8: Take action ah = argmaxaQw(sh, a)
9: sh+1 ∼ Pτ (·|sh, ah), rh+1 = Rτ (sh, ah)

10: D ← D ∪ 〈sh, ah, rh+1, sh+1〉
11: Estimate gradient∇ξL(ξ) using D′ ⊆ D
12: Update ξ from∇ξL(ξ) using any optimizer
13: end while
14: until forever

We now highlight our general transfer procedure
in Algorithm 1, while deferring a description of
specific choices for the involved distributions
to the next two subsections. Although the dis-
tribution p(w) is not known in practice, we as-
sume that the agent has solved a finite number
of source tasksMτ1 ,Mτ2 , . . . ,MτM and that
we are given the set of their approximate so-
lutions: Ws = {w1,w2, . . . ,wM} such that
Qwj ' Q∗τj . Using these weights, we start by
estimating the prior distribution (line 1), and we
initialize the variational parameters by minimiz-
ing the KL divergence w.r.t. such distribution
(line 2).2 Then, at each time step of interaction,
we re-sample the weights from the current ap-
proximate posterior and act greedily w.r.t. the
corresponding Q-function (lines 7,8). After collecting and storing the new experience (lines 9-10),
we estimate the objective function gradient using a mini-batch of samples from the current dataset
(line 11), and update the variational parameters (line 12).

2If the prior and approximate posterior were in the same family of distributions we could simply set ξ to the
prior parameters. However, we are not making this assumption at this point.

3

The key property of our approach is the weight resampling at line 7, which resembles the well-known
Thompson sampling approach adopted in multi-armed bandits [8] and closely relates to the recent
value function randomization [27, 4]. At every time we guess what is the task we are trying to solve
based on our current belief and we act as if such guess were true. This mechanism allows an efficient
adaptive exploration of the target task. Intuitively, during the first steps of interaction, the agent is
very uncertain about the current task, and such uncertainty induces stochasticity in the chosen actions,
allowing a rather informed exploration to take place. Consider, for instance, that actions that are
bad on average for all tasks are improbable to be sampled, while this cannot happen in uninformed
exploration strategies, like ε-greedy, before learning takes place. As the learning process goes on, the
algorithm will quickly figure out which task is solving, thus moving all the probability mass over
the weights minimizing the TD error. From that point, sampling from the posterior is approximately
equivalent to deterministically taking such weights, and no more exploration will be performed.
Finally, notice the generality of the proposed approach: as far as the objective L is differentiable
in the variational parameters ξ, and its gradients can be efficiently computed, any approximator for
the Q-function and any prior/posterior distributions can be adopted. For the latter, we describe two
practical choices in the next two sections.

3.2 Gaussian Variational Transfer

We now restrict to a specific choice of the prior and posterior families that makes our algorithm
very efficient and easy to implement. We assume that optimal Q-functions (or better, their weights)
follow a multivariate Gaussian distribution. That is, we model the prior as p(w) = N (µp,Σp)
and we learn its parameters from the set of source weights using maximum likelihood estimation
(with small regularization to make sure the covariance is positive definite). Then, our variational
family is the set of all well-defined Gaussian distributions, i.e., the variational parameters are
Ξ =

{
(µ,Σ) | µ ∈ Rd,Σ ∈ Rd×d,Σ � 0

}
. To prevent the covariance from becoming not positive

definite, we consider its Cholesky decomposition Σ = LLT and we learn the lower-triangular
Cholesky factor L instead. In this case, deriving the gradient of the objective is very simple.
Both the KL between two multivariate Gaussians and its gradients have a simple closed-form
expression. The expected log-likelihood, on the other hand, can be easily differentiated by adopting
the reparameterization trick (e.g., [15, 29]). We report these results in Appendix B.1.

3.3 Mixture of Gaussian Variational Transfer

Although the Gaussian assumption of the previous section is very appealing as it allows for a simple
and efficient way of computing the variational objective and its gradients, in practice it rarely allows
us to describe the prior distribution accurately. In fact, even for families of tasks in which the reward
and transition models are Gaussian, the Q-values might be far from being normally distributed.
Depending on the family of tasks under consideration and, since we are learning a distribution over
weights, on the chosen function approximator, the prior might have arbitrarily complex shapes. When
the information loss due to the Gaussian approximation becomes too severe, the algorithm is likely to
fail at capturing any similarities between the tasks. We now propose a variant to successfully solve
this problem, while keeping the algorithm efficient and simple enough to be applied in practice.

Given the source tasks’ weightsWs, we model our estimated prior as a mixture with equally weighted
isotropic Gaussians centered at each weight: p(w) = 1

|Ws|
∑
ws∈Ws

N (w|ws, σ2
pI). This model

resembles a kernel density estimator [31] with bandwidth σ2
p and, due to its nonparametric nature,

it allows capturing arbitrarily complex distributions. Consistently with the prior, we model our
approximate posterior as a mixture of Gaussians. Using C components, our posterior is qξ(w) =
1
C

∑C
i=1N (w|µi,Σi), with variational parameters ξ = (µ1, . . . ,µC ,Σ1, . . . ,ΣC). Once again,

we learn Cholesky factors instead of full covariances. Finally, since the KL divergence between two
mixtures of Gaussians has no closed-form expression, we rely on an upper bound to such quantity, so
that the negative ELBO still upper bounds the KL between the approximate and the exact posterior.
Among the many upper bounds available, we adopt the one proposed in [14] (see Appendix B.2).

3.4 Minimizing the TD Error

From Sections 3.2 and 3.3, we know that differentiating the negative ELBO L w.r.t. ξ requires
differentiating ‖Bw‖2D w.r.t. w. Unfortunately, the TD error is well-known to be non-differentiable

4

due to the presence of the max operator. This issue is rarely a problem since typical value-based
algorithms are semi-gradient methods, i.e., they do not differentiate the targets (see, e.g., Chapter 11
of [34]). However, our transfer settings are quite different from common RL. In fact, our algorithm
is likely to start from Q-functions that are very close to an optimum and aims only to adapt the
weights in some direction of lower error so as to quickly converge to the solution of the target task.
Unfortunately, this property does not hold for most semi-gradient algorithms. Even worse, many
online RL algorithms combined with complex function approximators (e.g., DQNs) are well-known
to be unstable, especially when approaching an optimum, and require many tricks and tuning to work
well [30, 38]. This property is clearly undesirable in our case, as we only aim at adapting already
good solutions. Thus, we consider using a residual gradient algorithm [5]. To differentiate the targets,
we replace the optimal Bellman operator with the mellow Bellman operator introduced in [3], which
adopts a softened version of max called mellowmax:

mm
a
Qw(s, a) =

1

κ
log

1

|A|
∑
a

eκQw(s,a) (3)

where κ is a hyperparameter and |A| is the number of actions. The mellow Bellman operator, which
we denote as T̃ , has several appealing properties: (i) it converges to the maximum as κ→∞, (ii) it
has a unique fixed-point, and (iii) it is differentiable. Denoting by B̃w = T̃Qw −Qw the Bellman
residual w.r.t. the mellow Bellman operator T̃ , we have that the corresponding TD error, ||B̃w||2D, is
now differentiable w.r.t. w.

Although residual algorithms have guaranteed convergence, they are typically much slower than their
semi-gradient counterpart. [5] proposed to project the gradient in a direction that achieves higher
learning speed, while preserving convergence. This projection is obtained by including a parameter
ψ ∈ [0, 1] in the TD error gradient:

∇w
∥∥∥B̃w∥∥∥2

D
=

2

N

N∑
i=1

b̃i(w)
(
γψ∇w mm

a′
Qw(s′i, a

′)−∇wQw(si, ai)
)
,

where b̃i(w) = ri + γmma′ Qw(s′i, a
′) −Qw(si, ai). Notice that ψ trades-off between the semi-

gradient (ψ = 0) and the full residual gradient (ψ = 1). A good criterion for choosing such
parameter is to start with values close to zero (to have faster learning) and move to higher values
when approaching the optimum (to guarantee convergence).

4 Theoretical Analysis

A first important question that we need to answer is whether replacing max with mellow-max in
the Bellman operator constitutes a strong approximation or not. It has been proven [3] that the
mellow Bellman operator is a non-expansion under the L∞-norm and, thus, has a unique fixed-point.
However, how such fixed-point differs from the one of the optimal Bellman operator remains an open
question. Since mellow-max monotonically converges to max as κ→∞, it would be desirable if
the fixed point of the corresponding operator also monotonically converged to the fixed point of the
optimal one. We confirm that this property actually holds in the following theorem.
Theorem 1. Let Q∗ be the fixed-point of the optimal Bellman operator T . Define the action-gap
function g(s) as the difference between the value of the best action and the second best action at each
state s. Let Q̃ be the fixed-point of the mellow Bellman operator T̃ with parameter κ > 0 and denote
by βκ > 0 the inverse temperature of the induced Boltzmann distribution (as in [3]). Then:∥∥∥Q∗ − Q̃∥∥∥

∞
≤ 2γRmax

(1− γ)2

∥∥∥∥∥ 1

1 + 1
|A|e

βκg

∥∥∥∥∥
∞

. (4)

The proof is provided in Appendix A.1. Notice that Q̃ converges to Q∗ exponentially fast as κ
(equivalently, βκ) increases and the action gaps are all larger than zero. Notice that this result is of
interest even outside our specific settings.

The second question that we need to answer is whether we can provide any guarantee on our
algorithm’s performance when given limited data. To address this point, we consider the two variants

5

of Algorithm 1 from Section 3.2 and 3.3 with linear approximators. Specifically, we consider the
family of linearly parameterized value functions Qw(s, a) = wTφ(s, a) with bounded weights
‖w‖2 ≤ wmax and uniformly bounded features ‖φ(s, a)‖2 ≤ φmax. We assume only a finite dataset
is available and provide a finite-sample analysis bounding the expected (mellow) Bellman error under
the variational distribution minimizing the objective (2) for any fixed target taskMτ .

Theorem 2. Let ξ̂ be the variational parameters minimizing the objective of Eq. (2) on a datasetD of
N i.i.d. samples distributed according toMτ and ν. Letw∗ = arginfw ||B̃w||2ν and define υ(w∗) ,

EN (w∗, 1
N I) [v(w)], with v(w) , Eν

[
V arPτ

[
b̃(w)

]]
. Then, there exist constants c1, c2, c3 such

that, with probability at least 1− δ over the choice of the dataset D:

Eq
ξ̂

[∥∥∥B̃w∥∥∥2

ν

]
≤ 2

∥∥∥B̃w∗∥∥∥2

ν
+ υ(w∗) + c1

√
log 2

δ

N
+
c2 + λd logN + λϕ (Ws)

N
+

c3
N2

,

where ϕ(Ws) = ‖w∗ − µp‖Σ−1
p

when the Gaussian version of Algorithm 1 is used with prior
p(w) = N (µp,Σp) estimated fromWs, while:

ϕ(Ws) =
1

σ2
p

∑
w∈Ws

e−β‖w
∗−w‖∑

w′∈Ws
e−β‖w∗−w′‖

‖w∗ −w‖ (5)

is the softmin distance between the optimal and source weights when the mixture version of Algorithm
1 is used with C components and bandwidth σ2

p for the prior. Here β = 1
2σ2
p

.

We refer the reader to Appendix A.2 for the proof and a specific definition of the constants. Four
main terms constitute our bound: the approximation error due to the limited hypothesis space (first
term), the variance (second and third terms), the distance to the prior (fourth term), and a constant
term decaying asO(N2). As we might have expected, the only difference between the bounds for the
two versions of Algorithm 1 is in the term ϕ(Ws), i.e., the distance between the optimal weights w∗
and the source weightsWs. Specifically, for the mixture version we have the (smoothened) minimum
distance to the source tasks’ weights (Equation (5)), while for the Gaussian one we have the distance
to the mean of such weights. This property shows a clear advantage of using the mixture version of
Algorithm 1 rather than the Gaussian one: in order to tighten the bound, it is enough to have at least
one source task that is close to the optimal solution of the target task. In fact, the Gaussian version
requires the source tasks to be, on average, similar to the target task in order to perform well, while
the mixture version only requires this property for one of them. In both cases, when the term ϕ(Ws)
is reduced, the dominating error is due to the variance of the estimates, and, thus, the algorithm
is expected to achieve good performance rather quickly, as new data is collected. Furthermore, as
N →∞ the only error terms remaining are the irreducible approximation error due to the limited
functional space and the variance term υ(w∗). The latter is due to the fact that we minimize a biased
estimate of the Bellman error and can be removed in cases where double sampling of the next state is
possible (e.g., in simulation). We empirically verify these considerations in Section 6.

5 Related Works

Our approach is mostly related to [21]. Although we both assume the tasks to share similarities in
their value functions, [21] consider only linear approximators and adopt a hierarchical Bayesian
model of the corresponding weights’ distribution, which is assumed Gaussian. On the other hand, our
variational approximation allows for more general distribution families and can be combined with non-
linear approximators. Furthermore, [21] propose a Dirichlet process model for the case where weights
cluster into different classes, which relates to our mixture formulation and proves the importance of
capturing more complicated task distributions. Finally, [21] considers the problem of jointly learning
all given tasks, while we focus on transferring information from a set of source tasks to the target task.
In [39], the authors propose a hierarchical Bayesian model for the distribution over MDPs. Unlike
our approach and [21], they consider a distribution over transition probabilities and rewards, rather
than value functions. In the same spirit of our method, they consider a Thompson sampling-based
procedure which, at each iteration, samples a new task from the posterior and solves it. However,
[39] consider only finite MDPs, which poses a severe limitation on the algorithm’s applicability.
On the contrary, our approach can handle high-dimensional tasks. In [10], the authors consider a

6

family of tasks whose dynamics are governed by some hidden parameters and use Gaussian processes
(GPs) to model such dynamics across tasks. Recently, [16] extended this approach by replacing
GPs with Bayesian neural networks to obtain a more scalable approach. Both approaches result in a
model-based algorithm that quickly adapts to new tasks by estimating their hidden parameters, while
we propose a model-free method which does not require such assumptions.

Finally, our approach relates to recent algorithms for meta-learning/fast-adaptation of weights in
neural networks [12, 13, 2]. Such approaches typically assume to have full access to the task
distribution D (i.e., samples from D can be obtained on-demand) and build meta-models that quickly
adapt to new tasks drawn from the same distribution. On the other hand, we assume only a fixed and
limited set of source tasks, together with their approximate solutions, is available. Then, our goal is
to speed-up the learning process of a new target task from D by transferring only these data, without
requiring additional source tasks or experience samples from them.

6 Experiments

In this section, we provide an experimental evaluation of our approach in four different domains
with increasing level of difficulty. In all experiments, we compare our Gaussian variational transfer
algorithm (GVT) and the version using a c-component mixture of Gaussians (c-MGVT) to plain
no-transfer RL (NT) with ε-greedy exploration and to a simple transfer baseline in which we randomly
pick one source Q-function and fine-tune from its weights (FT). Finally, in Section 6.4 we empirically
demonstrate the differences between our approach and the previously discussed fast-adaptation
algorithms. We report the detailed parameters, together with additional results, in Appendix C.

6.1 The Rooms Problem

Start

Goal

Figure 1: Rooms problem.

We consider an agent navigating in the environment depicted in Fig-
ure 1. The agent starts in the bottom-left corner and must move from
one room to another to reach the goal position in the top-right corner.
The rooms are connected by small doors whose locations are unknown
to the agent. The state-space is modeled as a 10× 10 continuous grid,
while the action-space is the set of 4 movement directions (up, right,
down, left). After each action, the agent moves by 1 in the chosen di-
rection and the final position is corrupted by Gaussian noiseN (0, 0.2).
In case the agent hits a wall, its position remains unchanged. The
reward is 1 when reaching the goal (after which the process terminates) and 0 otherwise, while the
discount factor is γ = 0.99. In this experiment, we consider linearly parameterized Q-functions with
121 equally-spaced radial basis features.

We generate a set of 50 source tasks for the three-room environment of Figure 1 by sampling both
door locations uniformly in the allowed space, and solve all of them by directly minimizing the
TD error as presented in Section 3.4. Then, we use our algorithms to transfer from 10 source tasks
sampled from the previously generated set. The average return over the last 50 learning episodes as a
function of the number of iterations is shown in Figure 2a. Each curve is the result of 20 independent
runs, each one resampling the target and source tasks, with 95% confidence intervals. Further details
on the parameters adopted in this experiment are given in Appendix C.1. As expected, the no-transfer
(NT) algorithm fails at learning the task in so few iterations due to the limited exploration provided by
an ε-greedy policy. On the other hand, all our algorithms achieve a significant speed-up and converge
to the optimal performance in few iterations, with GVT being slightly slower. FT achieves good
performance as well, but it takes more time to adapt a random source Q-function. Interestingly, we
notice that there is no advantage in adopting more than 1 component for the posterior in MGVT.
This result is intuitive since, as soon as the algorithm figures out which is the target task, all the
components move towards the same region.

To better understand the differences between GVT and MGVT, we now consider transferring from a
slightly different distribution than the one from which target tasks are drawn. We generate 50 source
tasks again but this time with the bottom door fixed at the center and the other one moving. Then, we
repeat the previous experiment, allowing both doors to move when sampling target tasks. The results
are shown in Figure 2b. Interestingly, MGVT seems almost unaffected by this change, proving that it
has sufficient representation power to generalize to slightly different task distributions. The same

7

0.2 0.4 0.6 0.8 1 1.2 1.4
·104

0

0.2

0.4

0.6

0.8

Iterations

E
x
p
ec
te
d
R
et
u
rn

(a) Rooms: two doors moving

0.2 0.4 0.6 0.8 1 1.2 1.4
·104

0

0.2

0.4

0.6

0.8

Iterations

E
x
p
ec
te
d
R
et
u
rn

(b) Rooms: one door moving

2,000 4,000 6,000 8,000

20

30

40

50

60

Iterations

E
x
p
ec
te
d
R
et
u
rn

(c) Cartpole

1 2 3
·104

−80

−70

−60

Iterations

E
x
p
ec
te
d
R
et
u
rn

(d) Mountain Car

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
·104

0

0.2

0.4

0.6

Iterations

E
x
p
ec
te
d
R
et
u
rn

(e) Maze Navigation (first maze)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
·104

0

0.2

0.4

Iterations

E
x
p
ec
te
d
R
et
u
rn

(f) Maze Navigation (second maze)

NT FT GVT 1-MGVT 3-MGVT

Figure 2: The online expected return achieved by the algorithm as a function of the number of
iterations. Each curve is the average of 20 independent runs. 95% confidence intervals are shown.

does not hold for GVT, which now is not able to solve many of the sampled target tasks, as can be
noticed from the higher variance. Furthermore, the good performance of FT proves that GVT is,
indeed, subject to a loss of information due to averaging the source weights. This result proves again
that assuming Gaussian distributions can pose severe limitations in our transfer settings.

6.2 Classic Control

We now consider two well-known classic control environments: Cartpole and Mountain Car [34].
For both, we generate 20 source tasks by uniformly sampling their physical parameters (cart mass,
pole mass, pole length for Cartpole and car speed for Mountain Car) and solve them by directly
minimizing the TD error as in the previous experiment. We parameterize Q-functions using neural
networks with one layer of 32 hidden units for Cartpole and 64 for Mountain Car. A better description
of these two environments and their parameters is given in Appendix C.2. In this experiment, we use
a Double Deep Q-Network (DDQN) [38] to provide a stronger no-transfer baseline for comparison.
The results (same settings of Section 6.1) are shown in Figures 2c and 2d. For Cartpole (Figure 2c),
all variational transfer algorithms are almost zero-shot. This result is expected since, although we vary
the system parameters in a wide range, the optimal Q-values of states near the balanced position are
similar for all tasks. On the contrary, in Mountain Car (Figure 2d) the optimal Q-functions become
very different when changing the car speed. This phenomenon hinders the learning of GVT in the
target task, while MGVT achieves a good jump-start and converges in fewer iterations. Similarly to
the Rooms domain, the naive weight adaptation of FT makes it slower than MGVT in both domains.

6.3 Maze Navigation

Finally, we consider a robotic agent navigating mazes. At the beginning of each episode, the agent
is dropped to a random position in a 10m2 maze and must reach a goal area in the smallest time
possible. The robot is equipped with sensors detecting its absolute position, its orientation, the
distance to any obstacle within 2m in 9 equally-spaced directions, and whether the goal is present in
the same range. The only actions available are move forward with speed 0.5m/s or rotate (in either
direction) with speed of π/8 rad/s. Each time step corresponds to 1s of simulation. The reward is 1
for reaching the goal and 0 otherwise, while the discount factor is γ = 0.99. For this experiment, we
design a set of 20 different mazes and solve them using a DDQN with two layers of 32 neurons and
ReLU activations. Then, we fix a target maze and transfer from 5 source mazes uniformly sampled
from such set (excluding the chosen target). To further assess the robustness of our method, we
now consider transferring from the Q-functions learned by DDQNs instead of those obtained by
minimizing the TD error as in the previous domains. From our considerations of Sections 3.4 and 4,

8

1,000 2,000 3,000 4,000

0

0.2

0.4

0.6

0.8

Gradient steps

E
x
p
ec
te
d
R
et
u
rn

MAML-full MAML-batch
MAML-shift 3-MGVT

(a) The Rooms Problem

0.2 0.4 0.6 0.8 1 1.2 1.4
·104

0

0.2

0.4

0.6

Gradient steps

E
x
p
ec
te
d
R
et
u
rn

MAML-full
MAML-batch
3-MGVT

(b) Maze Navigation

Figure 3: MAML vs 3-MGVT in our navigation problems.

the fixed-points of the two algorithms are different, which creates a further challenge for our method.
We show the results for two different target mazes in Figure 2e, and Figure 2f, while referring the
reader to Appendix C.3 for their illustration and additional results. Once again, MGVT achieves
a remarkable speed-up over (no-transfer) DDQN. This time, using 3 components achieves slightly
better performance than using only 1, which is likely due to the fact that the task distribution is much
more complicated than in the previous domains. For the same reason, GVT shows negative transfer
and performs even worse than DDQN. Similarly, FT performs much worse than in the previous
domains and negatively transfer in the more complicated target maze of Figure 2e.

6.4 A Comparison to Fast-Adaptation Algorithms

In order to provide a better understanding of the differences between our settings and the ones typically
considered in fast-adaptation algorithms, we now show a comparison to the recently proposed meta-
learner MAML [12]. We repeat the previous experiments, focusing on the navigation tasks, using
two different versions of MAML. In the first one (MAML-full), we perform meta-training using the
full distribution over tasks for a number of iterations that allows the meta-policy to converge. In
the second one (MAML-batch), we execute the meta-train only on the same number of fixed source
tasks as the one used for our algorithm, allowing the meta-policy to reach convergence again. In both
cases, we perform the meta-test on random tasks sampled from the full distribution. The results are
shown in Figure 3 in comparison to our best algorithm (3-MGVT), where each curve is obtained by
averaging 5 meta-testing runs for each of 4 different meta-policies. Additional details are given in
Appendix C.4. In both cases, the full version of MAML achieves a much better jumpstart and adapts
much faster than our approach. However, this is no longer the case when limiting the number of
source tasks. In fact, this situation reduces to the case in which the task distribution at meta-training
is a discrete uniform over the fixed source tasks, while at meta-testing the algorithm is required to
generalize to a different distribution. This is a case that arises quite frequently in practice for which
MAML was not specifically designed. Things get even worse when we explicitly add a shift to the
meta-training distribution as we did in Figure 2b for the rooms problem (MAML-shift in Figure 3a).
Although we meta-trained on the full distribution, the final performance was even worse than the
one using the fixed source tasks. Finally, notice that we compare the algorithms w.r.t. the number
of gradient steps, even if our approach collects only one new sample at each iteration while MAML
collects a full batch of trajectories.

7 Conclusion

We presented a variational method for transferring value functions in RL. We showed our approach to
be general, in the sense that it can be combined with several distributions and function approximators,
while providing two practical algorithms based on Gaussians and mixtures of Gaussians, respectively.
We analyzed both from a theoretical and empirical perspective, proving that the Gaussian version has
severe limitations, while the mixture one is much better for our transfer settings. We evaluated the
proposed algorithms in different domains, showing that both achieve excellent performance in simple
tasks, while only the mixture version is able to handle complex environments.

Since our algorithm effectively models the uncertainty over tasks, a relevant future work is to design
an algorithm that explicitly explores the target task to reduce such uncertainty. Furthermore, our
variational approach could be extended to model a distribution over optimal policies instead of value
functions, which might allow better transferred behavior.

9

Acknowledgments

We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40cm,
Titan XP and Tesla V100 used for this research.

References
[1] Pierre Alquier, James Ridgway, and Nicolas Chopin. On the properties of variational approximations of

gibbs posteriors. Journal of Machine Learning Research, 17(239):1–41, 2016.

[2] Ron Amit and Ron Meir. Meta-learning by adjusting priors based on extended PAC-Bayes theory. In
Proceedings of the 35th International Conference on Machine Learning, 2018.

[3] Kavosh Asadi and Michael L Littman. An alternative softmax operator for reinforcement learning. In
International Conference on Machine Learning, pages 243–252, 2017.

[4] Kamyar Azizzadenesheli, Emma Brunskill, and Animashree Anandkumar. Efficient exploration through
bayesian deep q-networks. arXiv preprint arXiv:1802.04412, 2018.

[5] Leemon Baird. Residual algorithms: Reinforcement learning with function approximation. In Machine
Learning Proceedings 1995, pages 30–37. Elsevier, 1995.

[6] André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt, and David
Silver. Successor features for transfer in reinforcement learning. In Advances in neural information
processing systems, pages 4055–4065, 2017.

[7] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisticians.
Journal of the American Statistical Association, 112(518):859–877, 2017.

[8] Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic multi-armed
bandit problems. Foundations and Trends R© in Machine Learning, 5(1):1–122, 2012.

[9] Olivier Catoni. Pac-bayesian supervised classification: the thermodynamics of statistical learning. arXiv
preprint arXiv:0712.0248, 2007.

[10] Finale Doshi-Velez and George Konidaris. Hidden parameter markov decision processes: A semiparametric
regression approach for discovering latent task parametrizations. In IJCAI: proceedings of the conference,
volume 2016, page 1432, 2016.

[11] Fernando Fernández and Manuela Veloso. Probabilistic policy reuse in a reinforcement learning agent.
In Proceedings of the fifth international joint conference on Autonomous agents and multiagent systems,
pages 720–727. ACM, 2006.

[12] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. arXiv preprint arXiv:1703.03400, 2017.

[13] Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas Griffiths. Recasting gradient-based
meta-learning as hierarchical bayes. arXiv preprint arXiv:1801.08930, 2018.

[14] John R Hershey and Peder A Olsen. Approximating the kullback leibler divergence between gaussian
mixture models. In Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International
Conference on, 2007.

[15] Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic variational inference. The
Journal of Machine Learning Research, 14(1):1303–1347, 2013.

[16] Taylor W Killian, Samuel Daulton, George Konidaris, and Finale Doshi-Velez. Robust and efficient transfer
learning with hidden parameter markov decision processes. In Advances in Neural Information Processing
Systems, pages 6250–6261, 2017.

[17] Jens Kober and Jan R Peters. Policy search for motor primitives in robotics. In Advances in neural
information processing systems, pages 849–856, 2009.

[18] George Konidaris and Andrew Barto. Autonomous shaping: Knowledge transfer in reinforcement learning.
In Proceedings of the 23rd international conference on Machine learning, pages 489–496. ACM, 2006.

[19] George Konidaris and Andrew G Barto. Building portable options: Skill transfer in reinforcement learning.
2007.

10

[20] Alessandro Lazaric. Transfer in reinforcement learning: a framework and a survey. In Reinforcement
Learning. 2012.

[21] Alessandro Lazaric and Mohammad Ghavamzadeh. Bayesian multi-task reinforcement learning. In
ICML-27th International Conference on Machine Learning, pages 599–606. Omnipress, 2010.

[22] Alessandro Lazaric, Marcello Restelli, and Andrea Bonarini. Transfer of samples in batch reinforcement
learning. In Proceedings of the 25th international conference on Machine learning, 2008.

[23] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuomotor
policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

[24] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

[25] Odalric-Ambrym Maillard, Rémi Munos, Alessandro Lazaric, and Mohammad Ghavamzadeh. Finite-
sample analysis of bellman residual minimization. In Proceedings of 2nd Asian Conference on Machine
Learning, pages 299–314, 2010.

[26] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 2015.

[27] Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via randomized value
functions. arXiv preprint arXiv:1402.0635, 2014.

[28] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley
& Sons, Inc., New York, NY, USA, 1994.

[29] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approxi-
mate inference in deep generative models. arXiv preprint arXiv:1401.4082, 2014.

[30] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

[31] David W Scott. Multivariate density estimation: theory, practice, and visualization. John Wiley & Sons,
2015.

[32] Yevgeny Seldin, François Laviolette, Nicolo Cesa-Bianchi, John Shawe-Taylor, and Peter Auer. Pac-
bayesian inequalities for martingales. IEEE Transactions on Information Theory, 2012.

[33] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, et al. Mastering the game of go with deep neural networks and tree
search. nature, 529(7587):484–489, 2016.

[34] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1. MIT press
Cambridge, 1998.

[35] Matthew E Taylor, Nicholas K Jong, and Peter Stone. Transferring instances for model-based reinforcement
learning. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases,
pages 488–505. Springer, 2008.

[36] Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A survey.
Journal of Machine Learning Research, 10(Jul):1633–1685, 2009.

[37] Andrea Tirinzoni, Andrea Sessa, Matteo Pirotta, and Marcello Restelli. Importance weighted transfer
of samples in reinforcement learning. In Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pages 4936–4945. PMLR, 2018.

[38] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-learning.
2016.

[39] Aaron Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli. Multi-task reinforcement learning: a
hierarchical bayesian approach. In Proceedings of the 24th international conference on Machine learning,
pages 1015–1022. ACM, 2007.

11

