
A Experiment details

We evaluate the performance of the maximum likelihood estimator and majority vote estimator
that are described in Section 3. For maximum likelihood estimator, we have implemented both the
Hungarian Algorithm and Greedy Algorithm.

Some of the examples used were quite difficult: See Figure 4.

Mixture of Gaussians We begin our experiment with synthetic data where F ∗ =
∑
k λ
∗
kf
∗
k is a

mixture of Gaussian with λ∗k being randomly drawn from a uniform distribution U(0, 1) (normalized
afterwards) and f∗k being a Gaussian density. The f∗k were arranged on a square grid with randomly
generated PSD covariance matrices and then normalized by multiplying by a random scale factor
a ∼ U(0.3, 0.6).

There are three main parameters of interest in the experiments: 1) The number of clusters K, 2) The
degree of separation among the Gaussians, and 3) The dimension of the mixture model.

To explicitly control how well-separated the Gaussians are, we shrink the expectations of the Gaus-
sians towards the origin using a parameter η where η can be 1, 0.75, 0.5. We design the means of
the Gaussians so that they are on a grid centered at the origin. The mean of the Gaussian is thus
given by η × µ∗k, where µ∗k is the mean of the kth density. When η = 1, components in the mixture
are well-separated where {f∗k}Kk=1 have no or very little overlap within one standard deviation. The
smaller the η is, the more cluttered the components are. For each choice of dimension (either 2 or
10), K can be {2, 4, 9, 16}.
We first sample 50 sets of samples with each set of size n = 99. Then, we evaluate the algorithms at
n = 3, 6, ..., 99. To make sure that the performance of the three algorithms at different sample size is
comparable, we add 3 labeled samples every time when the sample size is incremented. Thus at each
sample size n, the algorithms are tested on the 50 different datasets.

Perturbed mixture of Gaussian In this setting, we test the case where Λ∗ is unknown and the
algorithms only have access to its perturbed version Λ. Similar to the above setups, we sample n
labeled data using Λ∗. However, instead of feeding the algorithms with n labeled samples and Λ∗,
we give the algorithm Λ where mixture weights are shifted: Each dimension of the means of the
Gaussians are shifted by a random number drawn from N (0, 0.1) and the variance of each Gaussians
is scaled by either 0.5 or 2 (chosen at random).

Mixture of Gaussian mixtures and its perturbation The experiment of the mixture of Gaussian
mixtures is similar to the one of mixture of Gaussian. In this case, each f∗k is a Gaussian mixture. We
also controlled the separation condition by shrinking the expectation of each Gaussian towards the
origin where η = 1 or 0.5.

MNIST and corrupted MNIST We train 10 kernel density estimator (one per digit) with band-
width being 1 for {fk}10

k=1 using 60, 000 training data points. The algorithms are then tested using
the unseen test data and the learned densities {fk}10

k=1. (Note that the density estimation in this case
may not be perfect but because each cluster is well-separated, both MLE and majority vote estimator
still perform well.)

We then test, under corruption of the labeled samples from the test set, how the three algorithms
behave. With probability 0.1, the label of the sampled data is changed to an incorrect label.

Classification Accuracy We also compared the classification accuracy of our proposed SSL esti-
mators (MLE and MV) with a canonical supervised baseline for MNIST, the LeNet convolutional
neural network. Similar as before, we used the training set in the MNIST dataset as our unlabeled
samples to learn the mixture model by training a kernel density estimator per digit. We randomly
sampled 99 labeled samples as our training data for the SSL estimators and LeNet. We then tested
the learned classifier on 1, 000 random test points. As seen in Figure 3, our estimators attained higher
accuracy faster with fewer samples. It is also interesting to see that the SSL estimators stopped
increasing their performance once the accuracy reached ≈ .962. This is due to the fact that the kernel
density estimation was not perfect. And as our theory suggested, the performance plateaus due to the
gap W1(Λ,Λ∗).
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Figure 3: (a) shows the performance of MLE
(Hungarian - Green; Greedy - Blue) and MV
(Red) when K = 16 for n > 99. The three
rows corresponds to η = 1, 0.75, 0.5. In (b),
we show the classification accuracy of the
three estimators on MNIST and LeNet (Yel-
low) trained on the labeled samples. In both
cases, the solid line and dashed line corre-
spond to the performance when Λ∗ = Λ and
Λ∗ 6= Λ, respectively.

Figure 4: Some examples used in the experiments.
Depicted are contour lines of the densities for one
standard deviation from the mean. (top) Mixture
of Gaussians with K = 16. (bottom) Nonparamet-
ric mixture of Gaussian mixtures; each Gaussian
component is coloured according to the class label
it generates.
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B Discussion of conditions

Here we have a simple experiment with the underlying distribution being a mixture of two Gaussians:

F =
1

2
λ∗1 +

1

2
λ∗2 =

1

2
N (−µ, 1) +

1

2
N (µ, 1)

where µ is a small positive number indicating the separation between two Gaussians. We would like
to compare the number of samples needed to recover the true permutation π∗ with probability (1− δ)
for both MLE and MV.

Our experiments show that both estimators have roughly O(µ−2) sample complexity when µ→ 0+,
but MV needs about 4 times as many samples as the MLE. In fact, our theory can verify the
sample complexity of MV: The gap ∆MV is Φ(µ)− Φ(−µ) = O(µ) and the sample complexity has
log(K/δ)/∆2

MV dependence with ∆MV, which gives exactly O(µ−2). Here Φ(µ) is the cumulative
distribution function of standard normal random variable. Unfortunately, the intractable form of the
dual functions β∗b makes similar analytical comparisons difficult.

C Proofs

C.1 Proof of Theorem 4.1

Proof. Denote a maximizer of the expected log-likelihood by π̃ ∈ arg maxE∗`(π; Λ) and define
∆(π) = E∗`(π̃; Λ, X, Y ) − E∗`(π; Λ, X, Y ). Note that ∆(π) ≥ ∆ > 0 for all π 6= π̃. Define
Aπ(t) = {|`(π; Λ, X, Y )− E∗`(π; Λ, X, Y ))| < t}.
Then for any t < ∆/2 ≤ ∆(π)/2, on the event ∩πAπ(t) we have

`(π̃; Λ, X, Y ) > E∗`(π̃; Λ, X, Y )− t
> E∗`(π; Λ, X, Y ) + ∆(π)− 2t

> `(π; Λ, X, Y ) ∀π 6= π̃.

Invoking Lemma D.1 with gk(X,Y ) = log λkfk(X,Y ), we have

P(∩πAπ(t)) = P
(
∀π,

∣∣∣ 1
n

n∑
i=1

`(π̃; Λ, X(i), Y (i))− E∗`(π̃; Λ, X(i), Y (i))
∣∣∣ ≤ t)

≥ 1− 2K2 exp(− inf
k

inf
b
nkβ

∗
b (t))

Therefore, making the arbitrary choice of t = ∆/3,

P(π̂ = π̃) = P
(
`(π̃; Λ, X, Y ) > `(π; Λ, X, Y ) ∀π 6= π̃

)
≥ 1− 2K2 exp(− inf

k
inf
b
nkβ

∗
b (∆/3)).

Since ∆ > 0 =⇒ π∗ = π̃, the desired result follows.

C.2 Proof of Proposition 4.2

Proof. Let p(x, y) = λ∗π∗(y)f
∗
π∗(y)(x), q(x, y) = λπ(y)fπ(y)(x), so that

E∗`(π∗; Λ∗, X, Y )− E∗`(π; Λ, X, Y ) = E∗ log(p(x, y))− E∗ log(q(x, y))

=

ż

x

∑
y

p(x, y) log
p(x, y)

q(x, y)
dx

= KL(p || q)
≥ 0.

The equality holds if and only if p(x, y) = q(x, y) holds for all x, y.
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C.3 Proof of Theorem 4.3

Proof. We have

P(π̂ = π) = P
(
π̂(b) = b︸ ︷︷ ︸
Eb

∀b ∈ [K]
)

= P
( K⋂
b=1

Eb
)
,

where

Eb =

{
n∑
i=1

1(Y (i) = b,X(i) ∈ Db(Λ)) >

n∑
i=1

1(Y (i) = j,X(i) ∈ Db(Λ)) ∀j 6= b

}
.

Let U (i)
bj := 1(Y (i) = j,X(i) ∈ Db(Λ)) so that χbj = 1

nb

∑
i U

(i)
bj . It suffices to control the event{

n∑
i=1

U
(i)
bb >

n∑
i=1

U
(i)
bj ∀j 6= b

}
= {χbb > χbj ∀j 6= b} (10)

where U (i)
j ∈ {0, 1} are i.i.d. random variables. Thus, we are interested in the probability P(χbb >

χbj ∀j 6= b). Note that

E∗χbj =
1

nb

n∑
i=1

E∗U (i)
bj =

1

nb

∑
i:X(i)∈Db

P(Y (i) = j,X(i) ∈ Db(Λ)).

Define

∆bj := E∗χbb − E∗χbj (11)

and Abj(t) = {|χbj − E∗χbj | < t}. Then for any t < ∆/2, on the event ∩Kj=1Abj(t) we have

χbb > E∗χbb − t > E∗χbj + ∆− 2t > χbj ∀j 6= b.

In other words, making the arbitrary choice of t = ∆/3, we deduce

P
(
Ecb
)
≤ P

( K⋃
j=1

Aj(∆/3)c
)
≤ 2K exp(−2nb∆

2/9)

where we used Hoeffding’s inequality to bound P
(
Aj(∆/3)c

)
for each j.

Thus

P
( K⋂
b=1

Eb
)

= 1−
K∑
b=1

P
( K⋃
j=1

Aj(∆/3)c
)

≥ 1− 2K

K∑
b=1

exp(−2nb∆
2/9)

≥ 1− 2K2 exp
(−2∆2 minb nb

9

)
,

as claimed.
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C.4 Proof of Proposition 4.4

Proof. We have for any j 6= b,

E∗χbb(Λ∗) =
1

nb

n∑
i=1

E∗1(Y (i) = b,X(i) ∈ Db(Λ))

=
1

nb

n∑
i=1

P(Y (i) = b,X(i) ∈ Db(Λ))

=
1

nb

n∑
i=1

P(Y (i) = b |X(i) ∈ Db(Λ))P(X(i) ∈ Db(Λ))

>
1

nb

n∑
i=1

P(Y (i) = j |X(i) ∈ Db(Λ))P(X(i) ∈ Db(Λ))

= E∗χbj(Λ∗).

C.5 Proof of Corollaries 4.5 and 4.6

We prove Corollary 4.5; the proof of Corollary 4.6 is similar with nk replaced by mb and n0 in (8) by
m0 in (9).

Proof. Using pk = 1/K in Lemma D.2, we deduce for any m > 0

P(min
k
nk ≥ m) ≥ 1−K exp

(
− 2K

n
(n/K −m)2

)
.

Thus, for any δ > 0, we have

n ≥ K

2

[
log(K/δ) + 4m

]
=⇒ P(min

k
nk ≥ m) ≥ 1− δ.

The desired result follows from replacing m with the lower bound on n0 in (8) and invoking
Theorem 4.1.

C.6 Proof of Theorem 4.7

The following lemma—used in the proof of Theorem 4.7—is also useful in case the main assumption
of Theorem 4.7 is violated.
Lemma C.1. Assume without loss of generality that π∗(αk) = k. Then for any Λ, the classification
error of gΛ,π∗ can be bounded as follows:

P(gΛ,π∗(X) 6= Y ) ≤ P(g∗(X) 6= Y ) +
∑
b

P(X ∈ Db4D∗b ).

Proof. See, e.g. §2.5 in Devroye et al. [40] for the case K = 2, the general case K > 2 is proved
similarly.

Proof of Theorem 4.7. Write fk for the components of Λ and λk for the corresponding weights.
Without loss of generality, assume π∗(αk) = k, so that Db(Λ) corresponds to the decision region for
the class αb. Then using Lemma C.1 we have

P(gΛ,π∗(X) 6= Y ) ≤ P(g∗(X) 6= Y ) +
∑
b

P(X ∈ Db4D∗b )

≤ P(g∗(X) 6= Y ) +
∑
b

ż

X
|λbfb(x)− λ∗bf∗b (x)| dx

≤ P(g∗(X) 6= Y ) +
∑
b

(|λb − λ∗b |+ λ∗b dTV(fb, f
∗
b ))

≤ P(g∗(X) 6= Y ) + C(Λ∗) ·W1(Λ,Λ∗) +
∑
b

|λb − λ∗b |,
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where we invoked Lemma D.3 in the last line.

D Additional lemmas

D.1 Lemma D.1

For ease of notation in the following lemma, assume without loss of generality that Y ∈ [K].
Lemma D.1. Let g1, . . . , gK be functions and ψk(s) = logE∗ exp(sgk(X,Y )) be the log moment
generating function of gk(X,Y ). Then

P
(
∀π :

1

n

n∑
i=1

gπ(Yi)(Xi)− Egπ(Yi)(Xi) ≤ t
)
≥ 1−K2 exp(− inf

k
inf
b
nkψ

∗
b (t)).

Proof. Define Ck := {i : Yi = k}, nk := |Ck|, and note that
{i : π(Yi) = b} = {i : Yi = π−1(b)} = Cπ−1(b).

Then we have the following:

Z :=
1

n

n∑
i=1

gπ(Yi)(Xi)− Egπ(Yi)(Xi) =
1

n

K∑
k=1

∑
i:π(Yi)=b

gb(Xi)− Egb(Xi)

=
1

n

K∑
b=1

∑
i∈Cπ−1(b)

gb(Xi)− Egb(Xi)

=
1

n

K∑
b=1

nπ−1(b)

{ 1

nπ−1(b)

∑
i∈Cπ−1(b)

gb(Xi)− Egb(Xi)

︸ ︷︷ ︸
:=Z̃b(π)

}

=

K∑
b=1

nb(π)

n
Z̃b(π).

Now, for each π, Z̃b(π) is just a sum over one of K possible subsets of [n], i.e. samples indices. To
see this, define

Zb,k :=
1

nk

∑
i∈Ck

gb(Xi)− Egb(Xi)

and note that Z̃b(π) = Zb,π−1(b) for each b. It follows that

Z =

K∑
b=1

nb(π)

n
Z̃b(π) =

K∑
b=1

nπ−1(b)

n
Zb,π−1(b)

Chernoff’s inequality implies P(Zb,k ≥ t) ≤ exp(−nkψ∗b (t)) for each b and k, which implies that

P(sup
b,k

Zb,k < t) = P
(⋂

k

⋂
b

{
Zb,k < t

})
≥ 1− P

(⋃
k

⋃
b

{
Zb,k < t

}c)
≥ 1−

K∑
k=1

K∑
b=1

P(Zb,k ≥ t)

≥ 1−
K∑
k=1

K∑
b=1

exp(−nkψ∗b (t))

≥ 1−K2 exp(− inf
k

inf
b
nkψ

∗
b (t)).
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Now, if supb,k Zb,k < t, then

Z =

K∑
b=1

nπ−1(b)

n
Zb,π−1(b) <

K∑
b=1

nπ−1(b)

n
t = t

since
∑
b nb/n = 1 and π is a bijection. The desired result follows.

D.2 Lemma D.2

The following lemma gives a precise bound on the minimum number of samples n required to ensure
mink nk ≥ m from a generic multinomial sample with high probability:
Lemma D.2. Let Yi be a multinomial random variable such that P(Yi = k) = pk and define
nk =

∑n
i=1 1(Yi = k). Then for any m > 0,

P(min
k
nk ≥ m) ≥ 1−

K∑
k=1

exp
(
− 2

npk
(npk −m)2

)
.

Proof. By standard tail bounds on nk ∼ Bin(n, pk), we have P(nk ≤ m) ≤ exp(−2(npk −
m)2/(npk)). Thus

P(min
k
nk < m) = P(∪Kk=1{nk < m}) ≤

K∑
k=1

P(nk < m) ≤
K∑
k=1

exp
(
− 2

npk
(npk −m)2

)
,

as claimed.

D.3 Lemma D.3

For any density f ∈ L1, let δf denote the point mass concentrated at f , so that for any Borel subset
A ⊂ P ,

δf (A) =

{
1, f ∈ A
0, f /∈ A.

The following lemma is standard and hence the proof is omitted:

Lemma D.3. Let Λ =
∑K
k=1 λkδfk and Λ′ =

∑K
k=1 λ

′
kδf ′k . Then there is a constant C = C(Λ′,K)

such that

sup
j

inf
i
dTV(fi, f

′
j) ≤ CW1(Λ,Λ′). (12)
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