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Abstract

Understanding how humans perceive the likability of high-dimensional “objects”
such as faces is an important problem in both cognitive science and AI/ML. Existing
models generally assume these preferences to be fixed. However, psychologists
have found human assessment of facial attractiveness to be context-dependent.
Specifically, the classical Beauty-in-Averageness (BiA) effect, whereby a blended
face is judged to be more attractive than the originals, is significantly diminished
or reversed when the original faces are recognizable, or when the blend is mixed-
race/mixed-gender and the attractiveness judgment is preceded by a race/gender
categorization, respectively. This "Ugliness-in-Averageness" (UiA) effect has
previously been explained via a qualitative disfluency account, which posits that
the negative affect associated with the difficult race or gender categorization is
inadvertently interpreted by the brain as a dislike for the face itself. In contrast,
we hypothesize that human preference for an object is increased when it incurs
lower encoding cost, in particular when its perceived statistical typicality is high,
in consonance with Barlow’s seminal “efficient coding hypothesis.” This statistical
coding cost account explains both BiA, where facial blends generally have higher
likelihood than “parent faces”, and UiA, when the preceding context or task restricts
face representation to a task-relevant subset of features, thus redefining statistical
typicality and encoding cost within that subspace. We use simulations to show
that our model provides a parsimonious, statistically grounded, and quantitative
account of both BiA and UiA. We validate our model using experimental data from
a gender categorization task. We also propose a novel experiment, based on model
predictions, that will be able to arbitrate between the disfluency account and our
statistical coding cost account of attractiveness.

1 Introduction

Humans readily express liking and disliking for complex, high-dimensional “objects”, be they
faces, movies, houses, technology, books, or life partners, even if they cannot verbalize exactly
why. Understanding how these preferences arise is important for both cognitive science, and for AI
systems that interact with humans. In particular, face processing presents a prime case study for
complex information processing in humans. Human, including very young babies [1], efficiently
perform sophisticated computational tasks based on a brief glimpse of a face, such as recognizing
individuals, identifying emotional states, and assessing social traits such as attractiveness [2]. The
last phenomenon has an obvious impact on real-life decisions such as dating, employment, education,
law enforcement, and criminal justice [3]. Existing models of human preferences, in both machine
learning and cognitive science, have generally assumed social processing of faces (e.g. attractiveness
judgment) to be a fixed function of the underlying face features [4, 5, 6, 7, 8, 9]. However, a
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Figure 1: BiA, UiA in celebrity morphs. (a) The middle face, a 50% blend of the faces on the left and
right, is generally judged by human subjects to be more attractive than either “parent” face (from
[12]). (b) Simulated typicality increases with increasing number of faces used in the blend. (c)
Simulated typicality of facial blends increases as the “parent” faces are more evenly represented in
the blend. (d) Example image (from [11]) depicting a morph of two recognizable faces (here, Bush
and Obama). (e) Blends of recognizable individuals are rated by human subjects as less attractive
than individual recognizable faces, while blends of stranger faces are rated as more attractive (adapted
from [11]). (f) Simulated typicality has similar pattern as data (e). A constant offset of 6 was added
to produce positive values. Simulation parameters: d = 60, drace = 1, s = 2, σ0 = 1, σr = 0.5 and
µ = 1, |K| = 50, σsal = 0.2,

∑|K|
k=1 pk = 0.05, all simulations in 2-d subspace, corresponding to a

random subspace or a distinctive feature subspace.

series of recent psychology experiments have indicated that facial preferences in the brain are
not fixed, but rather systematically dependent on what other face-processing task the observer is
also performing. Specifically, these experiments show that a classical phenomenon known as the
beauty-in-averageness (BiA) effect (see Figure 1a), whereby blends of multiple faces are usually
found to be more attractive than the originals [10], can be suppressed or even reversed (termed
Ugliness-in-Averageness or UiA), when the facial blends are created from recognizable faces [11]
(see Figure 1d;e), or when attractiveness judgment of a mixed-race/mixed-gender blend is preceded
by a racial/gender categorization task [12, 13] (see Figure 2a;b), respectively.

The facial BiA effect has long been seen as an example of human preference for highly prototypical
stimuli over more unusual stimuli [14]. Early accounts explained this phenomenon as reflecting a
biological predisposition to interpret prototypicality as a cue to mate value or reproductive health
[15, 16]. However, this mate-value account cannot explain human preference for prototypicality in a
variety of natural and artificial objective categories such as dogs, birds, fish, automobiles, watches,
and even synthetic dot patterns [17, 18, 14]. Moreover, it cannot explain why attractiveness of facial
blends should depend sensitively on the behavioral context, e.g. when required to do racial or gender
discrimination [12, 13]. To explain this diverse array of phenomena, a more parsimonious account
based on processing fluency has been proposed: prototypes are processed more “fluently” and humans
prefer more fluently processed stimuli [14, 12].

While conceptually appealing, this fluency account does not explain what “fluency” really means
computationally, nor in what sense it may be advantageous for the organism. We address issues, by
hypothesizing that human preference for an object is increased when it incurs lower coding cost,
in particular when its perceived statistical typicality is high. This hypothesis is consonant with
ideas from information theory [19] and Barlow’s “efficient coding hypothesis,” which stipulates that
neural encoding should be organized so as to minimize the energy expenditure needed to represent
the sensory environment, in particular using fewer spikes (expending less energy) to encode more
probable stimuli [20, 21, 22, 23]. Efficient coding is necessary given that the brain accounts for
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Figure 2: UiA of biracial blends. (a) Example stimuli used in [12], with the middle face being a 50%
blend of the Asian and Caucasian faces on either side. (b) Mean attractiveness ratings for single-race
(left), and mixed-race blends (right), when race categorization preceded the attractiveness rating
(from [12]). (c) Simulated typicality exhibits similar pattern as human data. A constant offset of 2
was added to produce positive values. Simulation parameters same as in Figure 1.

20% of the adult human body’s energy expenditure, but only 2% of its weight [24]. In the context
of faces and other complex objects, we suggest that the brain represents each new stimulus by first
finding the closest previously learned representative (prototype) [25], and then use neural activations
to encode the discrepancy between the features of the inferred prototype and the current stimulus,
perhaps via predictive coding [26], whereby the top-down inputs instantiate prototypical expectations
and bottom-up activation encode additional prediction errors. Without delving into a detailed neural
implementation of such a computational process [27], we broadly quantify this “coding cost” in
terms of category-conditional log likelihood (Section 2): the smaller the likelihood of the stimulus
conditioned on the inferred category, the more encoding cost it incurs. To summarize, we recast
“processing fluency” into this statistically grounded notion of “category-conditional likelihood”, and
propose that a statistically likely stimulus is preferable for humans due to lower neural coding cost,
or less energy required to encode the prediction error.

Besides coding efficiency, we make a second major assumption, which is that the brain uses attentional
mechanisms to focus or project its face representation into a subset (subspace) of task-relevant features,
and that statistical typicality and thus coding cost are redefined in this projected representation. This
is consistent with a large body of work showing that perceptual tasks are often performed in a low-
dimensional, task-relevant subspace [28] focusing on informative dimensions in high dimensional
data, using attentional modulation that can be either top-down goal-directed [29] or bottom-up
saliency-based [30]. It is also consistent with a body of work showing that people often use category
membership to predict features and reason about members of the category [31, 32].

We will give a short intuitive explanation of how our theory explains both BiA and UiA. In BiA,
assuming the population distribution of faces is unimodal (something we will verify on real face
image data in Section 3), facial blends will generally have higher likelihood than “parent faces”, and
therefore higher attractiveness ratings. On the other hand, when the behavioral context or task induces
the brain to restrict face representation to a task-relevant subset of features, such as the subspace that
maximally separates male and female faces in a gender discrimination task, then statistical typicality
is redefined within that subspace to be particularly unfavorable toward stimuli that are situated in
between categories in the task-relevant subspace but close to the center in the original undifferentiated
representation. This scenario explains why bi-racial or bi-gender blends are generally perceived as
more attractive than their “parent faces”, but that effect is diminished or even reversed when there is
an explicit race- or gender-discrimination task [12, 13], respectively. Similarly, our model predicts
that blends of familiar faces should be viewed as less attractive [11]: we hypothesize familiar faces
are represented by their statistically distinctive features (features that differentiate them from generic
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faces), and the recognition of familiar faces leads the attentional system to focus on the subset of
distinctive features, within which the facial blends are statistically relatively less likely.

The rest of the paper is organized as follows. In Section 2, we formally define coding cost, sta-
tistical typicality, and attentional focusing in face processing. In Section 3.1, we use an abstract
statistical model to illustrate our theory, and show how BiA and context-induced UiA can arise
under our statistical assumptions. In Section 3, we use a real face image data set, and an explicit
face representation commonly used in machine vision, to fit a parametric distributions of faces. We
then verify statistical assumptions of our abstract model using this face dataset, as well as making
detailed predictions of attractiveness (as a percentages of bi-racial and bi-gender blend) based on
our measure of statistical typicality, the category-conditional log likelihood. Then, using actual face
stimuli used in a gender-discrimination task [12] and projecting them into our face representation,
we show that our predicted facial attractiveness of these stimuli significantly correlate with subjects’
actual attractiveness ratings. Next, we propose an experiment to disambiguate the disfluency and
statistical typicality accounts of UiA (Section 4). Finally, we conclude in Section 5 with a discussion
on the limitations of our model and future directions of research.

2 A Formal Representation of Faces and Attractiveness

We assume humans have an internal d-dimensional representation of faces X [33, 5, 34], in which
each face is represented by a vector x = (x1, . . . , xd) of d real-valued features. We also assume
that this face space is endowed with a probability distribution pX (x) representing the perceived
distribution of faces in the environment [35], which in general can be a complex mixture distribution
with different components corresponding to different subgroups of the population (e.g. different races,
genders, other subtypes). In general, we assume facial attractiveness is proportional to log likelihood
of the face, log pX (x). In the absence of any categorization task, explicit (e.g. race, gender) or
implicit (e.g. individual recognition), we assume more likely faces are preferred. This explains the
BiA effect, as long as pX (x) is approximately a single-peaked distribution (e.g. Gaussian), since the
average of two points drawn from such a distribution will probably have a higher likelihood than the
original two points. We will show in Section 3 that the empirical distribution of a large sample of real
face images is indeed approximately Gaussian.

It may seem puzzling that pX (x) is both approximately Gaussian and a mixture distribution. The
reason is that the different components differ from each other only on a small subset of features.
For example, male and female faces may have indistinguishable distributions along most featural
dimensions, but be quite distinct in features that are especially gender discriminating. We will see
that real face data indeed exhibit this property in Section 3.

When the observer performs a categorization task, such as race discrimination, we assume the
attractiveness of a face stimulus is proportional to the category-conditional log-likelihood log pX (x|c),
where c is the estimated category, among those of potential interest, based on the general distribution
pX (x). For example, pX (x) can be viewed as approximately a mixture of two Gaussians (male
and female) in the gender discrimination task (see Section 3). We propose that the brain first uses
Bayesian estimation to estimate the gender of a face (e.g. c = male), and then the attractiveness
of the face would be proportional to pX (x|c = male), which is inversely related to the coding cost
necessary to represent x on top of knowing its category.

An additional wrinkle is that we assume, in the context of a particular task, the brain projects the
face space and its distribution into a task-relevant subspace X̃ ⊆ X . Denoting the projection of a
face x into a subspace X̃ as x̃, we redefine statistical typicality in the subspace X̃ as log pX̃ (x̃|c), the
log-likelihood of x̃ constrained to the subspace X̃ , conditioned on the Bayesian estimated category c.
In a race- or gender-categorization task, we assume the brain projects the face space into a race- or
gender-informative subspace X̃cat, respectively. Bi-racial/bi-gender blends are statistically atypical
of both categories in this projected space, where the different race or gender categories are clearly
distinct, thus resulting in low attractiveness ratings.

We also use this projection idea to model BiA in blends of familiar or recognizable faces. We
assume that the brain by default performs recognition, a categorization task, whereby recognizable
faces have their own modes, plus there is a general distribution for all unfamiliar faces. It has been
suggested that people encode familiar faces using features that are most distinctive/salient, as this is
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not only computationally efficient but may also boost recognition [36]. Accordingly, we assume that
a familiar face is represented by its s statistically most distinctive (atypical) features: we assume xf

is represented by its veridical value, if it is among the top s z-scored dimensions, and 0 otherwise. We
assume that a blend of two recognizable faces x induces an implicit categorization in the subspace
X̃sal spanned by a subset of the distinctive features of the parent faces (an alternative is to project
to the subspace spanned by the blend’s own distinctive features, an approach that yields similar
results in our simulations, which are not shown here). Similar to explicit categorization tasks, c is
the a posteriori (i.e., after classification) most probable identity, and statistical typicality in this case
is log pX̃sal

(x̃sal|c). The attractiveness rating is low for the blend x in this subspace, because it is
sufficiently unlike either of the parent faces (low conditional likelihood), but also low likelihood
relative to the general distribution given that this is by definition the subspace of facial features that
are distinctive (statistically unlikely). Relatedly, people might not compute the statistical typicality of
a face with respect all the underlying features in the absence of an implicit or explicit categorization
task, and may do some only for a random subset of features.

3 Demonstrations

We will first present a simple abstract model in section 3.1 that captures both BiA and as well as UiA
in various contexts. The simplicity of this model is deliberate, in that it is meant to be both expository,
as well as demonstrating the generality of our proposal, since BiA and UiA are not specific to faces
but emerge for other natural and synthetic objects [37, 14, 38]. In section 3.2, we use a data-based
face space representation for further validation.

3.1 Abstract Model

3.1.1 Generative Model

We assume that humans internally represent each face x = (x1, . . . , xd) ∈ Rd as generated from
a mixture of Gaussians, whereby the components can either correspond to well-known faces {fi}
(assume K of these) or demographic subgroups {hr} (assume G of these, e.g. gender, race),

X ∼
|K|∑
k=1

pkfk(x) + (1−
|K|∑
k=1

pk)g(x), (1)

g(x) =

|G|∑
r=1

qrhr(x), (2)

where hr(x) = N (x;µr,Σr), fk(x) = N (x;µk,Σk) and
∑|K|

k=1 pk << 1 as the number of
known faces should be much fewer than unknown faces. We assume that the distributions of the
mixture components hr differ only in a small number of dimensions, 1, . . . , drace and are identical on
the other dother := d− drace dimensions. Specifically, we assume µr,drace+1:d = 0 ∈ Rdother and

Σr =

[
σ2
r1drace×drace 0

0 σ2
01dother×dother

]
, (3)

where 1n×n is an identity matrix of dimensions n× n. For simplicity, we assume |G| = 2 and set
µ1 = −µ2 = µ, where µ1:drace

= [µ, . . . , µ] ∈ Rdrace . We also set the prior/mixture probability
distribution q to be uniform.

Approximation. Note that since the statistics of hr differ only in a small number of dimensions
drace << d, the mixture g(x) =

∑|G|
r=1 qrhr(x) is well approximated by g̃(x) = N (x;µ0,Σ0),

where µ0 = 0 ∈ Rd and Σ0 = σ2
01n×n and can be assumed to be used to perform inference except

when demographic features bear relevance, thus simplifying computations and representation.

Salient feature representation. The mixture components {fk} represent known/recognizable faces,
where the variance in each component corresponds to natural variability in a face, such as variations
in pose or expressions. For each face k, we assume subjects encode/represent only s distinctive
features (relative to the assumed generative distribution) as described in the previous section, denoted
by ik1 , . . . , i

k
s (the variance along these dimensions is denoted as σ2

sal) and assume the same statistics
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along other dimensions as g̃(x), the approximate, assumed generative distribution for a generic,
unfamiliar face.

Recognition. For simplicity, we assume the brain applies Bayes’ rule to compute the posterior
for each face x, and then picks the most probable category in each case via maximum a posteriori
estimation.

3.1.2 Simulation Results

BiA. We first examine whether our abstract model can capture some nuances of the BiA effect. Our
simulation shows that as the number of constituent faces that go into the blend increases, the typicality
of the blend increases, so that the blend is expected to be perceived as increasingly more attractive
(see Figure 1b). This is consistent with the finding that attractiveness of faces increases (decreases)
when they are distorted towards (away from) the population mean [39, 4]. Additionally, it has been
found that more evenly blended face images are perceived as more attractive [12], something that is
also captured by the typicality measure in a simulation of the abstract model (Figure 1c).

UiA: Familiar Faces. In [11], participants from Netherlands and New-Zealand rated blends of local
celebrities (people famous in one country but not the other). Blends of unknown celebrities were
rated as more attractive than the “parent” face images (classic BiA), while blends of local celebrities
were rated as less attractive relative to the constituent images: a reversal of BiA. An example image
(from [11]) depicting a morph of two recognizable faces can be seen in Figure 1d, while Figure 1e
shows BiA and its reversal in data from the study. As discussed in section 2, low statistical typicality
of the blend in the distinctive feature subspace (here 1-d) results in UiA. Simulations qualitatively
capture this effect in Figure 1f.

UiA: Race Categorization. In [12], participants rated mixed and single race blends on attractiveness
after performing a race categorization task (Asian or Caucasian). An example of stimuli used in
[12] is shown in Figure 2a. Data in Figure 2b shows that mixed-race morphs are rated as less
attractive relative to single race morphs when a race categorization task preceded the attractiveness
judgment. As previously hypothesized in section 2, low statistical typicality of a mixed race blend in
the subspace of race informative features induces UiA. For simplicity, we assume this subspace is
the one determined by Linear Discriminant Analysis (LDA). Simulations qualitatively capture the
behaviour of attractiveness judgments in data (Figure 2c).

3.2 Data-Based Face Representation

We model faces using the Active Appearance Model (AAM), a well-established machine vision
technique that reconstructs images well, generates realistic synthetic faces, produces a latent rep-
resentation of only a few dozen features [40, 41, 42], and whose features seem to be encoded by
face processing neurons in the monkey brain [43]. AAM assigns each face image a vector of shape
features, which are just the (x, y) coordinates of some consistently defined landmarks across all faces
– in our case, we use the free software Face++ 1, which labels 83 landmarks (e.g. contour points of
the mouth, nose, eyes). AAM also assigns each face image a vector of texture features, which are
the grayscale pixel values of a warped version of the image after aligning the landmark locations
to the average landmark locations across the data set (see Figure 3a for a schematic illustration of
AAM). Consistent with standard practice for reducing the dimensional of AAM [40, 41, 42, 43], we
perform principal component analysis (PCA) on each of the shape and texture features. In addition,
to remove the correlation among shape and texture features, we then perform another PCA to get
joint shape-texture features that are statistically uncorrelated with one another. We use the top 60
principal components (highest eigenvalues) (d = 60 for our face space). We train our version of
AAM using a publicly available dataset of 597 face images [44], with neutral facial expression taken
in the laboratory.

First, we validate several assumptions made in the abstract model. We find the distribution of faces
learned from data is indeed approximately normal along a random face space (AAM) axis (Figure
3b), but a mixture of two Gaussians in race-informative (Figure 3c) or gender-informative subspaces
(Figure 3d), found using LDA. We then use this face data-informed AAM representation to make
nuanced predictions about facial attractiveness as a function of % blend between faces of different
races or different genders [12, 13]. We first randomly drew 60 Asian and white face images (with

1https://www.faceplusplus.com
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Figure 3: AAM-based face representation and model simulations. (a) AAM consists of shape and
texture features; a joint PCA is then conducted over both types of features to remove correlations. (b)
The empirical distribution projected in a random direction (1-d subspace) is normally distributed. (c)
The empirical distribution of white and Asian faces projected into a race-informative subspace (1D
subspace obtained by LDA) is approximately a mixture of two normal distributions. x: mean location
of face images (60 total) for each % of blend, i.e. 1: 100% white and 0% Asian, . . ., 11: 0% white
and 100% Asian. (d) Analogous to (c) by projecting faces into a gender-informative subspace. x:
mean location of face images (10 total) for each % of blend (male image: female image). (e) Model
simulated typicality for actual face images (indexed by racial blend proportion) exhibits BiA as a
function of racial blend when there is no categorization task. (f) Analogous to (e), but indexed by
gender blend proportion. (g) Model simulated typicality for actual face images exhibits UiA when
statistical typicality is measured in the race-informative subspace. (h) Analogous to (g) but measured
in the gender-informative subspace.

replacement) from the face data set [44], and then blended them at 10% increments, from 100% of
the white faces to 100% of the Asian faces, thus producing 11 morphs of each pair (see Figures 3c).
Average predicted typicality, defined as category-conditional log likelihood, has an inverted U shape
(BiA) relative to % racial blend in the original space (Figures 3e) or a random subspace (not shown),
but a U shape (UiA) in the race-informative subspace (Figures 3g). Analogously, when 60 pairs of
male and female faces are randomly drawn and then blended in different proportions, the model
predicts typicality, and thus attractiveness, to have similar BiA (Figures 3f) and UiA effects (Figures
3h).

3.3 Experimental Validation: Attractiveness of Individual Faces

Using actual face stimuli used in the gender discrimination study [13], as well as subjects’ actual
attractiveness ratings, we can assess the ability of our model to predict the attractiveness of individual
face images. In this study, subjects rated the attractiveness of blends from 10 unique pairs of male
and female “parent” faces, in different proportions (10% increment, see Figure 4a), under either
the control condition (no gender discrimination), or the experimental condition (following gender
discrimination). We projected the stimuli into our AAM space (Figure 4b), and computed statistical
typicality in the original/full space as well as the task informative subspace (Figure 4c;d). Even
though this study used only 10 pairs of face images, we see that the model-predicted BiA/UiA effects
are very similar to those based on a much larger random sampling from our face dataset (Figure
3f;h), and the predicted UiA pattern corresponds well to the reported attractiveness of the actual faces
(Figure 4e). Moreover, we find that the difference in attractiveness ratings between experimental and
control conditions correlate significantly with model-predicted typicality of individual face images
(r = 0.30, p = 0.0017). We never expected the correlation to be close to 1, because there are clearly
other determinants of facial attractiveness besides typicality, such as perceptual and conceptual
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priming, contrast, clarity, and symmetry [14]. Indeed, female faces are generally found to be more
attractive than male faces [14], which is why we plot the difference in attractiveness rating between
experimental and control conditions – this removes any baseline effects of gender.
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Figure 4: UiA of bi-gender blends induced by gender discrimination. (a) Example stimuli used in
[13]: blends of varying proportions of male and female “parent” faces. (b) Analogous to Figure
3c;d, but using the actual experimental stimuli projected into our trained AAM. (c), (d) Analogous to
Figure 3e;f;g;h, but using actual experimental stimuli projected into our trained AAM. (e) Difference
in attractiveness ratings between experimental and control condition versus blend %.

4 Disentangling Disfluency and Typicality accounts

In the simulations and experiments considered so far, our statistical typicality account and the
disfluency account make qualitatively similar predictions, because the difficulty of categorization and
statistical typicality are monotonically related: the faces that are hardest to categorize are also the least
likely given either category. To disambiguate these accounts, we need an experiment that dissociates
categorization difficulty with statistical atypicality. We therefore suggest the following experiment
that involves discriminating age, which is unimodally distributed (see the empirical distribution of
age [45] in Figure 5a). The proposed experimental condition is to rate the attractiveness of faces after
discriminating age: is the person older or younger than 37 years old? According to the statistical
typicality account, attractiveness ratings would look like Figure 5b, having a shape similar to the
population distribution (Figure 5a). In contrast, the disfluency account would qualitatively predict
the difficulty of categorization to be the greatest and thus processing fluency and attractiveness to
be lowest near the categorization boundary. Figure 5c illustrates this by simply joining two lines
that decrease toward the categorization boundary. To summarize, our model predicts BiA in this
experiment, while the disfluency account predicts UiA.
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Figure 5: (a) Empirical distribution of ages in dataset [45]. (b) Predictions of our typicality based
model. (c) Predictions based on a disfluency account.

5 Discussion

Most existing models of human preferences assume these preferences to be fixed and do not model
contextual dependence. In this paper, we propose a statistically grounded model of human “liking”,
whereby the attractiveness of a stimulus depends on its neural coding cost, in particular how likely it
is relative to its perceived category. This argument is based on information-theoretic considerations,
in particular the coding cost associated with statistically unlikely stimuli, and is related to Barlow’s
“efficient coding hypothesis.” Additionally, we assume that humans naturally project high-dimensional
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data, such as faces, in a task-relevant manner to a low-dimensional subspace representation, either
via top-down goal-directed specification (informativeness with respect to a particular discrimination
problem, such as race or gender), or via bottom-up saliency (distinctiveness with respective to the
assumed generative distribution). Under our framework, therefore, the attractiveness of a stimulus
is context-dependent for two different reasons: (1) the set of hypotheses under consideration in the
Bayesian posterior computation is context-dependent (e.g. the two gender categories compose the
hypothesis space in a gender discrimination task), and (2) the statistical distribution corresponding to
the generative model changes according to the featural subspace that supports the current task (e.g.
during a gender discrimination task, the face space and its distribution are defined only with respect
to the subspace that is most-informative for gender discrimination).

While race and gender correspond to existing multi-modality in the distribution of faces, our theory
would suggest that UiA can be produced in arbitrary cross-mode blends, if human participants can
learn novel bimodal distributions of faces in an experimental setting – an experimentally testable
prediction. Relatedly, it is worth making a distinction between statistical typicality as we define it,
and protoypicality, as is usually conceived in the psychology literature [14]. Prototypicality implies
there are clear modes in the stimulus distribution, and how prototypical a stimulus is presumably
depends on how “close” it is to the closest mode. Typicality, as we define it, however, does not always
depend monotonically on distance to the closest mode, and is well defined even for distributions that
have no distinct modes (such as a uniform distribution). Separately, it is important to reiterate that
we do not claim that statistical typicality or coding cost is the only determinant of attractiveness or
“liking.” Many other factors have been shown experimentally to be important for human preferences
of complex objects, such as perceptual and conceptual priming, contrast, clarity, and symmetry [14].

In addition to providing a statistically grounded explanation of contextual dependence of human
attractiveness judgment, our work also provides some general insight as to how high-dimensional data
can be analyzed and stored efficiently: the system needs to be able to dynamically shift its subspace
projection according to task demands, so as to reduce the need for representational and computational
complexity at any given moment. Moreover, our work suggests two different ways to identify the
appropriate subspace projection (and thus the appropriate form of complexity reduction). One is
supervised, task-specified choice of hypothesis space, and thus the corresponding subspace projection
that best discriminate the hypothesis – we argue this is what underlies context-induced decrease in the
attractiveness of bi-racial/bi-gender faces during race- and gender-discrimination tasks, respectively.
The other route is unsupervised, saliency-induced subspace projection, in which the statistically
unlikely (relative to population distribution) features of a high-dimensional stimulus are privileged in
their processing and encoding, and subsequent computations are performed within this subspace –
this is what underlies our explanation of the UiA effect in celebrity-blend faces. The general idea
of “tagging” high-dimensional data by their distinctive features seems like a good way to store and
analyze complex data. Our work sheds light on one possible role played by attention: it is one way
to dynamically construct subspaces that emphasizes feature dimensions that are most relevant or
salient for performing the task at hand. There is a broad and confusing literature of attention in
both psychology and neuroscience. A productive direction of future research would be to relate our
hypothesized role of attention to that larger literature.

Though human attractiveness perception is interesting in itself, we are more fundamentally interested
in a computational understanding of how the brain encodes and processes complex, high-dimensional
data (e.g. faces), and how attention can dynamically alter the featural representation in a task-
dependent manner. Faces are appealing because they are informationally rich, ecologically important,
and for which we have a computationally tractable and neurally relevant [3] parametric representation
(AAM). We therefore used faces to implement/test concrete ideas about information representation and
its contextual modulation in this work. The attractiveness literature provides a convenient empirical
test of our theory, but we expect that the dynamic representational framework we hypothesize here
to also affect other cognitive processes, such as working memory, learning, decision-making, and
problem-solving, in the sense that all these cognitive processes depend on what features are currently
made salient by attentional mechanisms. For example, learning to memorize a set of items should be
easier if one’s attention is focused the features that make these items easiest to organize conceptually.
Indeed, while the ecological benefits of “liking” based on encoding cost is rather generic and long-
term, the benefits of cognitive expediency or accuracy derived from focusing on task-relevant features
are acute and immediate. The latter points to a promising line of future research.
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