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Abstract

We study stochastic composite mirror descent, a class of scalable algorithms able
to exploit the geometry and composite structure of a problem. We consider both
convex and strongly convex objectives with non-smooth loss functions, for each
of which we establish high-probability convergence rates optimal up to a loga-
rithmic factor. We apply the derived computational error bounds to study the
generalization performance of multi-pass stochastic gradient descent (SGD) in a
non-parametric setting. Our high-probability generalization bounds enjoy a loga-
rithmical dependency on the number of passes provided that the step size sequence
is square-summable, which improves the existing bounds in expectation with a
polynomial dependency and therefore gives a strong justification on the ability
of multi-pass SGD to overcome overfitting. Our analysis removes boundedness
assumptions on subgradients often imposed in the literature. Numerical results are
reported to support our theoretical findings.

1 Introduction

Stochastic gradient descent (SGD) has found wide applications in machine learning problems due
to its simplicity in implementation, low memory requirement and low computational complexity
per iteration, as well as good practical behavior [2, 6, 28, 32, 41]. As an iterative method, SGD
minimizes empirical errors by moving iterates along the direction of a negative gradient calculated
based on a loss function on a single training example or a batch of few examples. This strategy of
processing few examples per iteration makes SGD particularly suitable for large scale applications
with very large data points [2, 41], which are becoming ubiquitous in the big data era.

Stochastic composite mirror descent (SCMD) is a powerful extension of SGD based on two moti-
vations [12]. Firstly, it relaxes the Hilbert space structure of SGD by using a mirror map to capture
geometric properties of data from a Banach space [4, 25]. Secondly, it exploits the problem structure
by separating, at every iteration, a data-fitting term and a regularization term in structured optimization
problems to obtain a desired regularization effect, which arise naturally since a regularizer is often
introduced to either avoid overfitting or impose a priori information [12, 37].

Although much theoretical analysis has been performed to understand the practical behavior of
SGD and SCMD, the existing theoretical results are still not quite satisfactory. Firstly, most of
the existing theoretical results are stated in expectation which inevitably ignore some information
on high-order moments of the random variable we are interested in. In practice, we may be more
interested in high-probability bounds to understand the variability of the learned model which is
also an important factor we should take into account when measuring the quality of models [32].
Secondly, the existing generalization bounds, stated in expectation, for SGD either are suboptimal
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or require to impose a smoothness assumption on loss functions [13, 21]. Thirdly, a non-trivial
assumption on the boundedness of subgradients is often imposed in the literature to proceed with
the analysis [11, 12, 28, 32], especially in the derivation of high-probability bounds. However, this
boundedness assumption may not hold if the optimization is conducted in an unbounded domain,
under which scenario the derived bounds may not be intuitive.

In this paper, we aim to contribute towards a refined analysis on both convergence rates and gen-
eralization properties of SCMD. We consider both general convex and strongly convex objectives,
for each of which we show that SCMD can achieve almost optimal convergence rates with high
probability, which match the minimax lower rates for stochastic approximation up to a logarithmic
factor [1, 25]. In particular, we identify a constraint on step sizes to guarantee the boundedness of
iterates with high probability (up to a logarithmic factor). Furthermore, we apply these convergence
rates related to computational errors to establish high-probability generalization bounds for the model
trained by SGD through multiple passes over the training examples, which is a typical way of using
SGD to process large datasets [20]. Our generalization bounds do not require to impose smoothness
assumptions on loss functions and can be optimal up to a logarithmic factor. Surprisingly, we show
that estimation errors scale logarithmically with respect to (w.r.t.) the number of passes provided that
the step size sequence is square-summable, which implies that SGD may be immune to overfitting.
As a contrast, estimation error bounds based on stability arguments [13] and uniform deviation
arguments [21] scale polynomially w.r.t. the number of passes, which may not justify well the ability
of SGD in overcoming overfitting in practice. All our theoretical results are derived without any
boundedness assumptions on subgradients based on two tricks. The first trick is to use a self-bounding
property of loss functions (Assumption 1) to show that a (weighted) summation of function values
can be controlled by step sizes (Lemma 2). The second trick is to show that conditional variances of
martingales in a one-step progress inequality of SCMD can be partially offset by some other terms in
the one-step progress inequality.

The paper is organized as follows. We introduce SCMD and state convergence rates in Section 2 and
Section 3, respectively. We study generalization bounds of SGD in Section 4. Discussions are given
in Section 5. Simulation results and conclusions are given in Section 6 and Section 7, respectively.

2 Stochastic Composite Mirror Descent

Many machine learning problems involve optimization problems of a composite structure [12, 37]

min
w∈W

φ(w) = Ez[f(w, z)] + r(w), (2.1)

where W is a Banach space with a norm ‖ · ‖, F (w) := Ez[f(w, z)] is a data-fitting term and
r : W → R+ is a simple regularizer possibly inducing sparsity. Here f : W × Z 7→ R+ is a
function with f(w, z) measuring the quality of a model indexed by w ∈ W on a random example
z = (x, y) drawn from a probability measure ρ̃ defined in a sample space Z = X × Y with an input
space X ⊂ W∗ and an output space Y ⊂ R. We denote by Ez the expectation w.r.t. z, and byW∗
the dual ofW with the dual norm ‖ · ‖∗. A typical choice of the data-fitting term takes the form
f(w, z) = `(〈w, x〉, y), where ` : R × Y 7→ R+ is a loss function and 〈w, x〉 is the dual element
x ∈ W∗ acting on w ∈ W . With specific instantiations of loss functions ` and regularizers r, the
formulation (2.1) covers many famous machine learning problems in a unifying framework, including
least squares, support vector machines, logistic regression, lasso and elastic-net, etc [12, 37].

As an extension of SGD, SCMD uses a strongly convex and Fréchet differentiable mirror map Ψ
to generate an appropriate Bregman distance DΨ(w, w̃) := Ψ(w) − Ψ(w̃) − 〈w − w̃,∇Ψ(w̃)〉 to
capture the involved non-Euclidean geometry [4, 25], where ∇Ψ(w̃) denotes the gradient of Ψ at
w̃. Let w1 = 0 ∈ W and {ηt}t∈N be a positive step size sequence. Upon the arrival of zt at the
t-th iteration, SCMD calculates a subgradient f ′(wt, zt) ∈ ∂wf(wt, zt) as an unbiased estimate of
F ′(wt) ∈ ∂F (wt), and updates the model as follows

wt+1 = arg min
w∈W

ηt
[
〈w − wt, f ′(wt, zt)〉+ r(w)

]
+DΨ(w,wt). (2.2)

Here ∂wf(wt, zt) :=
{
g : f(w, zt)− f(wt, zt) ≥ 〈w−wt, g〉 for all w

}
denotes the subdifferential

of f(·, zt) at wt. Intuitively, SCMD uses f ′(wt, zt) to form a first-order approximation of f(·, zt) at
wt and uses the Bregman distance DΨ(w,wt) to keep wt+1 not far away from the current iterate.
The regularizer r is kept intact here for a regularization effect [12, 37]. A typical choice of Ψ is the
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p-norm divergence Ψp(w) = 1
2‖w‖

2
p (1 < p ≤ 2), which works favorably for sparse problems by

setting p close to 1 [12, 37]. Here ‖ · ‖p is the p-norm defined by ‖w‖p =
(∑d

i=1 |w(i)|p
)1/p

for
w = (w(1), . . . , w(d)) ∈ Rd. SCMD recovers SGD by taking Ψ = Ψ2 and r(w) = 0, stochastic
forward-backward splitting by taking Ψ = Ψ2 [11], stochastic mirror descent by taking r(w) = 0 [24]
and stochastic mirror descent algorithm made sparse by taking Ψ = Ψp and r(w) = λ‖w‖1 [30].

3 Convergence Rates

Before stating our high-probability convergence rates, we introduce some assumptions. Throughout
the paper, we assume that the mirror map Ψ is Fréchet differentiable and σΨ-strongly convex in the
sense that DΨ(w, w̃) ≥ 2−1σΨ‖w − w̃‖2 for all w, w̃ ∈ W ⊂ Rd (σΨ > 0), and f(w, z) is convex
w.r.t. the first argument. We also always assume that Assumption 1 and Assumption 2 hold, the
sample space Z is bounded and supz∈Z f(0, z) <∞.
Assumption 1. We assume that there exist A and B ≥ 0 such that the following inequalities hold
for any w ∈ W, z ∈ Z and any f ′(w, z) ∈ ∂f(w, z), r′(w) ∈ ∂r(w)

‖f ′(w, z)‖2∗ ≤ Af(w, z) +B and ‖r′(w)‖2∗ ≤ Ar(w) +B. (3.1)

This is a standard assumption and satisfied in many practical problems [11, 41]. For example, Lemma
A.5 shows that r(w) = λ‖w‖pp satisfies the second inequality of (3.1) with ‖ · ‖ = ‖ · ‖p(1 ≤ p ≤ 2),
A = 2λp(p − 1) and B = λp(2 − p). Furthermore, if f(w, z) = `(〈w, x〉, y), then Lemma A.4
shows that ‖f ′(w, z)‖2∗ = |`′(〈w, x〉, y)|2‖x‖2∗ would satisfy the first inequality of (3.1) if

|`′(a, y)|2 ≤ Ã`(a, y) + B̃, ∀a ∈ R, y ∈ Y (3.2)

for some Ã, B̃ > 0 [41], where `′(a, y) denotes a subgradient of ` w.r.t. the first argument. Many
popular loss functions satisfy (3.2), including the p-norm hinge loss `(a, y) = max{0, 1 − ya}p
(1 ≤ p ≤ 2) [34], the logistic loss `(a, y) = log(1 + exp(−ya)) for classification, and the p-th
power absolute distance loss `(a, y) = |a − y|p (1 ≤ p ≤ 2), the Huber loss `(a, y) = (a − y)2 if
|a− y| ≤ 1 and `(a, y) = 2|a− y| − 1 otherwise for regression [41]. We refer the interested readers
to [41] for constants Ã, B̃ in (3.2) with different loss functions `.
Assumption 2. We assume the existence of σF , σr ≥ 0 such that

F (w)− F (w̃)− 〈w − w̃, F ′(w̃)〉 ≥ σFDΨ(w, w̃),

r(w)− r(w̃)− 〈w − w̃, r′(w̃)〉 ≥ σrDΨ(w, w̃)
(3.3)

hold for all w, w̃ ∈ W and any F ′(w̃) ∈ ∂F (w̃), r′(w̃) ∈ ∂r(w̃).

The case σφ := σF + σr = 0 corresponds to general convex objectives, while the case σφ > 0
corresponds to strongly convex objectives. Let w∗ = arg minw∈W φ(w) be the minimizer of φ inW
with the minimal norm. We always assume ‖w∗‖ <∞ in this paper.

Our theoretical analysis is based on the following lemma quantifying the one-step progress of SCMD
measured by Bregman distance, which shows how DΨ(w,wt) would change in a single iteration.
Lemma 1. Let {wt}t∈N be generated by (2.2), then the following inequality holds for any w ∈ W

DΨ(w,wt+1)−DΨ(w,wt) ≤ ηt〈w − wt, f ′(wt, zt)〉+ ηt(r(w)− r(wt))
+ σ−1

Ψ η2
t

(
Af(wt, zt) +Ar(wt) + 2B

)︸ ︷︷ ︸
:=At

−σrηtDΨ(w,wt+1). (3.4)

Existing one-step progress inequality can be found in the literature with At replaced by Bt :=
‖f ′(wt, zt)‖2∗ + ‖r′(wt)‖2∗, see, e.g., [12]. Then, a non-trivial assumption as Bt ≤ G for all t ∈ N
and aG ∈ R is imposed to control

∑T
t=1 η

2
tBt byO(

∑T
t=1 η

2
t ). We refine these discussions by using

Assumption 1 to replace Bt with At. Equation (3.6) allows us to control
∑T
t=1 η

2
tAt by O(

∑T
t=1 η

2
t )

without imposing any boundedness assumptions on subgradients. In our discussion for strongly
convex objectives, we require to divide both sides of (3.4) by η2

t . In this way, Eq. (3.7) plays an
analogous role in removing boundedness assumptions in the strongly convex case. Both proofs of
Lemma 1 and Lemma 2 are given in Supplementary Material B.
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Lemma 2. Let {wt}t∈N be the sequence produced by (2.2) with ηt ≤ (2A)−1σΨ. Then, we have

‖wt+1‖2 ≤ 2C1σ
−1
Ψ

t∑
k=1

ηk, ∀t ∈ N, (3.5)

where C1 = supz∈Z f(0, z) + r(0) +A−1B. Furthermore, if ηt+1 ≤ ηt, then for all t ∈ N
t∑

k=1

η2
k

(
f(wk, zk) + r(wk)

)
≤ 2C1

t∑
k=1

η2
k, (3.6)

t∑
k=1

(
f(wk, zk) + r(wk)

)
≤ 2C1t+ 2C1

( t∑
k=1

ηk
)
η−1
t . (3.7)

3.1 Convex Objectives

We study the behavior of SCMD for convex objectives with σφ = 0. The assumption
∑∞
t=1 η

2
t <∞

is satisfied if ηt = η1t
−θ with θ > 1/2 or ηt = η1(t logβ(et))−

1
2 with β > 1. Our idea is to take

a summation of Eq. (3.4) with w = w∗, and show that the conditional variance of the involved
martingale

∑t
k=1 ηk〈w∗ − wk, f ′(wk, zk)− Ezk [f ′(wk, zk)]〉 can be partially offset by some other

terms. The proofs of Theorems 3 and 4 are given in Supplementary Material C.
Theorem 3. Let {wt}t∈N be the sequence produced by (2.2) with ηt ≤ (2A)−1σΨ, ηt+1 ≤ ηt and∑∞

t=1 η
2
t <∞. Then, there exists a constant C2 independent of T (explicitly given in the proof) such

that for any δ ∈ (0, 1) the following inequality holds with probability at least 1− δ

max
1≤t≤T

‖wt‖2 ≤ C2 log
T

δ
. (3.8)

Remark 1. Although implemented in a possibly unbounded domain, Theorem 3 shows that {wt}t∈N
by (2.2) falls into a bounded ball (up to a logarithmic factor) with high probabilities. Intuitively, this
suggests that SCMD is immune to overfitting if we take appropriate step sizes. In this case, we can
run SCMD with many iterations without essentially harming the quality of the output model.

Based on Theorem 3, we establish high-probability convergence rates for a weighted average of
iterates without any assumptions on the boundedness of iterates. In Theorem 4 and Corollary 5, we
establish bounds on suboptimality of objectives w.r.t. any w and an optimal solution w∗, respectively.

Theorem 4. Let w ∈ W and δ ∈ (0, 2/e). Let w̄(1)
T =

(∑T
t=1 ηt

)−1∑T
t=1 ηtwt be a weighted

average of the first T iterates. Under the conditions of Theorem 3, with probability 1− δ we have

φ(w̄
(1)
T )− φ(w) ≤

( T∑
t=1

ηt

)−1(
2C3DΨ(w, 0) + C4

)
log

3
2

2T

δ
, (3.9)

where C3 and C4 are two constants (explicitly given in the proof) independent of T .
Remark 2. A similar high-probability bound was established for SCMD in [12]. However, their
discussion needs to impose an additional almost-sure boundedness assumption on iterates, i.e.,
‖wt‖2 ≤ G for a G > 0 and all t ∈ N. These boundedness assumptions on either subgradients
or iterates are fundamental to the existing analysis but hard to check in practice. Moreover, the
high-probability analysis makes these assumptions non-trivial to remove since one also needs to
consider high-order moments of random variables.
Corollary 5. If δ ∈ (0, 2/e) and conditions of Theorem 4 are satisfied, then (3.9) holds with
probability 1 − δ with w = w∗. Furthermore, if we choose ηt = η1t

−θ with θ > 1/2, then with
probability 1−δ we have φ(w̄

(1)
T )−φ(w∗) = O

(
T θ−1 log

3
2 T
δ

)
; if we choose ηt = η1(t logβ(et))−

1
2

with β > 1, then with probability 1− δ we have φ(w̄
(1)
T )− φ(w∗) = O

((
T−1 logβ T

) 1
2 log

3
2 T
δ

)
.

The convergence rate O
((
T−1 logβ T

) 1
2 log

3
2 T
δ

)
in Corollary 5 is optimal up to a logarithmic

factor [1], which follows directly from Theorem 4 and
∑T
t=1 t

−θ ≥ (1− θ)−1(T 1−θ− 1), θ ∈ (0, 1).
We omit the proof for brevity.
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In Theorem 6, we give sufficient conditions for the almost sure finiteness of limt→∞DΨ(w∗, wt)
and

∑∞
t=1 ηt

(
φ(wt) − φ(w∗)

)
. As a direct corollary, we also establish convergence rates with

probability one in Corollary 7. Theorem 6 is a part of Proposition E.3 to be presented and proved in
Supplementary Material E, while the proof of Corollary 7 is omitted for brevity.
Theorem 6. Consider {wt}t∈N by (2.2) with

∑∞
t=1 η

2
t <∞. Then {DΨ(w∗, wt)}t converges almost

surely (a.s.) to a non-negative random variable and limt→∞DΨ(w∗, wt) <∞ a.s.. Furthermore, if
ηt ≤ (2A)−1σΨ and ηt+1 ≤ ηt, then

∑∞
t=1 ηt

(
φ(wt)− φ(w∗)

)
<∞ a.s..

Corollary 7. Let {wt}t∈N be produced by (2.2) and η1 ≤ (2A)−1σΨ. If we choose ηt = η1t
−θ with

θ > 1/2, then limT→∞ T 1−θ(φ(w̄
(1)
T ) − φ(w∗)

)
< ∞ a.s.. If we choose ηt = η1(t logβ(et))−

1
2

with β > 1, then limT→∞
(

T
logβ T

) 1
2
(
φ(w̄

(1)
T )− φ(w∗)

)
<∞ a.s..

3.2 Strongly Convex Objectives

We now turn to strongly convex objectives with σφ > 0. In Theorem 8, we establish high-probability
bounds for both ‖wt − w∗‖2 and φ(w̄

(2)
t ) − φ(w∗) with w̄(2)

t being another weighted average of
the first t iterates, for each of which we derive optimal convergence rates up to a logarithmic factor
[1]. The optimality means that not only the dependency on t but also the dependency on the strong-
convexity parameter σφ can not be improved up to a logarithmic factor [16, 28] (σφ is often chosen
to be very small in practical learning problems [28, 31]). It should be mentioned that our analysis
removes boundedness assumptions on subgradients in the literature [28]. Our idea is to take a
weighted summation of (3.4) with w = w∗, and show that the conditional variance of an involved
martingale

∑t
k=1(k + t0 + 1)〈w∗ − wk, f ′(wk, zk) − Ezk [f ′(wk, zk)]〉 can be partially offset by

another term in this weighted summation of (3.4), which is another trick to remove boundedness
assumptions on subgradients. We also give a sufficient condition on the almost sure convergence of
wt to w∗ in Theorem 9. The proof of Theorem 8 is given in Supplementary Material D. Theorem 9 is
a part of Proposition E.3 to be presented in Supplementary Material E.

Theorem 8. Assume σφ > 0 and δ ∈ (0, e−
1
4 ). Let {wt}t∈N be produced by (2.2) with ηt =

2
σφt+2σF+σφt0

, where t0 ≥
16A log T

δ

σφσΨ
. Let w̄(2)

t =
(∑t

k=1(k+t0+1)
)−1∑t

k=1(k+t0+1)wk, t ∈ N.
Then, the following inequalities hold with probability 1− δ for all t = 1, . . . , T

‖w∗ − wt‖2 ≤
CT

t+ t0 + 1
and φ(w̄

(2)
t )− φ(w∗) ≤ C̃T

t
. (3.10)

Moreover, the dependencies of CT and C̃T on T/δ are logarithmic. The dependencies of CT and C̃T
on σ−1

φ are quadratic and linear, respectively.

Theorem 9. Let {wt}t∈N be the sequence produced by (2.2) with σφ > 0. If
∑∞
t=1 ηt = ∞ and∑∞

t=1 η
2
t <∞, then limt→∞DΨ(w∗, wt) = 0 a.s..

4 Generalization Error Bounds

Here we apply our high-probability convergence rates for SCMD to establish generalization error
bounds for SGD. In this setting, we assume a training sample z = {z1, . . . , zn} of size n ∈ N is drawn
independently from a probability measure ρ defined on the sample space Z , and our aim is to learn a
hypothesis h : X 7→ R from a hypothesis spaceW with good generalization performance. The quality
of h at (x, y) is quantified by `(h(x), y), where ` : R× Y 7→ R+ is convex w.r.t. the first argument.
The generalization error and empirical error of h are defined respectively by E(h) = Ez

[
`(h(x), y)

]
and Ez(h) = 1

n

∑n
i=1 `

(
h(xi), yi

)
. The best model minimizing the generalization error then becomes

hρ = arg minh E(h). We consider a non-parametric learning setting withW being a reproducing
kernel Hilbert space (RKHS) associated to a Mercer kernel K : X × X 7→ R which is continuous,
symmetric and positive semi-definite [9, 34]. In this learning setting, the candidate models take the
form hw(x) = 〈w,Kx〉 with w ∈ W . For brevity, we denote the norm in the RKHSW by ‖ · ‖2
and introduce abbreviations E(w) = E(hw), Ez(w) = Ez(hw). We assume (3.2) and apply the SGD
scheme to minimize Ez(w). To be specific, we let w1 = 0. At the t-th iteration, we randomly choose
an index jt from the uniform distribution over {1, . . . , n} and produce wt+1 by

wt+1 = wt − ηt`′
(
〈wt,Kxjt

〉, yjt
)
Kxjt

, t ∈ N. (4.1)
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It is clear that (4.1) is a specific instantiation of (2.2) with Ψ(w) = 1
2‖w‖

2
2, f(w, z) =

`(〈w,Kx〉, y), r(w) = 0 and ρ̃ in Section 2 being the uniform distribution over {z1, . . . , zn}2.
Therefore, the objective function to which SGD is applied becomes φ(w) = Ez(w).

To state our generalization bounds, we need to introduce an assumption on a polynomial decay rate
of approximation errors.
Assumption 3. We assume the approximation errorD(λ) := infw∈W E(w)−E(hρ)+λ‖w‖22 enjoys
a polynomial decay with exponent 0 < α ≤ 1 in the sense D(λ) ≤ cαλα,∀λ > 0, where cα > 0.
Remark 3. Assumption 3 is standard in learning theory and satisfied under some mild conditions
on the smoothness of the function hρ and the representation power of W [9, 33]. If ` is smooth,
then D(λ) can be controlled by D̃(λ) := infw∈W ‖hw − hρ‖2L2

ρX
+ λ‖w‖22, which quantifies the

approximation of hρ by RKHS in L2
ρX (square-integrable function class with marginal measure

ρX ) and is well studied in approximation theory. D̃(λ) decays polynomially with α ∈ (0, 1] if
hρ ∈ Lα/2K (L2

ρX ), where LK : L2
ρX 7→ L2

ρX is the integral operator associated to K [9, Proposition
8.5]. Similar results hold if ` is Lipschitz continuous. Assumption 3 also holds if we use Gaussian
kernels with flexible variances and distributions with geometric noise conditions [35]. It should be
mentioned that kernels need not to be universal for Assumption 3 since it concerns the target function
hρ, which may admit more regularity (e.g., expressed by LK) than continuity, while universality
means that D(λ)→ 0 as λ→ 0 for all continuous hρ [34].

We now establish a generalization error bound for a weighted average of iterates produced by (4.1) to
be proved in Supplementary Material F, which is derived by decomposing the excess generalization
error E(w̄

(1)
T ) − E(hρ) into three components: an estimation error, an approximation error and a

computational error. As we will see in the proof, the term
(∑T

t=1 ηt
)−α

is due to the approximation
and computational error, while the term n−

α
1+α is due to the estimation and approximation error. The

bound becomes n−
α

1+α log
3
2 8T

δ for sufficiently large T , which enjoys a logarithmic dependency on
T and demonstrates the ability of SGD to avoid overfitting.
Theorem 10. Let {wt}t∈N be the sequence produced by (4.1) with ηt ≤ (2A)−1σΨ, ηt+1 ≤ ηt
and

∑∞
t=1 η

2
t < ∞. Suppose Assumption 3 holds. Then, for any T satisfying

∑T
t=1 ηt ≥ 1 and

δ ∈ (0, 2/e), the following inequality holds with probability at least 1− δ

E(w̄
(1)
T )− E(hρ) ≤ C5 max

{( T∑
t=1

ηt

)−α
, n−

α
1+α

}
log

3
2

8T

δ
, (4.2)

where C5 is a constant independent of T (explicitly given in the proof).

We consider specific step sizes in Theorem 10 and choose an appropriate time index to get concrete
generalization bounds, as shown in Corollary 11. The bound O

(
n−

α
1+α log

3+αβ
2 n

δ

)
coincides with

O(n−
α

1+α log n) (up to a logarithmic factor) in expectation for convex and smooth loss functions [21],
and largely improves the bound O(n−

α
1+2α log n) in expectation for convex and non-smooth loss

functions [21]. In particular, if α = 1 we derive the optimal bound O(n−
1
2 log

3+β
2 n

δ ) in a general
case with neither Bernstein conditions on variances nor capacity assumptions on hypothesis spaces
(up to a logarithmic factor). It is also clear that SGD with different step sizes can achieve similar
generalization bounds. However, the computational complexity to fulfill this statistical potential can
be significantly different. Corollary 11, with the proof omitted, follows directly from Theorem 10
and

∑T
t=1 t

−θ ≥ (1− θ)−1(T 1−θ − 1), θ ∈ (0, 1). Denote dae the least integer no less than a.

Corollary 11. Consider {wt}t∈N by (4.1) and δ ∈ (0, 2/e). Let Assumption 3 hold and
∑T
t=1 ηt ≥ 1.

(a) If we take ηt = η1t
−θ with η1 ≤ (2A)−1 and θ ∈ (1/2, 1), then with probability 1− δ that

E(w̄
(1)
T )− E(hρ) = O

((
T−α(1−θ) + n−

α
1+α

)
log

3
2
T

δ

)
.

If we further take T ∗ =
⌈
n

1
(1+α)(1−θ)

⌉
, then we get E(w̄

(1)
T∗ )− E(hρ) = O

(
n−

α
1+α log

3
2 n
δ

)
.

2ρ is related to the draw of training examples while ρ̃ is related to the draw of indices for SGD.
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(b) If we take ηt = η1(t logβ(et))−
1
2 with η1 ≤ (2A)−1 and β > 1, then with probability 1− δ that

E(w̄
(1)
T )− E(hρ) = O

((
T−

α
2 log

αβ
2 T + n−

α
1+α

)
log

3
2
T

δ

)
.

If we further take T ∗ =
⌈
n

2
1+α
⌉
, then we get E(w̄

(1)
T∗ )− E(hρ) = O

(
n−

α
1+α log

3+αβ
2 n

δ

)
.

It should be noted that our discussions depend on the existence of a minimizer of Ez(·) over the RKHS
with a finite norm. This assumption can be relaxed to the existence of a minimizer of E(·) over the
RKHS with a finite norm to derive similar generalization bounds. Indeed, one can perform deductions
similar to the proof of Theorem 3 by taking w in (3.4) to be the minimizer of E(·). However, in this
case it becomes a challenge to derive estimation error bounds with a logarithmic dependency on T .

5 Related Work and Discussions

5.1 Convex Objectives

For general convex objectives, regret bounds O(
√
T ) were established for online gradient descent

with T iterations [44], from which one can directly derive convergence rates O(T−
1
2 ) for SGD

with some averaging schemes. This result was extended to stochastic forward-backward split-
ting [11]. A convergence rate O(T−

1
2 log T ) was established for the T -th individual iterate of

SGD [32]. All the above mentioned rates were stated in expectation and derived based on an
assumption E[‖f ′(wt, zt)‖2∗ + ‖r′(wt)‖2∗] ≤ G for a G ≥ 0 and t ∈ N. This boundedness as-
sumption was successfully removed for studying convergence rates in expectation under some
smoothness assumption [23, 40, 42] or Assumption 1 [30]. As compared to these convergence
rates in expectation, high-probability convergence rates were much less studied and were often
based on a stronger assumption on the almost sure boundedness of subgradients. Under the assump-
tion max{DΨ(w∗, wt), supz ‖f ′(wt, z)‖∗} ≤ G for a G > 0 and all t ∈ N, it was shown with
probability 1− δ that φ(w̄

(1)
T )− φ(w∗) = O

(
T−

1
2 log

1
2 1
δ

)
for w̄(1)

T defined in Theorem 4 [12, 24].
High-probability bounds were also established for stochastic dual averaging under the boundedness as-
sumption on iterates and subgradients [37]. In our discussion, we show that the same high-probability
convergence rate (up to a logarithmic factor) holds without any boundedness assumptions on either
the iterates {wt} or the associated subgradients. In particular, we show that {wt}t≤T automatically
falls into a ball with radius O(

√
log T/δ) with high probability. It was shown with probability

1 − δ that ‖wt − w∗‖22 = O(‖w∗‖22 log T
δ ) for the particular SGD [19]. However, the discussion

in [19] requires a stronger assumption on the Hölder continuity of loss functions which excludes
non-differentiable loss functions such as hinge loss and the absolute loss satisfying (3.2). Secondly,
they only consider the one-pass SGD where each training example is used only once.

We also give a sufficient condition for almost sure finiteness of
∑∞
t=1 ηt

(
φ(wt) − φ(w∗)

)
, while

most results on almost sure convergence are achieved for strongly convex objectives.

5.2 Strongly Convex Objectives

For λ-exp-concave loss functions, a regret bound O(λ−1 log T ) was established for an online Newton
method [15], which implies convergence rates O

(
(λT )−1 log T

)
for some average of iterates pro-

duced by the stochastic counterpart. This result was extended to online forward-backward splitting
[11] and SCMD [12] applied to λ-strongly convex objectives. Optimal convergence rates O((λT )−1)
for the suboptimality of objective values were derived based on a suffix averaging scheme [28], a
epoch-GD scheme based on a doubling trick [14] and a weighted averaging with a weight of t+ 1 for
wt [16]. However, the above mentioned results are all associated to convergence rates in expectation
and require to impose boundedness assumptions on subgradients encountered during the iterations.
This boundedness assumption was relaxed as Ez[‖f ′(wt, z)‖2∗] ≤ A1 +B1‖F ′(wt)‖2∗ for SGD [6]
with A1, B1 ≥ 0, which was further removed for SGD [26] and stochastic mirror descent [17] by
imposing smoothness assumptions on loss functions. All the above mentioned results are stated in ex-
pectation. With probability 1−δ, it was shown ‖wT−w∗‖2 = O

(
(λ2T )−1+(λT )−1 log(δ−1 log T )

)
for SGD [28]. High-probability convergence rates O

(
(λT )−1 log(δ−1 log T )

)
were also established

for the suboptimality of objective values for the T -th iterate of the epoch-GD [14]. These two high-
probability rates were derived based on an assumption on almost sure boundedness of subgradients
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which is more challenging to remove [14, 28]. As a comparison, we establish the same convergence
rate (up to a logarithmic factor) for a more general SCMD without boundedness assumptions on
subgradients. Sufficient conditions as in Theorem 9 were established for almost sure convergence of
SGD [5, 26] and stochastic mirror descent [17], which were extended to SCMD in Theorem 9.

5.3 Generalization Error Bounds

While computational complexity of SGD has been extensively studied in the optimization community,
there is much less work on the generalization property of the model trained by SGD. Classical
generalization bounds only hold for one-pass SGD [24, 27, 28, 32, 36, 38, 39] where each training
example can be used at most once. In practice, however, multiple passes are often used to produce a
model with good generalization behavior [13]. The landmark work in [7] developed a framework
to analyze generalization performance of multi-pass stochastic learning algorithms by taking into
account the computational complexity of learning algorithms. Under this framework, the interplay
among estimation errors, computational errors and approximation errors can be studied, showing that
an implicit regularization can be achieved in the absence of penalization or constraints by tuning either
the step size or the number of passes (the iteration number divided by the training set size) [13, 20, 21,
29]. In a parametric setting, it was shown that SGD is algorithmically stable and the stability measure
of SGD with T iterates scales as O(n−1

∑T
t=1 ηt) [13], based on which a generalization bound

E[E(w̄
(1)
T )]− infw∈W E(w) = O(n−

1
2 ) was established for ηt = O(1/

√
n) and T = O(n) without

considering approximation errors. The discussion in [13] requires to impose a smoothness assumption
on loss functions. Generalization analysis was considered separately for smooth and non-smooth loss
functions [21]. For smooth loss functions, it was shown E[E(w̄

(1)
T )]− E(hρ) = O(n−

α
1+α log n) for

ηt = η1/
√
t with T = dn

2
α+1 e [21], based on the stability property of SGD established in [13]. For

non-smooth loss functions, it was shown E[E(w̄
(1)
T )]− E(hρ) = O(n−

α
2α+1 log n) for ηt = η1/

√
t

and T = dn
2

2α+1 e, by controlling estimation errors with Rademacher complexities [3, 21]. Still,
the bounds in [13, 21] require to impose a boundedness assumption on subgradients and are stated
in expectation. As a comparison, we establish high-probability bounds without any boundedness
assumptions on subgradients. Furthermore, our generalization analysis extends the analysis in [13] to
non-smooth loss functions and substantially improve the bound O(n−

α
2α+1 log n) [21] in this setting.

The generalization error bound O
(
n−

α
1+α log

3+αβ
2 n

δ

)
in Corollary 11 is optimal in the sense that it

matches the best available bound for Tikhonov regularization (up to a logarithmic factor) [9, 21, 34].

We achieve this improvement by controlling better estimation errors. Specifically, estimation errors
were shown to scale polynomially w.r.t. the number of passes [13, 21], which dominate the other two
errors for large T . In this way, one needs to tune T to balance the estimation, approximation and
computational errors. As a comparison, we show bounds scaling logarithmically w.r.t. the number of
passes for E(w̄

(1)
T )−Ez(w̄

(1)
T ) (Theorem 10). This implies that estimation errors will never essentially

dominate the other two errors and one can run SGD with a sufficient number of passes with little
overfitting if step sizes are square-summable, due to the key observation on the almost boundedness
of iterates established in Theorem 3. Another trick in getting almost optimal bounds includes the
use of Assumption 3 to control E(wλ) − Ez(wλ) with a linear (instead of quadratic) function of
supz f(wλ, z) and to select a suitable λ, where wλ = arg minw∈W E(w)+λ‖w‖22. Optimal learning
rates were given for multi-pass SGD with the least squares loss function [10, 20, 29]. However,
their analysis is based on an integral operator approach and does not apply to general loss functions.
Generalization bounds for SGD were also studied from a PAC-Bayesian perspective [22]. However,
the high-probability bounds there require to impose Lipschitz continuity, smoothness and strong
convexity assumptions on loss functions, and ignore computational and approximation errors [22].

6 Simulations

Our analysis implies that SGD can be run with a sufficient number of iterations with little overfitting
if step sizes are square-summable, which meanwhile can achieve similar generalization performance
with different computational complexities. In this section, we include some experimental results to
validate these theoretical findings. We apply SGD (4.1) with a linear kernel Kx = x and the hinge
loss `(a, y) = max{0, 1− ya} to several binary classification datasets (ADULT, GISETTE, IJCNN,
MUSHROOMS, PHISHING and SPLICE). All these datasets, described in Supplementary Material
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G, can be download from the LIBSVM website [8]. We consider polynomially decaying step sizes of
the form ηt = 5t−θ with θ ∈ {0.25, 0.51, 0.75} (we consider θ = 0.51, instead of θ = 0.5, since the
associated step size sequence is square-summable). We repeat experiments 12 times and report the
average of results. In Figure 1, we plot test errors of w̄(3)

t =
(∑t

k=t̃+1 ηk
)−1∑t

k=t̃+1 ηkwk versus
the number of passes (the iteration number divided by the training set size), where t̃ = 2blog2 tc−1.
Intuitively, w̄(3)

t returns an α-suffix average of iterates [28] with α ∈ [1/2, 3/4] and one can adapt the
proof of Theorem 4 to show that w̄(3)

t enjoys similar generalization bounds as w̄(1)
t . Moreover, w̄(3)

t

is easily computable on-the-fly by storing only
∑k
j=1 ηjwj with k = 20, 21, 22, . . .. From Figure 1,

we see that SGD is resistant to overfitting for appropriate step sizes. For example, we observe no
overfitting even if the number of passes exceeds 1000 for SGD with θ ∈ {0.51, 0.75}. Moreover,
SGD with θ ∈ {0.51, 0.75} can achieve similar generalization errors on ADULT, IJCNN, PHISHING
and SPLICE, towards which SGD with θ = 0.51 requires a significantly smaller number of passes.
This is well consistent with Corollary 11.
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Figure 1: Test errors versus the number of passes.

7 Conclusions

In this paper, we establish a rigorous theoretical foundation for SCMD by providing optimal conver-
gence rates (up to a logarithmic factor) in the stochastic optimization setting without boundedness
assumptions on either subgradients or iterates, which in turn also shed new insights on the generaliza-
tion behavior of the multi-pass SGD in the statistical learning theory setting. In particular, we justify
the immunity of multi-pass SGD to overfitting by giving estimation error bounds with a logarithmic
dependency on the number of passes for square-summable step sizes, while existing bounds scale
polynomially [13, 21]. This improvement is based on the key observation on the almost boundedness
of iterates with high probability. Our generalization analysis of SGD also substantially improves
learning rates in [21], removes bounded subgradient assumptions in [13, 21, 22], removes smoothness
assumptions in [13, 22] and is performed in high probability instead of in expectation [13, 21]. It
would be interesting to extend our results to a non-convex setting [43] and to general mirror descent
algorithms with a non-differentiable mirror map [18].
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