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Abstract
The growing prospect of deep reinforcement learning (DRL) being used in cyber-
physical systems has raised concerns around safety and robustness of autonomous
agents. Recent work on generating adversarial attacks have shown that it is compu-
tationally feasible for a bad actor to fool a DRL policy into behaving sub optimally.
Although certain adversarial attacks with specific attack models have been ad-
dressed, most studies are only interested in off-line optimization in the data space
(e.g., example fitting, distillation). This paper introduces a Meta-Learned Ad-
vantage Hierarchy (MLAH) framework that is attack model-agnostic and more
suited to reinforcement learning, via handling the attacks in the decision space
(as opposed to data space) and directly mitigating learned bias introduced by the
adversary. In MLAH, we learn separate sub-policies (nominal and adversarial) in
an online manner, as guided by a supervisory master agent that detects the presence
of the adversary by leveraging the advantage function for the sub-policies. We
demonstrate that the proposed algorithm enables policy learning with significantly
lower bias as compared to the state-of-the-art policy learning approaches even in
the presence of heavy state information attacks. We present algorithm analysis and
simulation results using popular OpenAI Gym environments.

1 Introduction
Real applications of cyber-physical systems that utilize learning techniques are already abundant
such as smart buildings [1], intelligent transportation networks [2], and intelligent surveillance and
reconnaissance [3]. In such systems, Reinforcement Learning (RL) [4, 5] is becoming a more
attractive formulation for control of complex and highly non-linear systems. The application of Deep
Learning (DL) has pushed recent advances in RL, namely Deep RL (DRL) [6, 7, 8]. Particularly
in 3D continuous control tasks, DL is an indispensable tool due to its ability to generalize high
dimensional state-action spaces in Policy Optimization algorithms [9], [10]. Notable variance
reduction and trust-region optimization strategies have only furthered the performance and stability
of DRL controllers [11].
Although DL is generally useful for these control problems, DL has inherent vulnerabilities in the
way that even very small perturbations in state inputs can result in significant loss in policy learning
performance. This becomes a very reasonable cause for concern when contemplating DRL controllers
in real-world tasks where there exist, not only environmental uncertainty, but perhaps adversarial
actors that aims to fool a DRL agent into making a sub-optimal decision. During policy learning,
information perturbation can be generally thought of as a bias that can prevent the the agent from
effectively learning the desired policy. Previous attempts in mitigating adversarial attacks have
been successful against specific attack models, however, such robust training strategies are typically
off-line (e.g., using augmented datasets [12]) and may fail to adapt to different attacker strategies in
an online fashion. Recently [13] has taken a model-agnostic approach by predicting future states,
however it may be susceptible to multiple consecutive attacks.
Contributions: In this paper, we consider a policy learning problem where there are periods of
adversarial attacks (via corrupting state inputs) when the agent is continuously learning in its
environment. Our main objective is online mitigation of the bias introduced into the nominal
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Table 1: Comparisons with different robust adversarial RL methods
Method Online Adaptive Attack-model agnostic Mitigation

VFAS [13] ✓ ✗ ✓ ✓
ARDL [12] ✗ ✗ ✗ ✓

MLAH [This paper] ✓ ✓ ✓ ✓

Online: no offline training/retraining required, Adaptive: can adapt to a change in
attack strategy, Attack-model agnostic: assumes no specific attack model, Mitigation
: is the impact of the attack actively mitigated?

policy by the attack. We only consider how an attack affects the return instead of optimizing the
observation space. In this context, our specific contributions are:

1. Algorithm We propose a new hierarchal meta-learning framework, MLAH that can effec-
tively detect and mitigate the impacts of adversarial state information attacks in a attack-
model agnostic manner, using only the advantage observation.

2. Analysis: Based on a temporal expectation definition, we analyze the performance of
a single mapping policy and our proposed multi-policy mapping. Visitation frequency
estimates leads us to obtaining a new pessimistic lower bound for TRPO and variants.

3. Implementation: We implement the framework in widely utilized Gym benchmarks [14].
It is shown that MLAH is able to learn minimally biased polices under frequent attacks by
learning to identify the adversaries presence in the return.

Although we mention several relevant techniques on learning with adversaries, we only contrast
methodologies in table 1 that aim to mitigate adversarial attacks, as other papers [15], [16] do not
claim to do so. We compare our results with the state-of-the-art PPO [17] that is sufficiently robust
to uncertainties to understand the gain from multi-policy mapping. The source code is available on
https://github.com/AaronHavens/safe_rl.
Related work: Attacks on deep neural networks and mitigation strategies have only recently been
studied primarily for supervised classification problems. These attacks are most commonly formulated
as first order gradient-based attacks, first seen as FGSM by Goodfellow et al [18]. These gradient
based perturbation attacks have proven to be effective in misclassification, with the corrupted input
often being indistinguishable from the original. The same principle applies to DRL agents, which
can drastically affect the agent performance and bias the policy learning process. The authors in [19]
showed a threat model that considered adversaries capable of dramatically degrading performance
even with small adversarial perturbations without human perception. Three new attacks for different
distance metrics were introduced in [20] in finding adversarial examples on defensively distilled
networks. The authors in [21] introduced three new dimensions about adversarial attacks and used
the policy’s value function as a guide for when to inject perturbations. Interestingly, it has been
seen that training DRL agents on designed adversarial perturbations can improve robustness against
general model uncertainties [16], [15]. The adversarial robust policy learning algorithm [22] was
introduced to leverage active computation of physically-plausible adversarial examples in the training
period to enable robust performance with either random or adversarial input perturbations. Another
robust DRL algorithm, EPOpt-� for robust policy search algorithm [23] was proposed to find a robust
policy using the source distribution. Note that the recently mentioned methods do not aim to mitigate
adversarial attacks at all, but intentionally bias the agent to perform better for model uncertainties.

2 Preliminaries and Problem Formulation
In this paper, we consider a finite-horizon discounted Markov decision processes (MDP), where
each MDP mi is defined by a tuple M = (S,A,P, r, γ, ρ0) where S is a finite set of states, A is a
finite set of actions, P is a mapping function that signifies the transition probability distribution, i.e.,
S ×A× S → R, r is a reward function S → R with respect to a given state and r ∈ [rmin, rmax],
ρ0 is a distribution of the initial states and γ ∈ (0, 1) is the discounted factor. The finite-horizon
expected discounted reward R(π) following a policy π is defined as follows:

R(π) = Es0,a0,...

� T�

t=0

γtr(st)

�
(1)

where s0 ∼ ρ0(s0), at ∼ πi(at|st), st+1 ∼ P(st+1|st, at). We want to maximize this discounted
reward sum by optimizing a policy π : S → A map, discussed next.

2.1 Trust Region Optimization for Parameterized Policies
For more complex 3D control problems, policy optimization has been proven to be the state-of-
the-art approach. A multi-step policy optimization scheme presented in [11] dually maximizes the
improvement (Advantage function) of the new policy while penalizing the change between the old
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and new policy described by a statistical distance, namely the Kullback Liebler divergence. For
continuous control policy optimization a variant of the advantage function is often used being the
Generalized Advantage Function (GAE) from [24], which is parameterized by γ and λ where V (st)
is the value function. Intuitively, GAE attempts to balance the trade-off between bias and variance
in the advantage estimate by introducing the controlled parameter λ. We will use this in policy
optimization as well as a method for temporal state abstraction later in the proposed algorithm.

AGAE,t = ζt + (γλ)ζt+1 + ...+ ...(γλ)T−t+1ζT−1 (2)

where ζt = rt + γV (st+1)− V (st), γ,λ ∈ [0, 1].

2.2 Meta-Learned Hierarchies

Figure 1: A meta learning hierarchy sim-
ilar to MLSH in [25]. The master is
tasked with choosing a sub policy to
maximize return in the current MDP mi.

As a basis for our proposed MLAH framework,
we consider a task with multiple objectives or la-
tent states. In this context, we define a finite set
of MDPs M:{m0,m,1 , · · · ,mn}, where an MDP
mi, i ∈ {0, 1, · · · , n} is sampled for learning at time
t. There exists a set of corresponding sub-policies Π :
{π0,π1, · · · ,πn} which may individually be used at any
instant. We then have M → R and define a joint hierar-
chal objective for M composed of sub-policies:

R(Π) = Es0,π0,m0...

� T�

t=0

γtr(st)|mi,πi

�
(3)

Every mi can be thought of as a unique objective in the
same state-action space. In our case, the RL agent is not
aware of the specific mi at time t. This could alternatively
be thought of as a partially observable MDP (POMDP),
however in this work we introduce a hierarchal RL archi-
tecture to explain the latent state. This hierarchal frame-
work depicted in Figure 1 has been presented in [25] as
Meta-Learned Shared Hierarchies (MLSH). πmaster de-
scribes an agent who’s task is to select the appropriate sub-policy to maximize return. The master
policy, πmaster receives the observed reward and environment state. This mapping is far easier to
learn as apposed to re-learning each sub policy which may be re-used. Since each mi ∈ M has
a different S → R mapping, this makes πmaster have a non-stationary mapping across S which
requires the parameters of πmaster to be reset on a predetermined interval.

2.3 Adversary Models
We consider adversaries that perturb the state provided to the agent at any given time instant. Formally,
Definition 1. An adversarial attack is any possible state observation perturbation that leads the agent
into incurring a sub-optimal return, which is less than the return of the learned optimal policy. In
other words, R(π|attack) < R(π). The adversary may only perturb the state observation channel,
and not the reward channel itself.
Note, when discussing adversarial attacks, a common practice is to mathematically define a feasible
perturbation with respect to the observation space. This work presents an alternative approach (later
in the analysis Section 4) by focusing on expected frequency of attacks only and how it realizes in
the RL decision space. This results in a framework which is more agnostic to a specific attack-model
and considers more than just the observation (data) space. However, it is important to note that the
RL agent is not aware of any attack-model specifications.

3 Proposed Algorithms
We begin with a brief motivation to the proposed Meta-Learned Advantage Hierarchy (MLAH)
algorithm. An intelligent agent, such as a human with a set of skills, when presented with a new
task, should try out one of the known skills or policies and examine its effectiveness. When the task
changes, based on the expectation of usefulness of that skill, the agent may keep using the same skill
or try another skill that may seem most appropriate for that task. In this context, given that the agent
has developed accurate expectations of its sub-policies (skills), if the underlying task were to change
at anytime, the agent may notice that the result of its action has changed with respect to what was
expected. In an RL framework, comparing the expected return of a state to the observed return of
some action is typically known as the advantage. Therefore, such an advantage estimate can serve as
a good indicator of underlying changes in a task that can be leveraged to switch from one sub-policy
to another more appropriate sub-policy.
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With this motivation, we can map the current problem of learning policy under intermittent adversarial
perturbations as a meta-learning problem. As our adversarial attacks (by definition 1) create a different
state-reward map, a master policy may be able to detect an attack and help choose an appropriate
sub-policy that corresponds to the adversarial scenario. More formally, we begin with two random
policies that are meant to represent the two distinct partially observable conditions in our MDP,
nominal states and adversarial perturbed states. One may begin by pre-training πnom in isolation
seeing only nominal experiences. Since we can not assume or simulate the adversary, typically it is
not possible to pre-train πadv and it must be left to πmaster to identify this alternative mapping. For
each episode, we begin by collecting a trajectory of length T, allowing πmaster at every time step
(or on an interval) to either or continue using a sub-policy to act based on the advantage coordinate
observed. The advantage for πmaster, represented by At, can be calculated using only the previous
state-reward or it can be computed as a generalized estimate over the past h time-steps as a rolling
window. The following Eq. 5 describes the optimal policy for the master agent to choose action
either staying the same policy or switching to another policy. While this form is similar to the generic
policy in deep reinforcement learning, the only difference is conditioned on the MDP, which suggests
the nominal or adversarial scenario.

At =
�
AGAE,t−h|πnom, AGAE,t−h|πadv

�
∈ R2 (4)

amaster,t = π∗,t = argmax
a

Est,πi,mi...

� T�

t=0

γtr(st, a)|mi

�
∈ {0 : stay, 1 : switch} (5)

(a) Adversary interaction model (b) MLAH framework

Figure 2: a) Illustration of the adversarial attack mechanism: corrupting the state observation,
by injecting a perturbation � before it reaches the agent, no perturbation in the reward signal. b)
MLAH architecture: while similar to MLSH, key differences are: 1) master policy only observes the
advantage of the sub-policy as a state and 2) only two sub-polices (nominal/adversarial) considered.
Observing the advantage over states and actions can be justified philosophically and has technical
benefits when compared to other temporal state abstraction techniques that may be used to estimate
the latent condition (RNN, LSTM). Although this mapping has potential to be noisy as the advantage
can be trajectory dependent, it is static across the multiple sub-policies as opposed to a state-policy
selection mapping which must be re-learned with every change in the latent condition.
Advantage map as an effective metric to detect adversary: To fool an RL agent into taking an
alternative action, an adversary may use the policy network to compute a perturbation [18]. For attack
mitigation, the RNN-based visual-foresight method [13] is practical, considering the predicted policy
distance from the chosen policy. However, it was reported [13] that such a scheme can be fooled
with a series of likely state perturbations. However in MLAH, even if the adversary could compute a
series of likely states to fool the agent, the advantage would still be affected and the master agent may
detect the attack. The adversary would have to consecutively fool the agent with a state that would be
expected to give an equally bad reward. This constraint would make the perturbation especially hard
or infeasible to compute. We do acknowledge however that this method is slightly delayed such that
the agent has to experience an off-trajectory reward before it can detect the adversary presence and
may also have to observe long attack periods before learning the advantage mapping.

4 Analysis of Bias Mitigation and Policy Improvement
Here we present analysis to show that the proposed MLAH framework reduces bias in the value
function baseline under adversarial attacks. We then show how reducing bias is inherently beneficial
for policy learning (improvement in expected reward lower bound compared to the state-of-the-art as
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Algorithm 1: MLAH
Input :πnom and πadv sub-policies parameterized by θnom and θadv; Master policy πmaster with

parameter vector φ.
1 Initialize θnom, θadv, φ
2 for pre-training iterations [optional] do
3 Train πnom and θnom on only nominal experiences.
4 end
5 for learning life-time do
6 for Time steps t to t+ T do
7 Compute At over sub-policies (see eq. 4)
8 πmaster selects to switch or stay with sub-policy based on At observations to take action
9 end

10 Estimate all AGAE for πnom, πadv over T
11 Estimate all AGAE for πmaster over T with respect to At observations
12 Optimize θnom based on experiences collected from πnom
13 Optimize θadv based on experiences collected from πadv
14 Optimize φ based on all experiences with respect to At observations
15 end

presented in [11]) in the presence of adversaries. In order to estimate the expected value learned by a
policy, we consider a first-order stochastic transition model (from nominal-0 to adversary-1 and vice
versa) for the temporal profile of the attack as follows:

P =

�
p0|0 p1|0
p0|1 p1|1

�
=

�
m 1−m
n 1− n

�

This defines a Markov chain (pb|a denotes the probability transitioning from a to b). Let the stationary
distribution for this Markov chain be denoted by, v = [p0, p1] that satisfies v = vP . Therefore,

p0 =
n

1−m+ n
, p1 =

1−m

1−m+ n
(6)

which describes the long term expectation of visiting a nominal or adversarial state. As discussed in
the preliminaries, trajectory experiences are handled with a distinct policy and value network when
the adversarial attack is present. As the condition is perceived by the master agent, we can define two
independent MDPs separately, i.e., one given a nominal state (p∼|0) and another given the perturbed
state due to the adversary (p∼|1). With this setup, we present an assumption as follows:
Assumption 1. Long term expectation of visiting a nominal state is higher than that of adversarial
state, i.e., for the stochastic transition model P , n < m.
Let Es∼S|0V (s) be the expected discounted reward over states S given that the policy only sees
nominal conditions (m = 1). Similarly, let Es∼S|1V (s) be the expected discounted reward for the
policy when it sees the adversarial states (m = 0, n = 0) alone. We simplify the notations as follows:
Es∼S|0V (s) = V0 and Es∼S|1V (s) = V1 as two value primitives.
According to definition of the adversary (Definition 1), we have V1 < V0 as a successful adversarial
attack leads to a sub-optimal return. We can now compare the expected discounted return for the
unconditioned and conditioned learning scheme. Here, the unconditioned scheme refers to the
learning scheme of a classical DRL agent with one policy. In this case, the expected discounted
reward under adversarial attacks can be expressed as:

Eunc,s∼SV (s) = V0p0 + V1p1 = V0
n

1−m+ n
+ V1

1−m

1−m+ n
(7)

On the other hand, the conditioned schemes refer to the two sub-policies (one given the nominal
state and other given the adversarial state) based on the proposed MLAH framework. In this context,
the expected discounted reward conditioned on the nominal state under adversarial attacks can be
expressed as:

Econ,s∼S|0V (s) = V0p0|0 + V1p1|0 = V0m+ V1(1−m) (8)

We now provide a lemma to compare the unconditioned and conditioned (given a nominal state)
expected discounted rewards.
Lemma 1. Let Assumption 1 hold. Eunc,s∼SV (s) < Econ,s∼S|0V (s).
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See the proof in the Supplementary material.
We next discuss different lower bounds of the expected discounted rewards for the conditioned and
unconditioned policies. We begin with defining the observed bias in the state value for both the
conditioned and unconditioned policies by comparing the expected discounted reward to the original
nominal value primitive V0. Then, we have,

δcon|0 = V0−Econ,s∼S|0V (s) = (1−m)(V0−V1), δunc = V0−Eunc,s∼SV (s) =
(1−m)(V0 − V1)

1−m+ n
With this setup, we present the following lemma.
Lemma 2. Let Assumption 1 hold. δcon|0 < δunc.
The proof is straightforward using Lemma 1 (see Supplementary material).
In this context, we express V0 = Econ,s∼S|0V (s) + δcon|0 and V0 = Eunc,s∼SV (s) + δunc in a
general way as: V (s) = V̂ (s) + δ, where δ is the observed bias in the state value. According to the
definition of advantage function in Eq. 2, letting λ = 0, we have Aπ(st, at) = rt+γV (st+1)−V (st).
Substituting V (s) = V̂ (s) + δ into the last equation yields

Aπ(st, at) = rt + γV̂ (st+1)− V̂ (st) + γδs,t+1 − δs,t = Âπ(st, at) + γδs,t+1 − δs,t (9)

where Âπ(st, at) is the actual advantage function. While Lemma 2 shows that δ is reduced due to
conditioning in our proposed framework, we note that the observed bias in the expected discounted
reward can be different from that in the state value due to the complex and uncertain environment.
Following the definition of the expected discounted reward in [11], recalling V (s) = V̂ (s) + δ, the
relationship between true and actual expected discounted reward is: R(π) = Es∼π[V̂π(st, at) + δ] =

R̂(π)+ δ̂, where δ̂ is observed bias in the expected discounted reward. We denote the observed bias in
the reward for the unconditioned and conditioned cases as: δ̂unc and δ̂con|0. Let Δδ̂ = δ̂unc − δ̂con|0
and Δδ = δunc − δcon|0. We are now ready to discuss the lower bounds of the expected discounted
rewards for the conditioned and unconditioned schemes. Before that, based on [11], we introduce
the maximum total variation divergence for any two different policies and use α to denote it for the
rest of the analysis. We also first present one proposition to show the relationship between the actual
expected discounted reward and its approximation. It is an extension of Theorem 1 in [11], which
helps characterize the main claim in the paper.
Proposition 1. Let Assumption 1 hold. Then the following inequality hold:

R̂(πnew) ≥ L̂πold
(πnew)−

4�̃γα2

(1− γ)2
(10)

where πnew indicates the new policy, πold indicates the current policy, L̂πold
(πnew) =

Lπold
(πnew) + δ− δ̂, Lπold

(πnew) is the approximation of R(πnew), i.e., Lπold
(πnew) = R(πold) +�

s ρπold
(s)

�
a πnew(a|s)Aπold

(s, a), ρ is the discounted visitation frequencies as similarly defined
in [11], �̃ satisfies the following relationship

�̃ =




maxs,a|Âπ(s, a)|+ (γ − 1)δ, if Âπ(s, a) ≥ (1− γ)δ.

−maxs,a|Âπ(s, a)|+ (1− γ)δ, if 0 < Âπ(s, a) < (1− γ)δ.

maxs,a|Âπ(s, a)|+ (1− γ)δ, if Âπ(s, a) ≤ 0

(11)

Proof sketch: Combining the proof of Lemmas 1, 2, and 3 in [11], we can immediately arrive at the
similar form of conclusion as shown in Theorem 1 [11]. Then, we discuss the relationship between
the actual advantage value Âπ(s, a) and observed bias in the state value (1 − γ)δ to complete the
proof. Due to the limit of space, in this context we give the proof sketch and the complete proof can
be found in the supplementary material and [26].
We then arrive at the following result to show that using the conditioned policy allows to achieve a
higher lower bound of expected discounted reward.
Proposition 2. If Δδ̂ < CΔV , where C ≥ (m−n)(1−m)(4γα2+1−γ)

(1−m+n)(1−γ) and ΔV = V0 − V1, then the
conditioned policy has a higher lower bound of expected discounted reward compared to that of the
unconditioned policy.
Proof sketch: Based on Theorem 1 [11] and Proposition 1, we get the approximation of the actual
expected discounted reward in both conditioned and unconditioned policies. Similarly we can
obtain �̃con|0 and �̃unc. Due to the condition that Âπ(s, a) ≥ (1 − γ)δ, we get the relationship
between the approximation of the actual expected discounted reward and the observed bias in the
expected discounted reward. Combining the condition that Δδ̂ < CΔV , with some mathematical
manipulation, the proof is completed. Due to the limit of space, we present the proof sketch and the
complete proof can be found in the supplementary material and [26].
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Remark 1. Proposition 1 suggests that under a certain condition, using the conditioned policy can
improve the lower bound of the expected discounted return over the unconditioned policy. Intuitively,
the condition demands the adversary to be sufficiently intelligent in order to have a large enough
value for ΔV .

5 Experimental Results
In order to justify the theoretical implications of bias reduction using a conditioned policy optimiza-
tion, we implemented the proposed framework introduced in Section 3 with a selection of simple
adversary models. Because the meta-learned framework has many moving parts and can be subject to
instabilities, we first consider a case where the master agent is an oracle in determining the presence
of an adversary. Then we consider the advantage-based adversary detection by the master agent.

5.1 Experimental Setup
For all experiments, we use the proximal clipped objective L(θ)CLIP+V F from [17] instead of a
constrained trust region optimization in accordance with recent results showing similar performance
and ease of implementation. We use the same optimization for the master agent, although we
acknowledge this may not be the best method for only two action choices (nominal or adversarial), we
propose this to generalize to an arbitrary number of sub-polices. In every example, training denotes
the agent acting with an �-greedy exploration policy with adversarial attacks. Simultaneously, we
run an evaluation which executes a deterministic actions with the same policy, without adversarial
attacks, hence obtain much higher return values. For the examples shown, we introduce the adversary
on a fixed interval (e.g., 5000 with adversary, 10000 without). During that period, the adversary
perturbs the state at every time step. For page limit constraints, PPO parameters used in experiments
such as deep network size and actor-batches can be found in the supplementary material.
Stochastic l∞-bounded Attacks:
In this paper, for the purpose of experiment, we consider an attacker model that has the ability to
perturb state information from the environment before it reaches the agent. Since gradient-based
attacks for continuous action policies have not been thoroughly studied, we will focus on naive attacks
which only sample the perturbation size and direction from a defined uniform distribution U(a, b)
about the current state s = [s0, s1, · · · , sn]. This results in an attack where si, adversary = si+U(a, b)
where the perturbation is bounded by the l∞ norm so that ∀si ∈ s max

i
|si− si, adversary| ≤ �attack.

We find that this naive attack is effective enough to significantly decrease the return of a policy,
although we do provide one example of an iterative gradient-based attack in the supplementary
material Section 7.4. We specifically utilize white-noise attacks where a = −b as well as bias attacks,
where a �= b and a < b.

5.2 Adversarial Bias Reduction with MLAH
We begin by examining an RL environment where the master agent is asked to select the policy
that corresponds to the current condition, i.e., nominal or adversarial. We acknowledge that this
"policy" may not be the optimal master policy since a game may not be perfectly Markov. However,
we find that this is sufficient to examine the policy improvement in some Openai Mujoco control
environments [14].

Figure 3: Results of Oracle-MLAH and Vanilla PPO applied to the InvertedPendulum-v2 game with
repeatedly scheduled attacks for 5000 time steps and then off for 10000, displaying a 1σ bound. Left:
Case study with an extreme bias attack spanning the entire state-space. Vanilla policy is unable to
resolve the correct mapping due to large disturbances in the state information, while MLAH improves
nearly monotonically. Right: Case study with a weaker bias attack, Vanilla agent still struggles.
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Table 2: Performance evaluation of Oracle-MLAH
Normalized avg. training return Normalized avg. evaluation return

m/n Vanilla Oracle-MLAH Vanilla Oracle-MLAH
1.0/− 0.96± 0.03 0.96± 0.03 1.0 1.0

0.995/0.005 0.238± .082 0.553± 0.242 0.471± 0.051 0.99± 0.001
0.95/0.05 0.612± .08 0.677± 0.149 0.644± 0.078 0.99± 0.001
0.8/0.2 0.613± 0.043 0.728± 0.063 0.539± 0.023 0.994± 0.165
0.5/0.5 0.749± 0.093 0.764± 0.078 0.787± 0.010 0.948± 0.086

Comparison of the returns of Vanilla PPO and Oracle-MLAH under attacks over 40 policy
optimization iterations with 1σ uncertainty bounds. The training return uses a stochastic policy
for exploration and evaluation acts deterministically. The evaluation bias for the Oracle-MLAH
remains substantially lower over all attack severity levels. Note when m = n, training returns are
very similar as predicted by Eq. 8.

The returns shown in Table 2 and Figure 3 for long and intermittent bias attacks (large m and
small n) clearly demonstrate the benefit of using distinct policies for nominal and adversarial states
respectively. According to eq. 8, this attack condition produces the largest difference in bias between
conditioned and unconditioned policies. As a policy can only solve for one state-action mapping and
there are clearly two separate MDP state-reward distributions existing across time, a singly policy
has no choice, but to optimize over the mean of these two distributions. Often times this results in not
developing a useful policy for either condition as shown in figure 3. Enabling the use of multiple
polices in this intermittent attack case allows the agent to optimize for both mappings, even learning
to mitigate the reduced return during the adversarial attack. More simulation results using Open
Gym environments such as MountainCarContinuous-v0 and Hopper-v2 [14] are included in the
supplementary material.
It can be seen in table 2 that as the switching expectations between nominal and adversarial states
rise, the unconditioned (Vanilla) policy actually performs increasingly well, but still less than that of
the conditioned (MLAH) policy. This is perhaps because the switching is quick enough to map the
scenario to one state-reward distribution, which is favorable for a single policy agent.
As anticipated by the analysis, when m = n, the training performances of both policies approach
a similar value, however the conditioned MLAH agent was able to maintain a nearly unbiased
evaluation return. This may be an artifact of the environment or adversary, which is relatively simple
and unintelligent. Over longer attack periods, it may be unrealistic to expect the return to behave
according to the stationary distribution expectation because the average resolves on a longer time
scale than policy optimization.

Figure 4: Master agent’s performance in learning from two random policies to decide which to employ
to maximize the reward of InvertedPendulum-v2 with bounded 5000 on, 10000 off bias attacks. The
master agent is not given any information on which states are perturbed by the adversary. After initial
learning, the policy choices clearly diverge during the attack intervals with few exceptions.
Next we put our master agent to the test, using the relative advantage coordinate mappings. This
formulation is a novel alternative to previous meta-learned hierarchies which are non-stationary and
need to be reset over time [25]. The relative advantage mapping is stationary across multiple MDPs
under certain conditions. In order for the master agent to arrive at correct advantage-policy mapping,
the policies themselves must also optimize to produce better advantage estimates in this expectation
maximization (EM) type algorithm. This makes it challenging to produce a stable learning sequence
of polices and advantage mappings. However, this mapping can be learned from “nothing” if an
adversary creates a strong enough presence by altering the state-reward mapping (by Definition 1).
This optimization process is explained in more depth in the supplementary material. Depending
on whether the nominal policy is pre-trained and the effectiveness of the adversary, the meta agent
can reliably use each policy during the respective conditions. As seen in Figure 4, an adversary is
introduced in an intermittent manner and the master agent has two random sub-polices at its disposal.
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Figure 5: Shown is MLAH simultaneously learning to switch policies and a mitigation strategy on
a small 11× 11 grid world. The adversary simply gives the agent a deterministic mirrored column
observation about the center of the grid, making it so that the optimal policy is different for every
state given there is an attack. The attacks are applied intermittently on intervals of 5000 actions,
showing 1− σ variance.

The agent optimizes to use one policy for the nominal and the other for the adversarial conditions to
optimize its reward. The policy-selection results in Figure 4 may resemble a Bayesian non-parametric
latent state estimator [27]. However, being entirely in the context of RL, MLAH is unique and uses
the advantage observation and a meta-learning objective to form a belief over the latent conditions.

5.3 Countering Deterministic Attack Strategies
Given a deterministic attack strategy, it is likely that there is a learnable counter policy that performs
optimally once the attack is detected. To clearly demonstrate MLAH we create a GridWorld environ-
ment and an attack which simply reflects the agents column position about the center of the grid. This
attack is interesting to us because it is completely deterministic and, for the single policy Vanilla PPO,
it is impossible to be optimal in both nominal and adversarial conditions, requiring an additional
mirrored S → A map. In this experiment we let the policy train in the nominal environment with no
attack for 40 iterations (∼ 40000 actions). Once attacks are introduced, it only takes MLAH about
50000 actions to, not only solve the meta task of switching policies, but also learn the adversary
mitigation policy from a random initial policy. The success of both of these task strongly depend
on each other, that is a noisy value function will result in poor policy switching and vice versa.
This is quite evident by the variation in reward when MLAH is learning the attack strategy and
switching policy simultaneously in 5. There may be further improvements to address the stability of
this algorithm for more complicated tasks.

6 Conclusions
We have discussed a new MLAH framework for handling adversarial attacks in an online manner
specifically in the context of RL. This framework is attack-model agnostic and presents a general way
of examining adversarial attacks in the temporal domain. Analyzing the hierarchical policy MLAH
in this way, we can show that under certain conditions, the return lower-bound is improved when
compared to a single policy agent. In future research, we aim to improve the stability of MLAH by
optimizing the master agent function, perhaps using a more simple method to regress the advantage
space. We will also attempt to extend MLAH to a more general framework for decision problems
with multiple time-varying objectives.
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