
Adversarial Attacks on Stochastic Bandits

Kwang-Sung Jun

Boston University
kwangsung.jun@gmail.com

Lihong Li

Google Brain
lihong@google.com

Yuzhe Ma

UW-Madison
ma234@wisc.edu

Xiaojin Zhu

UW-Madison
jerryzhu@cs.wisc.edu

Abstract

We study adversarial attacks that manipulate the reward signals to control the
actions chosen by a stochastic multi-armed bandit algorithm. We propose the
first attack against two popular bandit algorithms: ✏-greedy and UCB, without

knowledge of the mean rewards. The attacker is able to spend only logarithmic
effort, multiplied by a problem-specific parameter that becomes smaller as the
bandit problem gets easier to attack. The result means the attacker can easily hijack
the behavior of the bandit algorithm to promote or obstruct certain actions, say,
a particular medical treatment. As bandits are seeing increasingly wide use in
practice, our study exposes a significant security threat.

1 Introduction

Designing trustworthy machine learning systems requires understanding how they may be attacked.
There has been a surge of interest on adversarial attacks against supervised learning [12, 15]. In
contrast, little is known on adversarial attacks against stochastic multi-armed bandits (MABs), a form
of online learning with limited feedback. This is potentially hazardous since stochastic MABs are
widely used in the industry to recommend news articles [18], display advertisements [9], improve
search results [17], allocate medical treatment [16], and promote users’ well-being [13], among many
others. Indeed, as we show, an adversarial attacker can modify the reward signal to manipulate the
MAB for nefarious goals.

Our main contribution is an analysis on reward-manipulation attacks. We distinguish three agents
in this setting: “the world,” “Bob” the bandit algorithm, and “Alice” the attacker. As in standard
stochastic bandit problems, the world consists of K arms with sub-Gaussian rewards centered at
µ1, . . . , µK . Note that we do not assume {µi} are sorted. Neither Bob nor Alice knows {µi}. Bob
pulls selected arms in rounds and attempts to minimize his regret. When Bob pulls arm It 2 [K]
in round t, the world generates a random reward r

0
t drawn from a sub-Gaussian distribution with

expectation µIt . However, Alice sits in-between the world and Bob and manipulates the reward
into rt = r

0
t � ↵t. We call ↵t 2 R the attack. If Alice decides not to attack in this round, she

simply lets ↵t = 0. Bob then receives rt, without knowing the presence of Alice. Without loss of
generality, assume arm K is a suboptimal “attack target” arm: µK < maxi=1...K µi. Alice’s goal is
to manipulate Bob into pulling arm K very often while making small attacks. Specifically, we show
Alice can force Bob to pull the target arm T � o(T) number of times with a cumulative attack cost ofPT

t=1 |↵t| = O(log(T)).

The assumption that Alice does not know {µi} is significant because otherwise Alice can perform the
attack trivially. To see this, with the knowledge of {µi} Alice would be able to compute the truncated
reward gap �✏

i = max{µi �µK + ✏, 0} � 0 for all non-target arms i 6= K for some small parameter

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

✏ > 0. Alice can perform the following oracle attack: in any round where a non-target arm It 6= K

is pulled, attack with ↵t = �✏
It

. This oracle attack transforms the original bandit problem into one
where all non-target arms have expected reward less than µK . It is well-known that if Bob runs a
sublinear-regret algorithm (e.g., UCB [6, 8]), almost all arm pulls will concentrate on the now-best
target arm K in the transformed bandit problem. Furthermore, Alice’s cumulative attack cost will be
sublinear in time, because the total number of non-target arm pulls is sublinear in the transformed
problem. In practice, however, it is almost never the case that Alice knows µ1, . . . , µK and hence the
�✏

i ’s. Thus the oracle attack is impractical. Our focus in this paper is to design an attack that nearly
matches the oracle attack, but for Alice who does not know {µi}. We do so for two popular bandit
algorithms, ✏-greedy [7] and UCB [8].

What damage can Alice do in practice? She can largely control the arms pulled by Bob. She can
also control which arm appears to Bob as the best arm at the end. As an example, consider the
news-delivering contextual bandit problem [18]. The arms are available news articles, and Bob selects
which arm to pull (i.e., which article to show to a user at the news site). In normal operation, Bob
shows news articles to users to maximize the click-through rate. However, Alice can attack Bob to
change his behavior. For instance, Alice can manipulate the rewards so that users from a particular
political base are always shown particular news articles that can reinforce or convert their opinion.
Conversely, Alice can coerce the bandit to not show an important article to certain users. As another
example, Alice may interfere with clinical trials [16] to funnel most patients toward certain treatment,
or make researchers draw wrong conclusions on whether treatment is better than control. Therefore,
adversarial attacks on MAB deserve our attention. Insights gained from our study can be used to
build defense in the future.

Finally, we note that our setting is motivated by modern industry-scale applications of contextual
bandits, where arm selection, reward signal collection, and policy updates are done in a distributed
way [3, 18]. Attacks can happen when the reward signal is joined with the selected arm, or when
the arm-reward data is sent to another module for Bob to update his policy. In either case, Alice has
access to both It and r

0
t for the present and previous rounds.

The rest of the paper is organized as follows. In Section 2, we introduce notations and straightforward
attack algorithms that serve as baseline. We then propose our two attack algorithms for ✏-greedy and
UCB in Section 3 and 4 respectively, along with their theoretical attack guarantees. In Section 5, we
empirically confirm our findings with toy experiments. Finally, we conclude our paper with related
work (Section 6) and a discussion of future work (Section 7) that will enrich our understanding of
security vulnerability and defense mechanisms for secure MAB deployment.

2 Preliminaries

Before presenting our main attack algorithms, in this section we first discuss a simple heuristic attack
algorithm which serves to illustrate the intrinsic difficulty of attacks. Throughout, we assume Bob
runs a bandit algorithm with sublinear pseudo-regret E

PT
t=1(maxKj=1 µj � µIt). As Alice does not

know {µi} she must rely on the empirical rewards up to round t� 1 to decide the appropriate attack
↵t. The attack is online since ↵t is computed on-the-fly as It and r

0
t are revealed. The attacking

protocol is summarized in Algorithm 1.

Algorithm 1 Alice’s attack against a bandit algorithm
1: Input: Bob’s bandit algorithm, target arm K

2: for t = 1, 2, . . . do

3: Bob chooses arm It to pull.
4: World generates pre-attack reward r

0
t .

5: Alice observes It and r
0
t , and then decides the attack ↵t.

6: Alice gives rt = r
0
t � ↵t to Bob.

7: end for

We assume all arm rewards are �2-sub-Gaussian where �2 is known to both Alice and Bob. Let Ni(t)
be the number of pulls of arm i up to round t. We say the attack is successful after T rounds if the

2

number of target-arm pulls is NK(T) = T � o(T) in expectation or with high probability, while
minimizing the cumulative attack cost

PT
t=1 |↵t|. Other attack settings are discussed in Section 7.

For convenience we define the following quantities:

• ⌧i(t) := {s : s t, Is = i}, the set of rounds up to t where arm i is chosen,
• µ̂

0
i (t) := Ni(t)�1

P
s2⌧i(t)

r
0
s , the pre-attack average reward of arm i up to round t, and

• µ̂i(t) := Ni(t)�1
P

s2⌧i(t)
rs, the corresponding post-attack average reward.

The oracle attack, revisited While the oracle attack was impractical, it gives us a baseline for
comparison. The oracle attack drags down the reward of all non-target arms,1 and can be written as

↵t = 1{It 6= K} ·�✏
It .

Proposition 1 shows that the oracle attack succeeds and requires only a logarithmic attack cost. While
more general statements for sublinear-regret algorithms can be made, we focus on logarithmic-regret
bandit algorithms for simplicity. Throughout, omitted proofs can be found in our supplementary
material.

Proposition 1. Assume that Bob’s bandit algorithm achieves an O(log T) regret bound. Then, Alice’s

oracle attack with ✏ > 0 succeeds; i.e., ENK(T) = T �o(T). Furthermore, the expected total attack

cost is O

⇣PK�1
i=1 �✏

i log T
⌘

.
2

The heuristic constant attack A slight variant of the oracle attack is to attack all the non-target
arms with a single constant amount A > 0, regardless of the actual µi’s:

↵t = 1{It 6= K} ·A.

Let �i := �0
i . Unfortunately, this heuristic constant attack depends critically on the value of A

compared to the unknown maximum gap maxi �i. Proposition 2 states the condition under which
the attack succeeds:

Proposition 2. Assume that Bob’s bandit algorithm achieves an O(log T) regret bound. Then, Alice’s

heuristic constant attack with A succeeds if and only if A > maxi �i. If the attack succeeds, then

the expected attack cost is O(AK log T).

Conversely, if A < maxi �i the attack fails. This is because in the transformed bandit problem,
there exists an arm that has a higher expected reward than arm K, and Bob will mostly pull that arm.
Therefore, the heuristic constant attack has to know an unknown quantity to guarantee a successful
attack. Moreover, the attack is non-adaptive to the problem difficulty since some �i’s can be much
smaller than A, in which case Alice pays an unnecessarily large attack cost.

We therefore ask the following question:

Does there exist an attacker Alice that guarantees a successful attack with cost adaptive to
the problem difficulty?

The answer is yes. We present attack strategies against two popular bandit algorithms of Bob:
✏-greedy and UCB. We show that Alice can indeed succeed in her attacks and incur cost as small as
that of the oracle with an additive term due to the sub-Gaussian noise level �.

3 Alice’s Attack on ✏-Greedy Bob

The ✏-greedy strategy initially pulls each arm once in the first K rounds. For convenience, we assume
that the target arm is pulled first: I1 = K. Our results in this section can be adapted to any order of
initialization with more complicated notation.

1The opposite strategy is to push up the target arm: ↵t = 1{It = K} · (µK � maxj µj � ✏) to make
arm K the best arm in post-attack rewards. However, a successful attack means that Alice pulls the target arm
T � o(T) times; the attack cost is necessarily linear in T , which is inefficient. Simulations that support “drag
down” instead of “push up” are presented in Appendix D.

2For near-optimal algorithms like UCB [6], one can find the optimal choice of ✏. See our supplementary
material for detail.

3

Bob’s ✏-greedy strategy has the following arm-selection rule for t > K [7]:

It =

⇢
draw uniform[K], w.p. ✏t (exploration)
argmaxi µ̂i(t� 1), otherwise (exploitation)

.

The strategy uses an exploration scheme {✏t} over t. Alice’s attack algorithm is not aware of {✏t}
though her cumulative attack cost

P
|↵t| will implicitly depend on it. Later in Corollary 1 we show

that, for the typical decaying scheme ✏t / 1/t, the cumulative attack cost is mild: O(log(t)).

Alice wants to make Bob always pull the target arm during exploitation rounds. Since Alice has no
influence on which arm is pulled during exploration, this attack goal is the strongest she can achieve.
Here, Algorithm 1 is specialized to ensure the following condition:

µ̂It(t) µ̂K(t)� 2�(NK(t)), (1)
where we define �(N) as

�(N) :=

r
2�2

N
log

⇡2KN2

3�
. (2)

From this condition, we derive the actual attack ↵t. Since

µ̂It(t) =
µ̂It(t� 1)NIt(t� 1) + r

0
t � ↵t

NIt(t)
, (3)

we set the attack in Algorithm 1 as
↵t =

⇥
µ̂It(t� 1)NIt(t� 1) + r

0
t � (µ̂K(t)� 2�(NK(t)))NIt(t)

⇤
+
, (4)

where [z]+ = max(0, z). Note ↵ is always non-negative, thus the cumulative attack cost can be
written without absolute value:

PT
t=1 ↵t.

With this ↵t, we claim that (i) Alice forces Bob to pull the target arm in all exploitation rounds as
shown in Lemma 2, and (ii) the cumulative attack cost is logarithmic in t for standard ✏-greedy learner
exploration scheme ✏t = O(1/t) as shown in Corollary 1. Our main result is the following general
upper bound on the cumulative attack cost.

Theorem 1. Let � 1/2. With probability at least 1 � 2�, for any T satisfying
PT

t=1 ✏t �
K
e�2 log(K/�),3 Alice forces Bob running ✏-greedy to choose the target arm in at least eNK(T)
rounds, using a cumulative attack cost at most

TX

t=1

|↵t| <

KX

i=1

�i

!
eN(T) + (K � 1) ·

⇣
eN(T)�(eN(T)) + 3 eN(T)�(eNK(T))

⌘

where

eN(T) =

 PT
t=1 ✏t

K

!
+

vuut3 log

✓
K

�

◆ PT
t=1 ✏t

K

!
,

eNK(T) = T �

TX

t=1

✏t

!
�

vuut3 log

✓
K

�

◆ TX

t=1

✏t

!
.

Before proving the theorem, we first look at its consequence. If Bob’s ✏t decay scheme is ✏t =
min{1, cK/t} for some c > 0 as recommended in Auer et al. [7], Alice’s cumulative attack cost is
O(
PK

i=1 �i log T) for large enough T , as the following corollary shows:
Corollary 1. Inherit the assumptions in Theorem 1. Fix K and �. If ✏t = cK/t for some constant

c > 0, then

TX

t=1

|↵t| = bO

KX

i=1

�i

!
log T + �K

p
log T

!
, (5)

where bO ignores log log factors.

3 One can drop this condition by considering slightly larger eN(t) and smaller eNK(t). However, we keep the
condition as it simplifies eN(t) and eNK(t). We refer to the proof of Lemma 4 for detail.

4

Note that the two important constants are
P

i �i and �. While a large � can increase the cost
significantly, the term with

P
i �i dominates the cost for large enough T . Specifically,

P
i �i is

multiplied by log T that is of higher order than
p
log T . We empirically verify the scaling of cost

with T in Section 5.

To prove Theorem 1, we first show that � in (2) is a high-probability bound on the pre-attack empirical
mean of all arms on all rounds. Define the event

E := {8i, 8t > K : |µ̂0
i (t)� µi| < �(Ni(t))}. (6)

Lemma 1. For � 2 (0, 1), P (E) > 1� �.

The following lemma proves the first half of our claim.
Lemma 2. For � 1/2 and under event E, attacks (4) force Bob to always pull the target arm K in

exploitation rounds.

We now show that on average each attack on a non-target arm i is not much bigger than �i.
Lemma 3. For � 1/2 and under event E, we have for all arm i < K and all t that

X

s2⌧i(t)

|↵s| < (�i + �(Ni(t)) + 3�(NK(t)))Ni(t) .

Finally, we upper bound the number of non-target arm i pulls Ni(T) for i < K. Recall the arm i

pulls are only the result of exploration rounds. In round t the exploration probability is ✏t; if Bob
explores, he chooses an arm uniformly at random. We also lower bound the target arm pulls NK(T).
Lemma 4. Let � < 1/2. Suppose T satisfy

PT
t=1 ✏t � K

e�2 log(K/�). With probability at least

1� �, for all non-target arms i < K,

Ni(T) <
TX

t=1

✏t

K
+

vuut3
TX

s=1

✏t

K
log

K

�
.

and for the target arm K,

NK(T) > T �
TX

t=1

✏t �

vuut3
TX

s=1

✏t log
K

�
.

We are now ready to prove Theorem 1.

Proof. The theorem follows immediately from a union bound over Lemma 3 and Lemma 4 below.
We add up the attack costs over K � 1 non-target arms. Then, we note that N�(N) is increasing in
N so Ni(T)�(Ni(T)) eN(T)�(eN(T)). Finally, by Lemma 8 in our supplementary material �(N)
is decreasing in N , so �(NK(T)) �(eNK(T)).

4 Alice’s Attack on UCB Bob

Recall that we assume rewards are �2-sub-Gaussian. Bob’s UCB algorithm in its basic form often
assumes rewards are bounded in [0, 1]; we need to modify the algorithm to handle the more general
sub-Gaussian rewards. By choosing ↵ = 4.5 and : � 7! �2�2

2 in the (↵,)-UCB algorithm of
Bubeck & Cesa-Bianchi [8, Section 2.2], we obtain the following arm-selection rule:

It =

(
t, if t K

argmaxi
n
µ̂i(t� 1) + 3�

q
log t

Ni(t�1)

o
, otherwise.

For the first K rounds where Bob plays each of the K arms once in an arbitrary order, Alice does not
attack: ↵t = 0 for t K. After that, attack happens only when It 6= K. Specifically, consider any
round t > K where Bob pulls arm i 6= K. It follows from the UCB algorithm that

µ̂i(t� 1) + 3�

s
log t

Ni(t� 1)
� µ̂K(t� 1) + 3�

s
log t

NK(t� 1)
.

5

Alice attacks as follows. She computes an attack ↵t with the smallest absolute value, such that
µ̂i(t) µ̂K(t� 1)� 2�(NK(t� 1))��0 ,

where �0 � 0 is a parameter of Alice. Since the post-attack empirical mean can be computed
recursively by the following

µ̂i(t) =
Ni(t� 1)µ̂i(t� 1) + r

0
t � ↵t

Ni(t� 1) + 1
,

where r
0
t is the pre-attack reward; this enables us to write down in closed form Alice’s attack:

↵t =
h
Ni(t)µ̂

0
i (t)�

X

s2⌧i(t�1)

↵s �Ni(t) · (µ̂K(t� 1)� 2�(NK(t� 1))��0)
i

+
. (7)

For convenience, define ↵t = 0 if It = K. We now present the main theorem on Alice’s cumulative
attack cost against Bob who runs UCB.
Theorem 2. Suppose T � 2K and � 1/2. Then, with probability at least 1� �, Alice forces Bob

to choose the target arm in at least

T � (K � 1)

✓
2 +

9�2

�2
0

log T

◆
,

rounds, using a cumulative attack cost at most

TX

t=1

↵t
✓
2 +

9�2

�2
0

log T

◆X

i<K

(�i +�0) + �(K � 1)

vuut
32(2 +

9�2

�2
0

log T) log
⇡2K(2 + 9�2

�2
0
log T)2

3�
.

While the bounds in the theorem are somewhat complicated, the next corollary is more interpretable
and follows from a straightforward calculation.
Corollary 2. Inherit the assumptions in Theorem 2 and fix �. Then, the total number of non-target

arm pulls is

O

✓
K +

K�
2

�2
0

log T

◆
,

and the cumulative attack cost is

bO
 ✓

1 +
�
2

�2
0

log T

◆X

i<K

(�i +�0) + �K ·
✓
1 +

�

�0

p
log T

◆s

log

✓
1 +

K�

�0

◆!
,

where bO ignores log log(T) factors.

We observe that a larger �0 decreases non-target arm pulls (i.e. a more effective attack). The effect
diminishes when �0 > �

p
log T since K�2

�2
0
log T < K. Thus there is no need for Alice to choose

a larger �0. By choosing �0 = ⇥(�), the cost is bO(
P

i<K �i log T + �K log T). This is slightly
worse than the cost of attacking ✏-greedy where � is multiplied by

p
log T rather than log T . However,

we find that a stronger attack is possible when the time horizon T is fixed and known to Alice ahead of
time (i.e., the fixed budget setting). One can show that the choice �0 = ⇥

�
�
p
log T

�
minimizes the

cumulative attack cost, which is bO
�
K�

p
log T

�
. This is a very efficient attack since the dominating

term w.r.t. T does not depend on
P

i<K �i; in fact the cost associated with
P

i<K �i does not grow
with T at all. Furthermore, such a cost matches the cost of the oracle attack up to doubly-logarithmic
factors, which is shown in our supplementary material A.

For the proof of Theorem 2 we use the following two lemmas.
Lemma 5. Assume event E holds and � 1/2. Then, for any i < K and any t � 2K, we have

Ni(t) min{NK(t), 2 +
9�2

�2
0

log t} . (8)

Lemma 6. Assume event E holds and � 1/2. Then, at any round t � 2K, the cumulative attack

cost to any fixed arm i < K can be bounded as:

X

s2⌧i(t)

↵s Ni(t)
⇣
�i +�0 + 4�(Ni(t))

⌘
.

6

(a) Attack cost
Pt

s=1 |↵s| as �1

varies
(b) Attack cost as � varies; dotted
lines depict slope 1/2 and 1 for com-
parison.

(c) Target arm pulls NK(t)

Figure 1: Attack on ✏-greedy bandit.

Proof of Theorem 2. Suppose event E holds. The bounds are direct consequences of Lemmas 6
and 5 below, by summing the corresponding upper bounds over all non-target arms i. Specifically,
the number of target arm pulls is T �

P
i<K Ni(T), and the cumulative attack cost is

PT
t=1 ↵t =P

i<K

P
t2⌧i(T) ↵t. Since event E is true with probability at least 1� � (Lemma 1), the bounds also

hold with probability at least 1� �.

5 Simulations

In this section, we run simulations on attacking ✏-greedy and UCB algorithms to illustrate our
theoretical findings.

Attacking ✏-greedy The bandit has two arms. The reward distributions of arms 1 and 2 are
N (�1,�

2) and N (0,�2), respectively, with �1 > 0. Alice’s target arm is arm 2. We let � = 0.025.
Bob’s exploration probability decays as ✏t = 1

t . We run Alice and Bob for T = 105 rounds; this
forms one trial. We repeat 1000 trials.

In Figure 1(a), we fix � = 0.1 and show Alice’s cumulative attack cost
Pt

s=1 |↵s| for different �1

values. Each curve is the average over 1000 trials. These curves demonstrate that Alice’s attack cost
is proportional to log t as predicted by Corollary 1. As the reward gap �1 becomes larger, more
attack is needed to reduce the reward of arm 1, and the slope increases.

Furthermore, note that
PT

t=1 |↵t| = bO
�
�1 log T + �

p
log T

�
. Ignoring log log T terms, we havePT

t=1 |↵t| C(�1 log T + �
p
log T) for some constant C > 0 and large enough T . Therefore,

log
⇣PT

t=1 |↵t|
⌘

 max{log log T + log�1,
1
2 log log T + log �} + logC. We thus expect the

log-cost curve as a function of log log T to behave like the maximum of two lines, one with slope
1/2 and the other with slope 1. Indeed, we observe such a curve in Figure 1(b) where we fix �1 = 1
and vary �. All the slopes eventually approach 1, though larger �’s take a longer time. This implies
that the effect of � diminishes for large enough T , which was predicted by Corollary 1.

In Figure 1(c), we compare the number of target arm (the suboptimal arm 2) pulls with and without
attack. This experiment is with �1 = 0.1 and � = 0.1. Alice’s attack dramatically forces Bob to pull
the target arm. In 10000 rounds, Bob is forced to pull the target arm 9994 rounds with the attack,
compared to only 6 rounds if Alice was not present.

Attacking UCB The bandit has two arms. The reward distributions are the same as the ✏-greedy
experiment. We let � = 0.05. To study how � and �0 affects the cumulative attack cost, we perform
two groups of experiments. In the first group, we fix � = 0.1 and vary Alice’s free parameter �0

while in the second group, we fix �0 = 0.1 and vary �. We perform 100 trials with T = 107 rounds.

Figure 2(a) shows Alice’s cumulative attack cost as �0 varies. As �0 increases, the cumulative attack
cost decreases. In Figure 2(b), we show the cost as � varies. Note that for large enough t, the cost
grows almost linearly with log t, which is implied by Corollary 2. In both figures, there is a large
attack near the beginning, after which the cost grows slowly. This is because the initial attacks drag
down the empirical average of non-target arms by a large amount, such that the target arm appears to
have the best UCB for many subsequent rounds. Figure 2(c) again shows that Alice’s attack forces

7

(a) Attack cost
Pt

s=1 ↵s as �0

varies
(b) Attack cost as � varies (c) Target arm pulls NK(t)

Figure 2: Attack on UCB learner.

Bob to pull the target arm: with attack Bob is forced to pull the target arm 107 � 2 times, compared
to only 156 times without attack.

6 Related Work

The literature on general adversarial learning is vast and covers ethics, safety, fairness, and legal
concerns; see e.g. Joseph et al. [15] and Goodfellow et al. [12]. Related to MAB, there has been
empirical evidence that suggests adversarial attacks can be quite effective, even in the more gen-
eral multi-step reinforcement learning problems, as opposed to the bandit case considered in this
paper. The learned policy may be lured to visit certain target states when adversarial examples are
driven [19], or have inferior generalization ability when training examples are corrupted [14]. There
are differences, though. In the first, non-stochastic setting [7, 11], the reward is generated by an
adversary instead of a stationary, stochastic process. However, the reward observed by the learner is
still a real reward, in that the learner is still interested in maximizing it, or more precisely, minimizing
some notion of regret in reference to some reference policy [8]. Another related problem is reward
shaping (e.g., Dorigo & Colombetti [10]), where the reward received by the learner is modified, as
in our paper. However, those changes are typically done to help the learner in various ways (such
as promoting exploration), and are designed in a way not to change the optimal policy the learner
eventually converges to [22].

A concurrent work by Lykouris et al. [20] considers a complementary problem to ours. They propose
a randomized bandit algorithm that is robust to adversarial attacks on the stochastic rewards. In
contrast, our work shows that the existing stochastic algorithms are vulnerable to adversarial attacks.
Note that their attack protocol is slightly different in that the attacker has to prepare attacks for all
the arms before the learner chooses an arm. Furthermore, they have a different attack cost definition
where the cost in a round is the largest manipulation over the arms, regardless of which arm the
learner selects afterwards.

Another concurrent work by Ma et al. [21] considers attacking stochastic contextual bandit algorithms.
The authors show that for a contextual bandit algorithm which periodically updates the arm selection
policy, an attacker can perform offline attack to force the contextual bandit algorithm to pull some
pre-specified target arm for a given target context vector. Our work differs in that we consider online
attack, which is performed on the fly rather than offline.

7 Conclusions and Future Work

We presented a reward-manipulating attack on stochastic MABs. We analyzed the attack against
✏-greedy and a generalization of the UCB algorithm, and proved that the attacker can force the
algorithms to almost always pull a suboptimal target arm. The cost of the attack is only logarithmic
in time. Given the wide use of MABs in practice, this is a significant security threat.

Our analysis is only the beginning. We targeted ✏-greedy and UCB learners for their simplicity and
popularity. Future work may look into attacking Thompson sampling [23, 4], linear bandits [1, 5],
and contextual bandits [18, 2], etc. We assumed the reward attacks ↵t are unbounded from above;
new analysis is needed if an application’s reward space is bounded or discrete. It will also be useful

8

to establish lower bounds on the cumulative attack cost. Specifically, it would be interesting to study
pareto optimality w.r.t. the number of target arm pulls and the cumulative attack cost.

Beyond the attack studied in this paper, there is a wide range of possible attacks on MABs. We may
organize them along several dimensions:

• Optimal control viewpoint: Our ‘reward shaping’ attack model can be formulated as optimal
control [24]. We can define the control cost as ↵2

t +�1{It 6= K} and design optimal control
strategies.

• The attack goal: The attacker may force the learner into pulling or avoiding target arms, or
worsen the learner’s regret, or make the learner identify the wrong best-arm, etc.

• The attack action: The attacker can manipulate the rewards or corrupt the context for
contextual bandits, etc.

• Online vs. offline: An online attacker must choose the attack action in real time; An offline
attacker poisons a dataset of historical action-reward pairs in batch mode, then the learner
learns from the poisoned dataset.

The combination of these attack dimensions presents fertile ground for future research into both
bandit-algorithm attacks and the corresponding defense mechanisms.

Acknowledgments

This work is supported in part by NSF 1837132, 1545481, 1704117, 1623605, 1561512, and the
MADLab AF Center of Excellence FA9550-18-1-0166.

References

[1] Abbasi-Yadkori, Yasin, Pál, Dávid, and Szepesvári, Csaba. Improved algorithms for linear
stochastic bandits. In Advances in Neural Information Processing Systems (NIPS), pp. 2312–
2320, 2011.

[2] Agarwal, Alekh, Hsu, Daniel, Kale, Satyen, Langford, John, Li, Lihong, and Schapire, Robert E.
Taming the monster: A fast and simple algorithm for contextual bandits. In Proceedings of the

International Conference on Machine Learning (ICML), pp. 1638–1646, 2014.

[3] Agarwal, Alekh, Bird, Sarah, Cozowicz, Markus, Hoang, Luong, Langford, John, Lee, Stephen,
Li, Jiaji, Melamed, Dan, Oshri, Gal, Ribas, Oswaldo, Sen, Siddhartha, and Slivkins, Alex.
Making contextual decisions with low technical debt. CoRR abs/1606.03966, 2016.

[4] Agrawal, Shipra and Goyal, Navin. Analysis of Thompson Sampling for the Multi-armed
Bandit Problem. In In Proceedings of the Conference on Learning Theory (COLT), volume 23,
pp. 39.1–39.26, 2012.

[5] Agrawal, Shipra and Goyal, Navin. Thompson Sampling for Contextual Bandits with Linear
Payoffs. In Proceedings of the International Conference on Machine Learning (ICML), pp.
127–135, 2013.

[6] Auer, Peter, Cesa-Bianchi, Nicolò, and Fischer, Paul. Finite-time analysis of the multiarmed
bandit problem. Machine Learning, 47(2–3):235–256, 2002.

[7] Auer, Peter, Cesa-Bianchi, Nicolò, Freund, Yoav, and Schapire, Robert E. The nonstochastic
multiarmed bandit problem. SIAM Journal on Computing, 32(1):48–77, 2002.

[8] Bubeck, Sébastien and Cesa-Bianchi, Nicolò. Regret Analysis of Stochastic and Nonstochastic
Multi-armed Bandit Problems. Foundations and Trends in Machine Learning, 5:1–122, 2012.

[9] Chapelle, Olivier, Manavoglu, Eren, and Rosales, Romer. Simple and scalable response
prediction for display advertising. ACM Transactions on Intelligent Systems and Technology, 5
(4):61:1–61:34, 2014.

[10] Dorigo, Marco and Colombetti, Luca Marco. Robot Shaping: An Experiment in Behavior

Engineering. MIT Press, 1997. ISBN 0-262-04164-2.

9

[11] Even-Dar, Eyal, Kakade, Sham M., and Mansour, Yishay. Online Markov decision processes.
Mathematics of Operations Research, 34(3):726–736, 2009.

[12] Goodfellow, Ian J, Shlens, Jonathon, and Szegedy, Christian. Explaining and harnessing
adversarial examples. In International Conference on Learning Representations (ICLR), 2015.

[13] Greenewald, Kristjan, Tewari, Ambuj, Murphy, Susan A., and Klasnja, Predrag V. Action
centered contextual bandits. In Advances in Neural Information Processing Systems 30 (NIPS),
pp. 5979–5987, 2017.

[14] Huang, Sandy, Papernot, Nicolas, Goodfellow, Ian, Duan, Yan, and Abbeel, Pieter. Adversarial
attacks on neural network policies, 2017. arXiv:1702.02284.

[15] Joseph, Anthony D., Nelson, Blaine, Rubinstein, Benjamin I. P., and Tygar, J.D. Adversarial

Machine Learning. Cambridge University Press, 2018.

[16] Kuleshov, Volodymyr and Precup, Doina. Algorithms for multi-armed bandit problems. CoRR
abs/1402.6028, 2014.

[17] Kveton, Branislav, Szepesvári, Csaba, Wen, Zheng, and Ashkan, Azin. Cascading bandits:
Learning to rank in the cascade model. In Proceedings of the 32nd International Conference on

Machine Learning (ICML), pp. 767–776, 2015.

[18] Li, Lihong, Chu, Wei, Langford, John, and Schapire, Robert E. A contextual-bandit approach
to personalized news article recommendation. In Proceedings of the Nineteenth International

Conference on World Wide Web (WWW), pp. 661–670, 2010.

[19] Lin, Yen-Chen, Hong, Zhang-Wei, Liao, Yuan-Hong, Shih, Meng-Li, Liu, Ming-Yu, and Sun,
Min. Tactics of adversarial attack on deep reinforcement learning agents. In Proceedings of the

26th International Joint Conference on Artificial Intelligence (IJCAI), pp. 3756–3762, 2017.

[20] Lykouris, Thodoris, Mirrokni, Vahab, and Paes Leme, Renato. Stochastic bandits robust to
adversarial corruptions. In Proceedings of the Annual ACM SIGACT Symposium on Theory of

Computing (STOC), pp. 114–122, 2018.

[21] Ma, Yuzhe, Jun, Kwang-Sung, Li, Lihong, and Zhu, Xiaojin. Data poisoning attacks in
contextual bandits. In Conference on Decision and Game Theory for Security (GameSec), 2018.

[22] Ng, Andrew Y., Harada, Daishi, and Russell, Stuart J. Policy invariance under reward transfor-
mations: Theory and application to reward shaping. In Proceedings of the 16th International

Conference on Machine Learning (ICML), pp. 278–287, 1999.

[23] Thompson, William R. On the Likelihood that One Unknown Probability Exceeds Another in
View of the Evidence of Two Samples. Biometrika, 25(3/4):285, 1933.

[24] Zhu, Xiaojin. An optimal control view of adversarial machine learning, 2018. arXiv:1811.04422.

10

