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Abstract

Implicit feedback is widely used in collaborative filtering methods for recommenda-
tion. It is well known that implicit feedback contains a large number of values that
are missing not at random (MNAR); and the missing data is a mixture of negative
and unknown feedback, making it difficult to learn users’ negative preferences.
Recent studies modeled exposure, a latent missingness variable which indicates
whether an item is exposed to a user, to give each missing entry a confidence of
being negative feedback. However, these studies use static models and ignore the
information in temporal dependencies among items, which seems to be an essential
underlying factor to subsequent missingness. To model and exploit the dynamics
of missingness, we propose a latent variable named “user intent” to govern the tem-
poral changes of item missingness, and a hidden Markov model to represent such
a process. The resulting framework captures the dynamic item missingness and
incorporate it into matrix factorization (MF) for recommendation. We also explore
two types of constraints to achieve a more compact and interpretable representation
of user intents. Experiments on real-world datasets demonstrate the superiority of
our method against state-of-the-art recommender systems.

1 Introduction

Collaborative filtering methods based on implicit feedback (e.g., purchase records and browsing
history) are widely used in recommender systems. Compared to explicit feedback (e.g., 1-5 star
ratings), implicit feedback is more abundant and accessible in real-world applications. However,
the missing data of implicit feedback also brings two challenges. First, the data is missing not at
random (MNAR). Only positive feedback is collected in implicit feedback and all negative feedback
is missing, leading to a severely biased dataset. Second, the missing data is a mixture of negative and
unknown feedback; a missing entry may indicate the user either dislikes or does not know the item,
which makes it hard to learn user’s negative preferences. Several previous works [Hu et al., 2008,
Marlin and Zemel, 2009] provided evidence that both ignoring missing data and treating all missing
data as negative feedback will lead to biased recommendations.

A possible solution is to model the MNAR mechanism and treat the missing data properly. Several
researchers have proposed various methods to address this issue. Popular methods [Hu et al., 2008,
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Pan et al., 2008] are based on the uniformity assumption that assigns a uniform weight to degrade
the importance of the missing data, assuming that each missing entry is equally likely to be negative
feedback. This is a strong assumption and limits models’ flexibility for real applications. Recently,
researchers [Liang et al., 2016, Wang et al., 2018a] treated missing entries differently with the so-
called “exposure” variables and achieved improved results. An exposure variable indicates whether
or not an item is missing to a user. They make predictions in two steps: They first model exposure
variables for each user to get the candidate items that are not missing and then recommend top-ranked
items in the set of candidate items based on user preferences.

However, these modeled exposure-based missingness mechanisms are static and the temporal de-
pendencies among items are not utilized, which can naturally influence the subsequent missingness
greatly. Consider the following example. If a user has just bought a mobile phone, it is more likely
for him/her to buy a suitable phone case next so missingness probabilities of candidate phone cases
will be lower than if the user had not bought the phone. Moreover, the effect of item dependencies on
the missingness is asymmetric: purchase of a phone case indicates that the user has probably owned a
mobile phone and the missingness probabilities of phones should be high during his/her next purchase.
Thus the key to modeling the dynamic missingness is how to utilize the temporal information of
implicit feedback to capture the asymmetric item dependencies. Instead of finding explicit item
dependencies, we assume that the missingness of items for a user at one time is generated by a latent
variable called “user intent", and that the dynamics of missingness are driven by a Markov process of
user intents. In other words, user intents capture item relations implicitly and generate time-sensitive
exposure variables.

Particularly, in this paper, we use a hidden Markov model (HMM) to represent the dynamic missing-
ness of implicit feedback and the estimated missingness of items is incorporated into a probabilistic
matrix factorization (MF) model for recommendation. To the best of our knowledge, the proposed
framework, namly “H4MF”, as a strategy of “leveraging HMM and MF to model the dynamic
Missingness for recommendation,” is the first work to address the dynamic missingness of implicit
feedback in recommendation area. The HMM and MF are seamlessly incorporated in H4MF, making
the framework interpretable and extensible. Further, we propose a principled computational algorithm,
showing promising results on real-world datasets.

2 Related Work

Missing data presents a common challenge for empirical sciences. Most prior studies on recommender
systems assumed data is missing at random (MAR); however, Marlin and Zemel [2009] demonstrated
that data in real recommender systems is not MAR and recommendation algorithms based on
MAR assumption may lead to biased results. Several studies have modeled different missingness
mechanisms to address the MNAR problem. For explicit feedback, a widely accepted mechanism
[Marlin and Zemel, 2009, Ling et al., 2012, Hernández-Lobato et al., 2014] is that missingness is
related to the potential ratings (e.g, 1-5 star ratings). Data for items with high ratings are less likely to
be missing compared to items with low ratings. For implicit feedback, some causal-process-based
methods [Liang et al., 2016, Wang et al., 2018a] first computed exposures for each user and then used
them to guide rating prediction, which have shown promising results. Different from these studies,
we address the MNAR problem with a dynamic missingness assumption.

Another related work is sequential recommendation, where researchers utilize temporal data for
next-item recommendation. Existing sequential recommender systems mainly capture the dynamic
user preferences. A popular idea is to utilize Markov chains [He and McAuley, 2016] to model
the sequential information. Rendle et al. [2010] proposed a factorized personalized Markov chain
(FPMC) model that combines both a common Markov chain and a matrix factorization model. Sahoo
et al. [2012] chose a hidden Markov model to capture the dynamic of user preferences for personalized
recommendation. However, they did not consider the MNAR problem and the missing data is not
well utilized. Some other researchers also used deep learning techniques (e.g., LSTM [Wu et al.,
2017] and GRU [Chung et al., 2015] ) for sequential recommendation; however, they are limited
in interpretability. In this paper we assume user preferences are static and focus on modeling the
dynamic missingness for the MNAR problem. Moreover, it is rather straightforward to extend our
framework to capture the dynamic user preferences with existing studies on online learning [Mairal
et al., 2010].
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Figure 1: Graphical model of the proposed model.

3 H4MF Framework

In this section, we first introduce the problem formula and our proposed framework. Then we describe
the parameter inference and the prediction formula in detail.

Problem Formulation. Suppose we have N users and M items. For each user i, a T -length rating
history in chronological order is given as Yi = {y1i , y2i , ..., yTi }, where yti denotes the item that user i
rated at time t (Note that the rating denotes implicit feedback in this paper). The goal of recommender
systems is to predict which item the user will rate next, more specifically, yT+1

i .

Before describing our model, we first introduce the representation of yti and the definition of miss-
ingness variables, which can help to understand the proposed dynamic missingness mechanism. We
represent yti as a M × 1 rating vector. As one user can only rate one of M items at one time, there
is a “1” in one position of yti and “0” elsewhere. Thus the missing data of implicit feedback refers
to “0” entries, which contain negative and unknown feedback. For each ytij in dataset, we use a
Bernoulli missingness variable αtij (same as the exposure variable in [Liang et al., 2016]) to indicate
the missingness: αtij = 1 means item j is exposed to user i at time t, and αtij = 0 means the user
does not see the item. The missingness variables have a reasonable interpretation: users first have to
see the items, then they have the possibility to rate them. Thus αtij can be utilized to extract negative
feedback from the missing data: if user i has seen item j (αtij = 1) but the rating ytij is 0, this rating
is more likely to be negative feedback rather than unknown feedback, which can be further utilized to
learn user preference. Note that αtij may be different for different t and our model aims to capture its
dynamics.

Model Description. We assume that user intent and user preference work together for recommen-
dation: User intent determines the missingness of items and user preference determines recommen-
dations from the non-missing items. In this paper we propose a framework named “H4MF” that
combines HMM and MF to model the dynamic Missingness for recommendation. As shown in
Figure 1, H4MF has two components: the User Intent Component and the User Preference Com-
ponent. In the User Intent Component we use a first-order hidden Markov model to capture the
missingness mechanism. αt is a M × 1 missingness vector of items at time t generated by a latent
state variable St (named “user intent”), and the probability of St depends only on the last state
St−1. The user intent is a single categorical random variable that can take one of D discrete values,
St ∈ {1, ..., D}. We assume that user intents are shared by all users so the generated αtj represents
αtij for all possible users. The state transitions follow a categorical distribution and the conditional
observation distribution is defined as:

p(yti |St, P ) =
M∏
j=1

∑
αt

ij

p(ytij |αtij , P )p(αtij |St), αtij ∈ {0, 1} (1)

In the User Preference Component, we adopt a classical but effective matrix factorization model
[Mnih and Salakhutdinov, 2008]: the user preference P ∈ RN×M is decomposed as a product of
two submatrices U ∈ RK×N and V ∈ RK×M , which represent user-specific and item-specific latent
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feature factors respectively. More specifically, we use Pij = UTi Vj to show the preference of user i
toward item j. The conditional distribution over the observed ratings Y ti ∈ RN×M (the likelihood
term) for user i and the prior distribution are given by:

p(Yi|αTi , P ) =
T∏
t=1

M∏
j=1

[αtijN (ytij |Pij , λ−1y IK) + (1− αtij)I[ytij = 0]],

p(αtij |St) = Bernoulli(Is(µtj)), µtj ∼ Beta(at, bt),

p(U |λu) =
N∏
i=1

N (Ui|0, λ−1u IK), p(V |λv) =
M∏
j=1

N (Vj |0, λ−1v IK),

(2)

where N (x|µ, λ) denotes the Gaussian distribution with mean µ and precision λ, I[ytij = 0] is the
indicator function that evaluates to 1 when ytij = 0 is true, and 0 otherwise. Is(µtj) indicates that µtj
is St-specific. IK stands for the identity matrix of dimension K. p(Yi|αTi , P ) can be interpreted as
follows: when αtij = 0, the rating is missing so ytij is definitely 0; when αtij = 1, the rating is not
missing so ytij is either 0 or 1, depending on the user preference Pij . In this paper we present our
method and its inference for the case of one user’s sequential records; but it is straightforward to
apply them to multiple user cases. Note that users have variable-length rating records so that T is not
a fixed number for different users.

Next we explain the underlying design of H4MF. We choose HMM for user intent because HMM can
well utilize the temporal data to mine the asymmetric item dependencies; and the latent states (user
intents) can be shared by all users, which simplifies the structure of the missingness mechanism. We
choose MF for user preference because MF can model a low dimensional representation for both users
and items, which has been proved effective in recommender systems. Meanwhile, H4MF is more
explainable and reasonable with this modular structure. Most existing sequential recommendation
algorithms [Xiang et al., 2010, Shi et al., 2014] only used “dynamic preference” to account for the
temporal user behaviors; they assumed time-varying user preference is the only explanation for the
noisy user behaviors. In this case the learned user preference will fluctuate rapidly and be difficult to
explain.

Although choosing a dynamic preference model will make H4MF more reasonable, we assume user
preference to be static for two main reasons: 1) User preference evolves steadily and is rather stable
compared to user intent. Moore et al. [2013] visualized dynamic user preference via trajectories.
Their results show that user preferences change steadily and slowly in a long time (month level),
especially for older users. In contrast, user intent changes every user-item interaction in H4MF. So
it is reasonable to choose static preferences in H4MF. 2) Simplicity for inference is a concern. As
our goal to explore the effects of dynamic missingness to recommender systems, MF is also fair for
comparison to baselines.

Parameter Inference. We choose expectation-maximization (EM) to find the maximum a posteriori
(MAP) estimations of the parameters of H4MF. In the E-step, we compute the expected log posterior
of the observed data and the user intents, which is:

log p(αTi , P |ST , Yi) ∝ log p(Yi|αTi , P ) + log p(αTi |ST ) + log p(ST ) + log p(P ) (3)

The log p(P ) is computed as log p(U |λu) + log p(V |λv) and log p(αTi |ST ) is computed as
log Is(µtj) + log p(Is(µtj)|at, bt); we add a prior to regularize the µtj . As the exact expectation
of HMM is computationally intractable, we use Gibbs sampling to infer the posterior probabilities of
St. For a given rating sequence {Y ti } by user i. St is sampled from

p(St|St−1, St+1, Yi, α
t
i, P ) ∝ p(St|St−1)p(St+1|St)p(yti |αti, P ), (4)

where p(St|St−1) and p(St+1|St) can be obtained from the state transition matrix of the HMM, and
the expectation of log likelihood of one rating record yti is given by:

log p(yti |αti, P ) =

M∑
j=1

log
(
ytijµ

t
j

N (1|UTi Vj , λ−1y )

N (0|UTi Vj , λ
−1
y ) +N (1|UTi Vj , λ

−1
y )

+ (1− ytij)(1− µtj + µtj
N (0|UTi Vj , λ−1y )

N (0|UTi Vj , λ
−1
y ) +N (1|UTi Vj , λ

−1
y )

)
) (5)
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In the M-step, we maximize the log posterior with respect to µ, U , V , and {St}. We use gradient
ascent to update µ, and compute optimal U and V by setting their derivatives to zero. The details are
included in Appendix 1.1. Note that we update U and V and fix the hyperparameters λu, λv, and
λy. This strategy follows the original PMF [Mnih and Salakhutdinov, 2008] for simplification. For
user intents {St}, we use the Baum-Welch algorithm [Ghahramani and Jordan, 1996] to update the
transition matrix and initial states probability distribution of the HMM; as a strict EM-type algorithm
it is guaranteed to converge to at least a local maximum.

Making Prediction. In the recommendation phase we are interested in the prediction of yT+1
ij for

user i given his/her previous rating records. We make predictions by integrating out the uncertainty
from the missing variable αT+1

j :

Ey[yT+1
ij |Pij ] = Eα

[
Ey[yT+1

ij |αT+1
j , Pij ]

]
=

∑
αT+1

j ∈{0,1}

p(αT+1
j ) Ey[yT+1

ij |αT+1
j , Ui, Vj ]

= µT+1
j · UTi Vj

(6)

where µT+1
j is determined by the next user intent ST+1, which can be predicted with the forward

algorithm of HMM.

4 Further Constraints on Items

Currently all missingness variables {αtj} share the symmetric Beta priors. One potential drawback is
the learned user intents may be redundant and items under the same user intent tend to have similar
missing probabilities. In this section we define two kinds of constraints, namely inner constraint
and outer constraint, to specialize the Beta priors of missingness variables of different items under
different user intents. The intuitions are simple but reasonable: Items have relations under the
same user intent and their exposure variables are related. We use the inner constraint to denote
the influences from other items under the same user intent to one item’s missingness. Meanwhile,
the missingness of one item under different user intents should follow some patterns to reduce the
redundancy. And we use the outer constraint to denote the influences from the same item under
different user intents to one item’s missingness. We adopt a simple implementation: we update the
Beta priors in every M-step as follows:

adnew ← adini + σdjλInner + ωdjλOuter, b
d
new ← bdini + λInner + λOuter, d ∈ {1, ..., D} (7)

Where adini and bdini are initial Beta priors, λInner and λOuter are the scale parameters, σdj =
#records of item j under user intent d
#total records under user intent d indicates the occurrence probability of item j with respect to other

items under user intent d, and ωdj = #records of item j under user intent d
#total records of item j indicates the occurrence probability

of item j that is “triggered” by user intent d. Then the ad and bd are not global constants during
the EM procedure and play a constraint role. The items with similar occurrence probabilities under
the same user intent will have similar Beta priors. Instead of putting constraints directly on µdj ,
this strategy can avoid sophisticated inferences and later experiments prove its effectiveness. In
experiments we denote this constrained version as H4MFc.

5 Experimental Results

In this section we describe the used datasets and experimental settings, evaluate the performance
results, and analyze the user intent and the item constraints.

5.1 Datasets and Settings

We evaluate the performance of our method on three real-world datasets: 1) MovieLens-100K dataset
(∼ 100 thousand ratings from 943 users on 1,682 movies). The dataset was collected during the
seven-month period from September 19th, 1997 through April 22nd, 1998. 2) MovieLens-1M dataset
(∼ 1 million ratings from 6,040 users on 3,706 movies). The dataset was collected from April 25th,

5



2000 through February 28th, 2003. 3) LastFM dataset (∼ 100 thousand ratings from 1,892 users on
17,632 movies). The time period is from August 1st, 2005 through May 1st, 2011. We transform
the two MovieLens datasets into implicit data by setting ratings that are ≥ 3 to “1” and the others
to “0”. We then choose four prevalent methods for comparison, including: (1) PMF [Mnih and
Salakhutdinov, 2008], a classical matrix factorization approach that is widely applied as a benchmark.
(2) WMF [Hu et al., 2008], a standard matrix factorization model for implicit data, which uses a
simple heuristic where all unobserved user-item interactions are equally down weighted against the
observed interactions. (3) FPMC [Rendle et al., 2010], a sequential recommendation algorithm based
on personalized transition graphs over underlying Markov chains. It used a variant of Bayesian
Personalized Ranking (BPR) [Rendle et al., 2009] for optimization. (4) ExpoMF Liang et al. [2016],
a probabilistic approach that incorporates user exposure to items into collaborative filtering. The
baselines are chosen for the following reasons: PMF and FPMC can been seen as sub-models of
H4MF, while they overlook the missing data problem. WMF treats the missing data as a MAR
problem. ExpoMF takes a static method to the MNAR problem. The main goal of the experiments is
to show that how we treat the missing data makes a difference.

We adopt Hit Ratio (HR) and Normalized Discounted Cumulative Gain (NDCG) to measure the item
ranking accuracy of different algorithms. HR measures whether the ground truth item is present
on the ranked list, while NDCG measures the ranking quality by considering the positions of hits.
We follow the definitions of HR and NDCG in [He et al., 2015]. In our study we always report
the averaged HR and NDCG across users. We split the dataset for experiments with the following
strategy: we first sort the historical ratings of each user by time order. Then the last records of users
are used as test data, the second last records are used as validation data, and the remaining records are
used for training. We search for the optimal parameters to maximize the performance on validation
data and evaluate the model on test data. For the parameters of baseline models, we refer to their
original papers and follow their tuning strategies.

5.2 Analysis of Prediction Performance

We report the performance of our methods and baseline models with optimal parameters. For PMF,
we set K = 10. For WMF, we set K = 10, α = 0.4. For ExpoMF, we set λθ = 0.01, λβ = 0.01,
λy = 0.01, and K = 30. For our models, we set λθ = 0.1, λβ = 0.1, λy = 0.1, K = 30, adini = 1,
and bdini = 2. For item constraints, λOuter is set as 1, and λInner is set 10, 1, and 0.1 for MovieLens-
100K, MovieLens-1M, and LastFM, respectively. We show the performance of our methods with
other baseline models in Table 1. As shown in the results, H4MFc achieves higher item ranking
accuracy than the other compared algorithms due to the capability of better capturing the missingness
of implicit feedback. Note that PMF, WMF, ExpoMF, and H4MF model user preference similarly:
they all use a basic matrix factorization method and the main difference is the way they model the
missing data. PMF performs poorly because the datasets are sparse and all the missing entries are
treated as negative feedback. So the positive feedback is overwhelmed by negative feedback, leading
to a biased user preference learning. FPMC has the same reason for its poor performance. Besides, it
is originally proposed for next-basket recommendation. Here we set basket size as 1 as we do not
have basket information, which also limits the effectiveness of FPMC. WMF is better than PMF as it
treats the missing data with a globally fixed low confidence. ExpoMF models exposure variable αui
for every user-item pair so it can capture more information from the missing data compared to WMF
and PMF. H4MF is better than ExpoMF because it considers the dynamic missingness of items. Note
that the experimental results of WMF, ExpoMF, and H4MF are very close; WMF even beats WMF
and H4MF on LastFM. This is because modeling missingness for each missing entry adds model
complexity and is prone to overfitting. On the other hand, the superiority of H4MFc compared to
H4MF proves the effectiveness of the user intent constraints.

5.3 Analysis of User Intents

This section analyzes user intents in three aspects: recommendation overlaps, sensitivity of user
intent number, and interpretation of user intents.

Recommendation Overlaps. In H4MF, we use user preference and user intent for recommendation.
For a particular user with fixed preference, we sample different user intents and see how different
are the recommendation lists. We use the term “recommendation overlap” to denote the ratio of
common items in Top-N recommendation lists generated by two different user intents. A large
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Effectiveness of models
Dataset Metrics PMF FPMC WMF ExpoMF H4MF H4MFc

MovieLens-100K
HR@10 0.0031 0.0021 0.1251 0.1230 0.1317 0.1569
HR@50 0.0296 0.0212 0.3968 0.3478 0.3990 0.4347
NDCG@10 0.0011 0.0007 0.0501 0.0616 0.0583 0.0779
NDCG@50 0.0066 0.0046 0.1203 0.1101 0.1205 0.1367

MovieLens-1M
HR@10 0.0021 0.0034 0.0791 0.0801 0.0805 0.0877
HR@50 0.0093 0.0129 0.2696 0.2808 0.2704 0.3049
NDCG@10 0.0008 0.0087 0.0372 0.0331 0.0408 0.0435
NDCG@50 0.0022 0.0549 0.0800 0.0675 0.0811 0.0897

LastFM
HR@10 0.0012 0.0021 0.0835 0.0736 0.0799 0.0945
HR@50 0.0037 0.0360 0.2144 0.1824 0.1980 0.2298
NDCG@10 0.0004 0.0008 0.0432 0.0352 0.0423 0.0495
NDCG@50 0.0009 0.0074 0.0713 0.0575 0.0639 0.0789

Table 1: Performance of different models on three datasets.
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Figure 2: Performances of proposed models with different numbers of user intents (D).

recommendation overlap indicates that the two user intents have similar missingness mechanisms. We
choose N = 10 and show the average of recommendation overlaps across users in Table 2. We can
see the recommendation overlaps of H4MFc are much smaller than those of H4MF, proving that the
item constraints can reduce the redundancy of user intents. Meanwhile, the recommendation overlaps
decrease both in H4MF and in H4MFc when D increases. This result conforms to our expectations
because our methods can capture more aspects of user intents with a large D.

Recommendation Overlaps of Different User Intents
Dataset Movielens-100K Movielens-1M LastFM

User Intent D=2 D=3 D=2 D=3 D=2 D=3
H4MF H4MFc H4MF H4MFc H4MF H4MFc H4MF H4MFc H4MF H4MFc H4MF H4MFc

U1 vs U2 80% 26% 74% 30% 92% 14% 84% 6% 52% 8% 52% 14%
U2 vs U3 - - 72% 18% - - 78% 2% - - 32% 2%
U1 vs U3 - - 72% 16% - - 78% 2% - - 28% 0%

Table 2: Recommendation overlaps of different user intents on three datasets. U1, U2, and U3
indicate the indices of user intents. The cases of D = 4 and D = 5 are included in the Appendix 1.2.

Sensitivity of User Intent Number. The number of user intents D is vital to the performance of
H4MF. We varied D to train H4MF and presented the prediction results in Figure 2. We can see that
H4MFc performs consistently better than H4MF on all the three datasets. The optimal D is 2 on
three datasets. When D increase after D = 2, the performance decreases monotonously. Note that in
last paragraph we find that the recommendation overlaps decreases when D increase; but this does
not guarantee the recommendation performance because a large D will also add model complexity.

Interpretation of User Intents. User intents could be utilized to interpret user behaviors and provide
explainable recommendations. Table 3 shows a recommendation example of one user in Movielens-
100K under two different user intents. From the results we can see the genres of recommended
movies under user intent 1 are mainly about “Crime” and “Action”, but the genres under user intent
2 are mainly about “Comedy”, “Romance”, and “Drama” (Note that the genre information is not
used in model training). Thus we can infer that the user mainly has two tastes in movies. As H4MF
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can predict the user’s next user intent, we will know which genres the user want to see next and
provide more precise and interpretable recommendations.

User Intent 1 User Intent 2
Movie Name Genres Movie Name Genres
1. Pulp Fiction Crime, Drama 1. Little City Comedy, Romance
2. Fargo Crime, Drama, Thriller 2. The Whole Wide World Drama
3. Star Wars Action, Adventure, Sci-Fi, War 3. Maya Lin: A Strong Clear Vision Documentary
4. The Full Monty Comedy 4. Savage Nights Drama
5. Contact Drama, Sci-Fi 5. Beat the Devil Comedy, Drama
6. The English Patient Drama, Romance, War 6. Ill Gotten Gains Drama
7. Four Weddings and a Funeral Comedy, Romance 7. Withnail and I Comedy
8. The Fugitive Action, Thriller 8. The Inkwell Comedy, Drama
9. The Princess Bride Action, Adventure, Romance 9. Fast, Cheap & Out of Control Documentary
10. Raiders of the Lost Ark Action, Adventure 10. Carrington Drama, Romance
Table 3: Top 10 recommendations for one user on Movielens-100K under two user intents.

5.4 Effectiveness of Item Constraints

To evaluate the effectiveness of item constraints, we tune the λInner and λOuter to observe how
they influence the HR@50 of H4MFc. We fix other parameters as described in Section 5.2 and
show the results in Figure 3. The optimal parameters are λInner = 10, λOuter = 1 for Movielens-
100K, λInner = 1, λOuter = 1 for Movielens-1M, and λInner = 0.1, λOuter = 1 for LastFM. The
optimal λOuter is around 1 for all the three datasets; When it increases, the HR@50 decreases
dramatically. Meanwhile, the optimal λInner varies across datasets and the performance is less
sensitive to the change of λInner. One main reason is that the total item records under user intents are
huge when we have a small D. So the ratio measure σdj is very small for all items and there are fewer
differences among different σdj , which limits the effectiveness of λInner. The black dashed lines are
the performances of H4MF (λInner = 0 and λOuter = 0). We can conclude that H4MFc can achieve
improvements with proper constraints, which supports the effectiveness of the two item constraints.
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Figure 3: Effectiveness of λInner and λOuter in H4MFc.

5.5 Discussions

In this section we first discuss the extensibility and efficiency of H4MF, and then discuss utilization
of item relations in recommendation.

Extensibility. User intent and user preference can be seen as a factorization of user behavior, which
makes H4MF more modular and extensible. We can extend one component without considering the
other component. Moreover, both HMM and MF are well studied techniques and their variants can
bring insights into H4MF. For example, we can use local low-rank MF [Lee et al., 2013] and mixture-
rank matrix approximation [Li et al., 2017] to learn user preference by exploiting the underlying
group information of users and items. We can also use hidden semi-Markov model [Yu, 2010] to
model the durations of user intents: it is always the case that users purchase serveral items to meet
one intent.

Efficiency. A potential limitation of H4MF is the time complexity. The inference of the HMM is a
bottleneck; its theoretical complexity is O(T̂D2) for each iteration of the EM method, where T̂ is the
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length of training data and D is the state number. The experimental runtime results in Appendix 1.3
also reveal that the runtime increases dramatically when D and T̂ increase. In real-world applications
customers’ data are collected accumulatively, so the T̂ will become very large. One of the possible
extensions is to devise an online version of H4MF. Currently there are several studies related to the
online learning of HMM and MF [Mongillo and Deneve, 2008, Mairal et al., 2010], which can be
utilized to make H4MF more scalable.

Item relations in recommendation. Most recommendation algorithms mainly focus on mining
and utilizing the information of item similarity. However, item similarity may lead to meaningless
recommendations (e.g., the phone and phone case example in introduction). The key to address this
issue is to find asymmetric relations of items. Several researchers [McAuley et al., 2015, Wang et al.,
2018b] proposed methods to discriminate substitutes and complements from similar products. But
their methods are supervised and the ground truth of labels are directly extracted from user log files,
which may contain biases and noise. A more principled approach is to apply techniques of causal
discovery to find the directed relations among items. However, current techniques of causal discovery
(e.g, modified PC [Spirtes et al., 2000] and GES [Chickering and Meek, 2002]) may not work well
on the recommendation data as they are extremely sparse and MNAR. Instead in our model, the
asymmetric relations of items are revealed from the temporal data by the dynamical missingness
mechanism. In this regard our H4MF can be seen as a step toward causality-based recommendations
from similarity-based recommendations.

6 Conclusion
In this paper we aim to model and leverage properties of dynamic item missingness to improve
recommendation. We proposed a framework that seamlessly combines HMM and MF to model the
dynamic missing mechanism of implicit feedback for recommendation. To make the user intents less
redundant, we introduced two types of constraints for the missingness variables. Empirical results on
three datasets show that our method not only outperform alternatives but also provide interpretable
recommendations. Further analysis demonstrates the effectiveness of user intent and its constraints.
Future work includes extending H4MF with recent advanced variants of HMM and MF.
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