A Extra Lemmas

Lemma 8. Let x1 be any covariate sequence and Px, . .., Pr the associated precision matrices
given by the backwards recursion (I). For any invertible matrix W € R4, et x|, = W x;. Then

. . T
the precision matrices of T, . .., x' are exactly P} = W P,WT and [ P,x, = =" P/x).

T T
Proof. First, we can easily check that P} = (Z?zl :BQ:BQT) = (Whi (23:1 wtw:) Wi,
Now, assume that the hypothesis holds for ¢. Then

/ / SN ANSY]
P,_, =P, + Pxix, P,

—wt' Ppw+wt’ (PtWTththTWTTPt) wt

—wt'p_ Wt

B Calculating A}
While the update of P, is given by the forward recursion, the rank one update of II; is more
complicated; Sherman-Morrison cannot be used directly.

Lemma 9. Using x; = x — Ht,lﬂl_lw to denote the projection of x; onto the orthogonal
complement of 11,_1, we have

Tt T T oz, (1+2TT a:) x!
' 1, +1I,_  xx L( t—1 1

mf_, - S el el — ife ¢ C(T,_1), and

T, T (x| x))?
T Ll iR
II; =
oz 10
T t—1LtLy Ly .

I, + 1_—o T xf 2 10z otherwise .

Proof. We will write X as the matrix with columns @1, ..., x;_1. Thus, we have
XT
Ht:Ht—1+$$T:[X w]{mT}’

and since X has linearly independent columns, (without loss of generality; we shall see why later),
[X ] has linearly independent columns since x is not in the column space of X . Therefore, we

have .
x ot (5] =) 5]

= (1 eeT) =i ([57]1xw) K]

and

Now, recall that the matrix that projects onto the column space of X is P := X X' and define
x| := Pz and ) = x — x)]. We can calculate the middle matrix by using the block matrix inversion
formula:

Tyx) 'y Xfaa X7 —x!
(l:XT:| [X ZB})I (X X) + mT:fwTPac :cT:c—m—?Pm

QZT 7ETXTT 1
zlz—x ' Pz zlz—x ! Px
1 (X-'—X)f1 (a:Tw - :cﬂ—acu) F Xtz TXTT _Xig

PG DR D
r'rT—x, T
Rl —xTXTT 1
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and so

([ ) [ g [ ) e

T T xTx — wﬁxu x]

Using the Pythagorean theorem (i.e. that x T & = mﬂmﬂ +x]x,)and that II] | = XTI Xt we
have
1
HI = 7)2 [XTT:BIQZL — a)leXTT (IJL} |:

T

X'xlx, — XT:ca:I}
(EELwJ_

x|
1 2
= (W (@)’ ~ales (era U, + 1) wa]))
(“ﬂwL)
mLmTHI_lmmI CUJ_GUI

(2]z1)”  (elel)”

Tt T
e o I +10 xx] *L (1 tx Ht—lw) z)

zlx, xlx,)?
1 1

)
=1L, -
Thus, we can evaluate

T Tyt T
T Tt zle 2 Tz +a I jzzje T 2L (1 e Ht*lw) TLT
z Me=a'II, jx—

zla, (@[@.)?
= :cTHLla: - 2a:THLla: +14 mTHle

= 1,
and

eI xx]s (1 + Q’JTHI—lm) T]s

Trte = 27117 T17t
z Ils=x I, ;s—x II;_;s— = T

T T T T
Trpt T
f’CTHI_y”mIS (1 +x Ht71w> s
- T + T
T Ty T T

= 0.
Finally, notice that
sTHIs = sTHLls
since x| s = 0.

The second case is a consequence of the Sherman-Morrison formula. Since II;, II;_1, and a; are all in
the same eigenspace, we can without loss of generality assume full rank and apply Sherman-Morrison.
A precise formulation can also be found in e.g. Harville|[1997]. O

Lemma 10. For a PSD symmetric matrix 11, s € R(II) and x ¢ R(II), we have
z" (H + a?xT)T r=1,
s (H + :v:cT)T z =0,

st (H + xa:T)T s=s Ms.

Proof. Write the small SVD IT = UAU T (that is, diagonal A, U with orthonormal columns). Choose
a unit vector v, vectors a and b, and scalar a # 0 so that

Ulv=0, x=Ua+ av, s =Ub.
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Define

w:(H+sz)Tz, r:(HJr:rxT)Ts.
Because these are the minimal norm solutions to the linear equations
(H—|—xxT)w=x, (H—|—xxT)r=s,

we can certainly write
w=Uc+ Bv, r=Ud+ v,

for some vectors ¢ and d and scalars 5 and . Then we have

(UAUT + (Ua + av)(Ua+av) ") (Uc+ Bv) = Ua + aw
& UAc+ (Ua+ aw)(a"c+af) = Ua + aw
& Ac+ a(aTc + af) = a, a(aTc + af) = a,
= c=0, B=1/a.
Similarly,
(UAUT + (Ua+ av)(Ua+ aw) ") (Ud +yv) = Ub
& UAd+ (Ua+ av)(a"d+ ay) = Ub
= Ad+a(a"d+ay) =b, ala"d+ay) =0,
&= d= A", v=—a"A"1b/a
Thus,

z! (IT + J)JJT)TZ‘ =z'w=Ua+aw)" (1/a)v = 1.

s (T+ me)Tac =s w=(Ub) (1/a)v=0.

s (IT+ :m:T)T s=s'r=(Ub)" (UM —a" A7 'b/av) =b" Ao =s"UATU Ts = s IITs.
O

We can also verify these calculations directly using Lemma([9} but more intuition can be gleaned from
the proof above.

C Missing Proofs

Proof of Lemma[3] 1t suffices to consider a one dimensional game. Fix some 7" and consider the
simplest data sequence x; = b. Applying the alternative form of P, from (@), we can check that
S w P, < 2T @, < b, so the B({B;}) conditions hold. Theoremimplies that
the minimax regret is exactly Zthl Bz Pix; > b? Zthl x, Px;.

We can explicitly write out the recursion for @, Pix; in this simple case. The initial value is
w2 Pr = x2/(3_, 22) = T, and the recursion becomes x> | P,_, = x2P; + (22P,)%
Denoting z; = x? P;, we see that zr = T~ and z;_; = z; + 27. This exact recursion was analyzed
in [Takimoto and Warmuth, [2000, Lemma 3], which proved that Zle zt > log(T) — loglog(T),

which implies that, for the data sequence 1, ..., zr = 1, R > b*(log(T) — loglog(T')). Hence, for
a given M, we can always find a T" large enough to make R > M.

The last step is to check that the A(X) condition is satisfied. We exploit the fact that =, P,z is scale
invariant; it does not change when x; is multiplied by any invertible matrix, as the P; term will be
pre and post-multiplied by the inverse of this matrix. This result appeared in [Bartlett et al.| 2015],
but we include a proof in Lemma [§]in the Appendix for completeness.

The scale invariance implies that the data sequence x} = cx;, for any ¢, has the same regret as if the
adversary played x; with the same labels. Hence, if the P of o, violates the 3 condition, then we
may choose c large enough such that c=2 P,, which is the P, corresponding to x}, does not. Since
the regret remains the same, and the 3 conditions are also scale invariance, our &} sequence verifies
the claim of the lemma. O
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Proof of Lemmad] We have
x T
Ar =07 —op = (sio1 +ym) T (811 +yewy) + 8,11 8,4
=yl - 2ytst_1HI:Bt - ythtTHIa:t + s/, (HI—1 — HI) St_1.

First, assume that ; = 0. Then a; is in the column space of II; and II;_;, and an application of the
generalized Sherman-Morrison formula (see e.g. Harville|[[1997])) yields

szta}:HI

- ™t
o = Mmoo ) =T Py

(10)

and so

2
Tt T ot (sj—lnzmt)

A: = yt2 (1 — CCt Hﬂ%) — 2yt3t_1ntmt + %T
1—zplljx,

Finally, notice that (I0) implies

when ;| = 0, yielding the claim in that case.

Now, assume that | # 0. Then
(st—1+ yt$t)THI(5t71 + yixy)
= s I8 1 + 28 I, + yia, ]z,
= s I} s 1 +y7,

where we applied the three claims of Lemma [I0]to obtain the second equality. Therefore, A} = 0,
and our formula is correct. O

Proof of Theorem} The proof is by induction: assume that Ws;, o7,¢,11;) = s (H - HI) sy +

~¢. The base case is easily established with v = 0 and Py = H} yielding the base case of
W(,-,0,-) = 0. Now, we assume W is correct at round ¢ and want to verify the formula at ¢ — 1.
Hence, under the usual definitions of s; and af, we can calculate

W(Stfly Ugflvt - 1) ZB{)

= max e ( minmax(g; — y)? — AF + W(sy, 02, t,x])
e;€{0,1} gt Ye .
2 thHL1wt

Tt
xz, I, x;

(mjnmax (5 —y)* —y* (1 — m:Hth) +2ys, I, — (sllHIwO
gy

+ (Si—1+ym) " (Pt - HI) (8t—1 +yxt) + %)
+

= (mjnmax 332 + 2y (stT_ll_[Imt + stT_1 (Pt + HI) T, — g) + yzcctTHIa:t
9 Y

2 ccTHT_ x4
_ (3:_11_[1%) s e S AR (Pt _ HI) si1 + 2, (Pt B HI) 2, +%>

w;rHth +

= (mjnm;mng + 2y (S;[IRg:Et — gj) + yzwz—tht
g

2 :BTHt Ty
~ (sTamfmy) Sty ST (P - T+ %)
Jr
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The objective is convex in y and therefore the optimum will be on the boundary at &= B,. Thus,

W(si_1,02 1, t—1,27) = (my;ng? + 2B |s/_Pix, — jj| — Biw, Ay

THT

2 wTHT_ Ty
- (StT—lHImt) ﬁ + 81 (P — HI)St—l + ’Yt)
¢ iy

Jr
This objective is convex in ¢ as well, and hence we can minimize it by setting the subgradient to zero.
Under the condition that |sllBtwt| < B4, the subgradient at § = sllPt:ct contains zero, so

W(stflv 0162717 t— 17 :1??)

2 actTHI_la:t
:BtTHIa:t +

If ¢; € R(II;_1), then we can use a generalized Sherman-Morrison lemma (see Lemma@]for details)

:c;rl'llwt
1—m:HImt

2
= ( (s,_1Px;)” + Bz Pz, — (stT_lHIact) +s/ (Pt — HI) St—1+ %>

to calculate x, H;Lla:t = , and therefore

2 a:THT_ x4 1
(sFamle) =gy, +omTiees =l (Hmfnﬁmu ) s
t bt — &y Ly

_ T
=5y 11l;_184 1.

If instead ; & R(II;_1), then a standard fact for the ordinary least squares solution is 3;[11_11 ;=0
and sllHI St_1 = s;[lHLlst,l (a proof of this fact is provided in Lemma . In either case, we
have

W(si—1,07 4, t—Lx])= (32—71 (Pt + thtw;—Pt) St—1 + B?w;rptwt - sllnzflskl + %)+
= (3111 (Pt71 — Hi,l) St—1+ ’Yt71)+ )

verifying the P; and ~; recurrence. If 741 > 3:71 (HI_1 — B_l) s;_1 holds for all ¢, then the

instantaneous value-to-go is always positive, an optimal adversary will always continue, and the data
sequence seen by the learner is 7 € A(P,). In this case, the minimax strategy is confirmed to be

by Theorem 2] O

Proof of LemmaE] It actually suffices to take the simplest of sequences, x; = e;. For any fixed
T, Pr = %el e, , where all the P, for the remainder of the proof are with respect to the covariate
sequence of 7" copies of e;. In this case, the P, matrices are all zero except for the first element
which evolves like P,_; = P, + P?. This is the same recursion studied by Takimoto and Warmuth
[2000], who proved a lower bound of (t + log(T + 1) — log(t + 1))~*. Thus, we can bound

T T B2 T B2
Blx/ Pz, > 4 >) ——t
tz:; ¢ Fede = ;t+log(T+l) —log(t+1) — ;t+log(T+1)’

and thus the assumption that Zthl % > o implies that there is an & sequence that

produces an upper bound on ;.

Next, notice that if we choose any index ¢’ with By < || By|| ., then the covariate sequence x; =
er{t = t'}, where {-} is the indicator function, produces ZZ;I Bz P.xy = B2 < 7. Now,
Z;T:l B2z Pixy < 7, is a continuous function of T, and hence, by the intermediate value
theorem, there is a 7 with Zil B2z Pixy = .

Next, we check the B constraint. First, observe that it suffices to check that we can construct some wlT
using the construction of the previous paragraph. On [0,1/2], /(1 4+ x) > x/2 and the P; sequence

. . T 2p, T . .
is decreasing, s0 . _, azfl_fw > 1, D emtr1 xP;, and combined with (@), we have

¢ ¢ ¢

L i
E |z Pyx,| < |z %S_ll 52| o < |l Z;Tll S‘sz’ps )
s=1 Oy + )y T2 TTa?P; e+ > 25
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2
The arguments from the previous section show that ZST:t 11 x? w-EPS can be made to grow without

bound (in particular, by taking s = e;), and so we can always find a long enough covariate sequence
such that the B constraint is met.

Now, fix any &7 sequence that achieves the B and C constraints. By Lemma |8, we can, for any
invertible matrix A, rescale the covariate sequence to form x;, = Az, to obtain the corresponding
P/ = W-'P,W~!. Since we have ! P,z; = =" P/x/ for any s and ¢, the 3 and C constraints
hold automatically. Therefore, we are free to choose A such that Pj = X, and therefore wip/ €
ABC(%, ).

O

Proof of Lemmal7} Since 6 minimizes a convex unconstrained objective, we set the derivative to

-1
zero and obtain the solution 0* = (Zi;ll Tox! + Rt) si—1. Thus, we need to verify that

S

22;11 xsx] + R, = P; ' forall t. This also guarantees that R; > 0. The t = 0 case is by definition
of Ry. Now, proceeding by induction, assume that the statement holds for ¢ — 1. Then,

t—1 t—1 T
T T Lty T
zx! + R =) zax! + R+ —Z— —xy gz,

; s sz:; s 1+ actTtht

t—2 T T
T _ T T _
:Zwswz""Rt—l"’%:Pt—ﬁ %:P Y
=1 14+ T, tht 14+ T, Ptﬂf?t
where the last equality is by Sherman-Morrison. O

D Auxiliary Lemmas and Theorems

Lemma[Z] Forany ¢ > 0, x4, ..., x:, and symmetric matrix P > 0, the following two conditions
are equivalent:
1. Pt =11,
2. Forany T' > t + k, where k = rank (P —II,), there is a continuation of the covariate
sequence, x;i1,...,xr, such that setting P, = P and defining P;1,..., Pr by the
forward recursion (3) gives P}, = Ilr.

Proof. To see that Condition[T|implies Condition 2} we will consider the forward algorithm recursion,
starting from P; = P, and show that we can find suitable covariate vectors ®;1, .. ., 4k, S0 that

t+i
rank (PJH. — ng:j) =k—1,
s=1

which implies the result for 7" = ¢ + k. It suffices to show that, at each step, we can reduce this rank
by one. Consider the spectral decomposition

m
P10, =) Nwv/,
i=1

for orthonormal vy, ..., v; and non-negative A; > --- > Ay > 0. Choosing x; 1 = fvy, there is a

B > 0 such that
k—1

Pl —Thi=) Aww/,
i=1
which implies the result. Indeed, we have
at41 52
(1 —a1)b7

k—1 a 52
= Z )\ZvviviT + (/\k. — [32 + t+12) 'vk.'u,;r.
i=1

13;—&-1 — Iy = P + v, — I — BP0,

(1- at+1)bt+1
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Recall

2 ol
bt+1 = mt+1Pt$t+1

t

k

= 521;,: (Ht + Z Aww?) Vg
i=1

_ BQCQ

where we have defined ¢ > 0. We need to choose 3 > 0 so that

A = 32 at“)
= (1= i

_ 5 1_\/41)%%171

B 207

g (1_ VIR 11— 1)

232¢2

VAFEE +1-1
- 2 = g2 - VAPe+1-1

2

Since ¢?\;, > 0 and the function on the right hand side maps to [0, co) for 8 > 0, there is a suitable
choice of . To see that this implies the result for any 7" > ¢ + k, notice that by choosing a smaller

value of 3, the rank is not diminished.

To see the other direction, notice that Condition 2] and Lemma [T together imply that there is a T’
and a completion of the sequence, 1, ..., xT, so that plugging the sequence into the backwards

recurrence (I)) gives P, = P. But then Equation (d) shows that

x! P,
_P;f = Hf + Z sTs msm;r t Htv

) 1+ x] Psx
which is Condition[Il
Lemma 11. The definition of Ry in Equation (9) is equivalent to defining Ry = Yand
2z,

T
— Lt—1Ty_q-

Ri=R; 1+ =
\/1+4a:;'— (Rt 1+ e, £CT> x4+ 1

Proof. First, we can calculate

2 2 1 2 4
= () =) et
— Q¢ — Q¢ — Q¢

which implies that b? = (17&7&)2 Using the forward recursion (1| of P;, we have

at

T 2 2
Ty Ptmt:bt —atbt = s
1—&1/

and
1

2
- —l-a=——
1+ @, P, N TN

—1
which, when combined b2 = wt (Rt 1+ Zg 1T a:T) x, yields the desired statement.

17
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E The Proof of the Regret Bound

This section proves Theorem 5] which is quoted below for convenience.
Theorem 5| For any fixed T and B}, we can bound the minimax regret of the box-constrained game
by

d||BT ||+
sup sup RT(s*,wip,yT) < H71|| <1 +2In <1 I T||22 |Bf||§>> .
o7 €A(S) yT €L (BT) [p[ 2187 113

The minimax analysis shows that the minimax regret is equal to sup,7 ¢ 4(s) >, Biz, P,z;, which
we bound by defining the worst case regret function,

t
(X, BY) = max {ZBQw Pi(xy,...,x5)xs : 2 = Pt(ml,...,a:t)z:l:sa:z}.
1- s=1
We drop the explicit dependence of P; on ! and reparameterize by r? = Pixx, :

t
(%, BY) —r?lax {ZBQtrrt E>PtZP }

s=1

We then relax the optimization to allow r; to be a general matrix and argue that the worst case regret
function is upper bounded by d 1-dimensional functions.

Noting that Pt,lel =TI+ thtth =1I+ rtz, we can derive an induction for ¢;:

t—1 t—1
(2, BY) max B2mt Ptmt+{ZB2m Pzx, X — Pt;ctsct >-PtZ:c T, }

,,,, s=1 s=1

t—1 t—1
= max Bzmt Pz, + { ZBEmIPSmS (2~ Pz )P, Pt - Py stmj}
s=1 s=1

t—1
= max B} tr(r?) {ZB? tr(r2) : (2 —r))(I +72) = Pt_lzccsazST}

""" s=1
:IgaxBftr(rt)Jr(;st,l (Z-rH)T+72),B7Y).

As a first step, we will bound ¢, in one dimension where ¢, (3, B!) = max,, BZr? + ¢;—1(( —
r2)(1 4 r2), Bi™'). We have omitted the bolding to emphasize that we are in the scalar case. The
following lemma borrows heavily from [Bartlett et al.,| 2015, Theorem 5]; the proof is in

Lemma 12. For every T and every B with ||BY||.c < %,

BT
¢r(5, BY) < min{—ln(l ~ )14 2log (1 l ! |2)}.

Proof. In fact, we will prove the slightly stronger statement: for any positive function f(7') with
f(0) >0and B2, e~ f1)/2 4 f(T) < f(T + 1), we have
¢r(3,B]) < min{—In(1 - ), f(T)}.

We prove this by induction on 7'. The base case is trivial. Assume that the induction hypothesis holds
for T'. Then,

o7 (S, B ) = max B 1 r7 4 + ér (z— ) (1 +r7), B?)

’"T+1

- +5? —dz—(1-%)
T oily Bt 2
A+5)?—dz—(1-%)

~0<z<¥ 2

+ ng(I,Bf_l)

+ min{—1In(1 — ), f(T)}.
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Define & = 1 — exp(—f(T')), which is where the minimum switches from the first to the second
argument. To find the maximizing x, we will calculate when the derivative is positive:

_B%—o—l 1
(1+X)2 -4z 11—z
&(1+%)? -4z - Bp ,(1-2)2>0
&(1+%)? - B (1+2)° +4(Bfy, — 1)z >0, (13)

which is true for all z < ¥ and B* < ¥. In fact, B, 1 may be bigger than 3 without violating the
constraint, but in particular B; < X is enough.

The sign of the derivative changes at z. If ¥ < Z, then the maximum is at > and we have
(1+%2)2-4x-(1-%)
2

¢r41(5, B]) <B,, + ¢r (%)
=¢r(X).

Otherwise, if £ < X, the maximum is at & and we have

1+¥)2 -4 —(1-X%
bria(m, ) <pp VPR Z U2

<B7 . V1-i+ f(T)

=B7y exp(—f(T)/2) + f(T)
where the second line was from using > < 1. This allows any f(7T') that satisfies

B e T2 4 [(1) < (T +1).
To check that f(T) = 1+ 2log(1 +1/2%", B?) indeed works, we calculate:

T

2+, B} >
T11

2+, B?

+ f(T)

f(r+1)—f(T) = 210g<

= —2log <1 — B%T'H>
2+ 30 B
Bi i
Tl B
Bii
L+ 530 B
— B%He_f(T)/z.

e~ 1/2

v

O

The general multidimensional case can be bounded by first relaying the assumption that 72 = Pz,
to allow general matrices R;, which only increases the value of the maximization. We can then apply
the one-dimensional bound in every direction:

Lemma 13. Forany ¥ > 0, (X1, B}) = Z?Zl (X, BY), where ¢(X) is the one-dimensional
regret bound.

Proof. The base case is trivial since both sides are zero. For the inductive hypothesis, assume that
Yo (I, BY) = 0 ¢ (3, BU7Y). Denoting the eigenvalues of Rby Ay, .. ., A4, we have

U(S1,B]) = max Bf tr(R) + 1 (I — R)I + R), B{™)

d d
= mgX{ZAi+Z¢t—1 ((1+)\i)(2)‘i)73§_1)} =

i=1 =1

#:(2, BY).

M=

=1
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Proof of Theorem 5] Recall from Theorem [I]that for given 7" and @1, . . . , @7, the regret of the box
constrained game is precisely Zle B2z Pix;. Lemmaﬂbounds Zle B2z Pyx; by a quantity
that does not depend on x;. To invoke Lemma we need that B; < max; \; for all ¢, which
is exactly ||BY||oc < ||X]|]2. Rescaling the B; sequence (and hence the regret bound) gives the
result.

F Explicit Constraints on x;

We have seen that the learner is minimax as long as the adversary plays a covariate sequence that is
in A(X). The following theorem provides explicit constraints on the choice of &, as a function of
the past covariates.

Theorem 6. The consistency condition

t+1
-1 T
P - E xqx, =0
q=1

is equivalent to the conjunction of

1 P - 2221 wqw;r =0,

2. x4y is orthogonal to the kernel ofP;1 - 22:1 :c,;,a:—r and

0
3o xl Py < di(Beg1) + /die(@441),

where &i11 = ®y11/||T141]| and

dt(fi) = R . . T
T (Pt — D=1 a:qwq) T

Notice that 0 < d;(2) < 1.

Proof. The x;41 must satisfy

t
— Z at
‘F)t 1_ a:qzr;r — <]. — (1_%)[)?> $t+1$;r+l t 0.
q=1

Since
ay

—t >0,

(L —ay)bf ~

the Schur complement characterization of symmetric positive semidefinite matrices shows that this is
equivalent to the conjunction of

1—

L =Y w20,

2. x441 orthogonal to the kernel of Pt_1 — 22:1 acqqu, and
1
-1 t
3. (1 — (lfc:litt)b%) w;r+1 (Pt — Zq:l :qu;—) L41 < 1.

Conditions (T) and (2) are (T) and 2).

Writing ;41 = c&yy1, we see that

2 T 25T 5
bi =z, Py =@y Pidy g,
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so Condition (3) is equivalent to

Qg 2 1
1l——= )<
( l—a b2> - -
( t) T m;r+1 (Pt 1721&

T ~
g=1 mqmq ) Ti41

- (1 S . )b?) b < mtto ;
—a ~ — ~
t )¢ :13:+1 (Pt 1_ 22:1 :Bq$;r) Tyl
a 2 N
& 1—— )by <d .
(- e )t < )

Finally, it is straightforward to check that the function ¢ defined by

2\ . _ ag 2
o) = (1= )
Va2 +1 -1
o) =17 - Y,

and that ¢(b?) < «a iff b7 < a + y/a. Combining shows that Condition (3) is equivalent to
Condition (3). O

satisfies

G Calculating the Minimax Directly

As a step in justifying our ABC assumptions we show that trying to directly calculate the full minimax
game is hopeless.

Lemma 14. [f we impose the box constraints |xrPrsy_1| < Br on xp, the first step of the
backwards induction evaluates to
. T 2
max min max s Prsr — o
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if llp_q is full rank
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This lemma makes the point that the full minimax formulation leads to an intractable backwards
induction, even from the first step.

Proof. We prove this lemma by direct calculation. For a given 7, we have already evaluated the
ming, max,, argument using the backwards induction under the condition that |z} Prst_1| < Br.
Hence, the above quantity is equal to

max S;_IPT_lsT_l - 0’%_1 + B%a:TPTa:T. (14)
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Next, we extract the 7 dependence from Pp. Using Pr_y = Pp + PTmTa:; Pr and Pr =
(IIp—q + (L’TIBT)T, we have
Pr_y = Pr + Przrz, Pr
= (Ip_1 + meT)T + (Ilr—1 + xrT)
and plugging into yields
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We need to proceed by cases. First, assume that IT7_ is full rank. This implies that &7 € R(II1_1)
and we can apply the second case of Lemma9|to (I4) and arrive at
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Since we assumed that x7 € R(Ilr_1) and s7—; € R(Ilr_4) by its definition, it is without loss
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of generality to reparameterize the problem with v = (HTTA) 7 and w = (HTT%) ’ syp_1to
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The objective is direction independent except for the w " v term, which implies that we should set

v = aw for some positive o.. Plugging in this value of v, the optimization problem becomes finding
o™, where
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The objective goes to infinity as o — (w ' w)~ 3, but fortunately the box constraints keep it bounded.
The box condition is equivalent to

|&t Prsr_1| < By
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The left hand side is an increasing function of v and the inequality is satisfied for o = 0, and hence
the inequality is satisfied for all & < aax, Where
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the solution to aw "w = (1 — a®w " w) By. Importantly, this in inequality implies that 1 — a®w T w
is bounded below, and hence the maximizer for o* is well defined.
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Hence, we have shown that, in the case when 7 € R(Il7_1),
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where o, a function of s}fll'[TTflsT,l and By, is
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In the case when II1_; is not full rank, the adversary has the option to play 7 ¢ R(Il7—_1). In this
case, applying Lemma[I0]to every term yields

max min max s, Prsp — 0% = s—'T;lH;LlsT,l + B% —0%_,
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for any xp ¢ R(Ilp_1) with |7 Prsp_1| < Br.
All in all, the backwards induction applied to the last round yields
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We observe that, in the second case, the maximum could be either term, corresponding to the adversary

1
playing 1 ¢ R(Ilp_1) or 1 = o (H}_l) : st_1, respectively. However, in the later case, the

value function obviously ceases to be quadratic and the next step of the backwards induction does in
intractable.
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