
A Extra Lemmas

Lemma 8. Let xT1 be any covariate sequence and P1, . . . ,PT the associated precision matrices
given by the backwards recursion (1). For any invertible matrix W ∈ Rd×d, let x′t = Wxt. Then
the precision matrices of x′1, . . . ,x

′
T are exactly P ′t = W †>PtW

† and x>t Ptxt = x′>t P ′tx
′
t.

Proof. First, we can easily check that P ′T =
(∑T

t=1 x
′
tx
′
t
>
)†

= (W>)†
(∑T

t=1 xtx
>
t

)†
W †.

Now, assume that the hypothesis holds for t. Then

P ′t−1 =P ′t + P̃tx
′
tx
′
t
>
P ′t

=W †>PtW
† + W †>

(
PtW

†WxtxtW
>W †>Pt

)
W †

=W †>Pt−1W
†.

B Calculating ∆∗
t

While the update of Pt is given by the forward recursion, the rank one update of Πt is more
complicated; Sherman-Morrison cannot be used directly.

Lemma 9. Using x⊥ := x − Πt−1Π†t−1x to denote the projection of xt onto the orthogonal
complement of Πt−1, we have

Π†t =


Π†t−1 −

x⊥x
>Π†t−1 + Π†t−1xx

>
⊥

x>⊥x⊥
+

x⊥

(
1 + x>Π†t−1x

)
x>⊥

(x>⊥x⊥)2
if x /∈ C(Πt−1), and

Π†t−1 +
Π†t−1xtx

>
t Π†t−1

1− x>t Π>t−1x
>
t

otherwise .

Proof. We will write X as the matrix with columns x1, . . . ,xt−1. Thus, we have

Πt = Πt−1 + xx> = [X x]

[
X>

x>

]
,

and since X has linearly independent columns, (without loss of generality; we shall see why later),
[X x] has linearly independent columns since x is not in the column space of X . Therefore, we
have

[X x]
†

=

([
X>

x>

]
[X x]

)−1 [
X>

x>

]
and

Π†t =
(
Πt−1 + xx>

)†
= [X x]

([
X>

x>

]
[X x]

)−2 [
X>

x>

]
.

Now, recall that the matrix that projects onto the column space of X is P := XX† and define
x‖ := Px and x⊥ = x−x‖. We can calculate the middle matrix by using the block matrix inversion
formula:([

X>

x>

]
[X x]

)−1

=

(X>X)−1
+ X†xx>X>

†

x>x−x>Px
−X†x

x>x−x>Px

−x>X>†
x>x−x>Px

1
x>x−x>Px


=

1

x>x− x>‖ x‖

(X>X)−1
(
x>x− x>‖ x‖

)
+ X†xx>X>

† −X†x

−x>X>† 1

 ,
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and so ([
X>

x>

]
[X x]

)−1 [
X>

x>

]
=

1

x>x− x>‖ x‖

[
X†

(
x>x− x>‖ x‖

)
−X†xx>⊥

x>⊥

]
.

Using the Pythagorean theorem (i.e. that x>x = x>‖ x‖ + x>⊥x⊥) and that Π†t−1 = X>
†
X†, we

have

Π†t =
1(

x>⊥x⊥
)2 [X†>x>⊥x⊥ − x⊥x

>X>
†

x⊥

] [
X†x>⊥x⊥ −X†xx>⊥

x>⊥

]
=

1(
x>⊥x⊥

)2 (Π†t−1

(
x>⊥x⊥

)2 − x>⊥x⊥

(
x⊥x

>Π†t−1 + Π†t−1xx
>
⊥

))
+

x⊥x
>Π†t−1xx

>
⊥(

x>⊥x⊥
)2 +

x⊥x
>
⊥(

x>⊥x⊥
)2

= Π†t−1 −
x⊥x

>Π†t−1 + Π†t−1xx
>
⊥

x>⊥x⊥
+

x⊥

(
1 + x>Π†t−1x

)
x>⊥

(x>⊥x⊥)2
.

Thus, we can evaluate

x>Π†tx = x>Π†t−1x−
x>x⊥x

>Π†t−1x + x>Π†t−1xx
>
⊥x

x>⊥x⊥
+

x>x⊥

(
1 + x>Π†t−1x

)
x>⊥x

(x>⊥x⊥)2

= x>Π†t−1x− 2x>Π†t−1x + 1 + x>Π†t−1x

= 1,

and

x>Π†ts = x>Π†t−1s− x>Π†t−1s−
x>Π†t−1xx

>
⊥s

x>⊥x⊥
+

(
1 + x>Π†t−1x

)
x>⊥s

x>⊥x⊥

= −
x>Π†t−1xx

>
⊥s

x>⊥x⊥
+

(
1 + x>Π†t−1x

)
x>⊥s

x>⊥x⊥

= 0.

Finally, notice that

s>Π†ts = s>Π†t−1s

since x>⊥s = 0.

The second case is a consequence of the Sherman-Morrison formula. Since Πt, Πt−1, and xt are all in
the same eigenspace, we can without loss of generality assume full rank and apply Sherman-Morrison.
A precise formulation can also be found in e.g. Harville [1997].

Lemma 10. For a PSD symmetric matrix Π, s ∈ R(Π) and x 6∈ R(Π), we have

x>
(
Π + xx>

)†
x = 1,

s>
(
Π + xx>

)†
x = 0,

s>
(
Π + xx>

)†
s = s>Π†s.

Proof. Write the small SVD Π = UΛU> (that is, diagonal Λ, U with orthonormal columns). Choose
a unit vector v, vectors a and b, and scalar α 6= 0 so that

U>v = 0, x = Ua+ αv, s = Ub.
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Define

w =
(
Π + xx>

)†
x, r =

(
Π + xx>

)†
s.

Because these are the minimal norm solutions to the linear equations(
Π + xx>

)
w = x,

(
Π + xx>

)
r = s,

we can certainly write

w = Uc+ βv, r = Ud+ γv,

for some vectors c and d and scalars β and γ. Then we have(
UΛU> + (Ua+ αv)(Ua+ αv)>

)
(Uc+ βv) = Ua+ αv

⇔ UΛc+ (Ua+ αv)(a>c+ αβ) = Ua+ αv

⇔ Λc+ a(a>c+ αβ) = a, α(a>c+ αβ) = α,

⇔ c = 0, β = 1/α.

Similarly, (
UΛU> + (Ua+ αv)(Ua+ αv)>

)
(Ud+ γv) = Ub

⇔ UΛd+ (Ua+ αv)(a>d+ αγ) = Ub

⇔ Λd+ a(a>d+ αγ) = b, α(a>d+ αγ) = 0,

⇔ d = Λ−1b, γ = −a>Λ−1b/α

Thus,

x>
(
Π + xx>

)†
x = x>w = (Ua+ αv)

>
(1/α)v = 1.

s>
(
Π + xx>

)†
x = s>w = (Ub)

>
(1/α)v = 0.

s>
(
Π + xx>

)†
s = s>r = (Ub)

> (
UΛ−1b− a>Λ−1b/αv

)
= b>Λ−1b = s>UΛ−1U>s = s>Π†s.

We can also verify these calculations directly using Lemma 9, but more intuition can be gleaned from
the proof above.

C Missing Proofs

Proof of Lemma 3. It suffices to consider a one dimensional game. Fix some T and consider the
simplest data sequence xt = b. Applying the alternative form of Pt from (4), we can check that∑t
s=1 x

>
t Ptxs ≤ x>t Π−1

t

∑t
s=1 xs ≤ b, so the B({Bt}) conditions hold. Theorem 1 implies that

the minimax regret is exactly
∑T
t=1B

2
tx
>
t Ptxt ≥ b2

∑T
t=1 x

>
t Ptxt.

We can explicitly write out the recursion for x>t Ptxt in this simple case. The initial value is
x2
TPT = x2

T /(
∑T
t=1 x

2
t ) = T−1, and the recursion becomes x2

t−1Pt−1 = x2
tPt + (x2

tPt)
2.

Denoting zt = x2
tPt, we see that zT = T−1 and zt−1 = zt + z2

t . This exact recursion was analyzed
in [Takimoto and Warmuth, 2000, Lemma 3], which proved that

∑T
t=1 zt ≥ log(T ) − log log(T ),

which implies that, for the data sequence x1, . . . ,xT = 1,R ≥ b2(log(T )− log log(T )). Hence, for
a given M , we can always find a T large enough to makeR > M .

The last step is to check that theA(Σ) condition is satisfied. We exploit the fact that x>t Ptxt is scale
invariant; it does not change when xt is multiplied by any invertible matrix, as the Pt term will be
pre and post-multiplied by the inverse of this matrix. This result appeared in [Bartlett et al., 2015],
but we include a proof in Lemma 8 in the Appendix for completeness.

The scale invariance implies that the data sequence x′t = cxt, for any c, has the same regret as if the
adversary played xt with the same labels. Hence, if the P0 of xt violates the Σ condition, then we
may choose c large enough such that c−2P0, which is the P0 corresponding to x′t, does not. Since
the regret remains the same, and the B conditions are also scale invariance, our x′t sequence verifies
the claim of the lemma.
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Proof of Lemma 4. We have

∆∗t = σ2
t − σ2

t−1 − (st−1 + ytxt)
>

Π†t (st−1 + ytxt) + s>t−1Π†t−1st−1

= y2
t − 2ytst−1Π†txt − y2

tx
>
t Π†txt + s>t−1

(
Π†t−1 −Π†t

)
st−1.

First, assume that x⊥ = 0. Then xt is in the column space of Πt and Πt−1, and an application of the
generalized Sherman-Morrison formula (see e.g. Harville [1997]) yields

Π†t−1 =
(
Πt − xtx

>
t

)†
= Π†t +

Π†txtx
>
t Π†t

1− x>t Π†txt
, (10)

and so

∆∗t = y2
t

(
1− x>t Π†txt

)
− 2yts

>
t−1Π†txt +

(
s>t−1Π†txt

)2

1− x>T Π†txt
.

Finally, notice that (10) implies

x>t Π†t−1xt =
x>t Π†txt

1− x>t Π†txt
.

when x⊥ = 0, yielding the claim in that case.

Now, assume that x⊥ 6= 0. Then

(st−1 + ytxt)
>Π†t(st−1 + ytxt)

= s>t−1Π†tst−1 + 2yts
>
t−1Π†txt + y2

tx
>
t Π†txt

= s>t−1Π†t−1st−1 + y2
t ,

where we applied the three claims of Lemma 10 to obtain the second equality. Therefore, ∆∗t = 0,
and our formula is correct.

Proof of Theorem 4. The proof is by induction: assume that Wst, σ
2
t , t,Πt) = s>t

(
Pt −Π†t

)
st +

γt. The base case is easily established with γT = 0 and PT = Π†T yielding the base case of
W (·, ·, 0, ·) = 0. Now, we assume W is correct at round t and want to verify the formula at t − 1.
Hence, under the usual definitions of st and σ2

t , we can calculate

W (st−1, σ
2
t−1, t− 1,xT1 )

= max
et∈{0,1}

et

(
min
ŷt

max
yt

(ŷt − yt)2 −∆∗t +W (st, σ
2
t , t,x

T
1 )

)
=

(
min
ŷ

max
y

(ŷ − y)2 − y2
(

1− x>t Π†txt

)
+ 2ys>t−1Π†txt −

(
s>t−1Π†txt

)2 x>t Π†t−1xt

x>t Π†txt

+ (st−1 + yxt)
>
(
Pt −Π†t

)
(st−1 + yxt) + γt

)
+

=

(
min
ŷ

max
y

ŷ2 + 2y
(
s>t−1Π†txt + s>t−1

(
Pt + Π†t

)
xt − ŷ

)
+ y2x>t Π†txt

−
(
s>t−1Π†txt

)2 x>t Π†t−1xt

x>t Π†txt
+ s>t−1

(
Pt −Π†t

)
st−1 + y2x>t

(
Pt −Π†t

)
xt + γt

)
+

=

(
min
ŷ

max
y

ŷ2 + 2y
(
s>t−1Ptxt − ŷ

)
+ y2x>t Ptxt

−
(
s>t−1Π†txt

)2 x>t Π†t−1xt

x>t Π†txt
+ s>t−1(Pt −Π†t)st−1 + γt

)
+

.
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The objective is convex in y and therefore the optimum will be on the boundary at ±Bt. Thus,

W (st−1, σ
2
t−1, t− 1,xT1 ) =

(
min
ŷ
ŷ2 + 2Bt

∣∣s>t−1Ptxt − ŷ
∣∣−B2

tx
>
t Atxt

−
(
s>t−1Π†txt

)2 x>t Π†t−1xt

x>t Π†txt
+ s>t−1(Pt −Π†t)st−1 + γt

)
+

.

This objective is convex in ŷ as well, and hence we can minimize it by setting the subgradient to zero.
Under the condition that

∣∣s>t−1Btxt
∣∣ ≤ Bt, the subgradient at ŷ = s>t−1Ptxt contains zero, so

W (st−1, σ
2
t−1, t− 1,xT1 )

=

((
s>t−1Ptxt

)2
+B2

tx
>
t Ptxt −

(
s>t−1Π†txt

)2 x>t Π†t−1xt

x>t Π†txt
+ s>t−1

(
Pt −Π†t

)
st−1 + γt

)
+

.

If xt ∈ R(Πt−1), then we can use a generalized Sherman-Morrison lemma (see Lemma 9 for details)

to calculate x>t Π†t−1xt =
x>t Π†txt

1−x>t Π†txt
, and therefore(

s>t−1Π†txt

)2 x>t Π†t−1xt

x>t Π†txt
+ s>t−1Π†tst−1 = s>t−1

(
Π†txtx

>
t Π†t

1

1− x>t Π†txt
+ Π†t

)
st−1

= st−1Π†t−1st−1.

If instead xt 6∈ R(Πt−1), then a standard fact for the ordinary least squares solution is s>t−1Π†txt = 0

and s>t−1Π†tst−1 = s>t−1Π†t−1st−1 (a proof of this fact is provided in Lemma 10). In either case, we
have

W (st−1, σ
2
t−1, t− 1,xT1 ) =

(
s>t−1

(
Pt + Ptxtx

>
t Pt

)
st−1 +B2

tx
>
t Ptxt − s>t−1Π†t−1st−1 + γt

)
+

=
(
s>t−1

(
Pt−1 −Π†t−1

)
st−1 + γt−1

)
+
,

verifying the Pt and γt recurrence. If γt−1 ≥ s>t−1

(
Π†t−1 − Pt−1

)
st−1 holds for all t, then the

instantaneous value-to-go is always positive, an optimal adversary will always continue, and the data
sequence seen by the learner is xT1 ∈ A(P0). In this case, the minimax strategy is confirmed to be
(MMS) by Theorem 2.

Proof of Lemma 5. It actually suffices to take the simplest of sequences, xt = e1. For any fixed
T , PT = 1

T e1e
>
1 , where all the Pt for the remainder of the proof are with respect to the covariate

sequence of T copies of e1. In this case, the Pt matrices are all zero except for the first element
which evolves like Pt−1 = Pt + P 2

t . This is the same recursion studied by Takimoto and Warmuth
[2000], who proved a lower bound of (t+ log(T + 1)− log(t+ 1))−1. Thus, we can bound

T∑
t=1

B2
tx
>
t Ptxt ≥

T∑
t=1

B2
t

t+ log(T + 1)− log(t+ 1)
≥

T∑
t=1

B2
t

t+ log(T + 1)
,

and thus the assumption that
∑T
t=1

B2
t

t+log(T+1) ≥ γ0 implies that there is an xT1 sequence that
produces an upper bound on γ0.

Next, notice that if we choose any index t′ with Bt′ ≤ ‖Bt‖∞, then the covariate sequence xt =

e1{t = t′}, where {·} is the indicator function, produces
∑T
t=1B

2
tx
>
t Ptxt = B2

t′ ≤ γ0. Now,∑T
t=1B

2
tx
>
t Ptxt ≤ γ0 is a continuous function of xT1 , and hence, by the intermediate value

theorem, there is a xT1 with
∑T
t=1B

2
tx
>
t Ptxt = γ0.

Next, we check the B constraint. First, observe that it suffices to check that we can construct some xT1
using the construction of the previous paragraph. On [0, 1/2], x/(1 + x) ≥ x/2 and the Pt sequence
is decreasing, so

∑T
s=t+1 x

2
s

x2
sPs

1+x2
sPs
≥ 1

2x
∑T
s=t+1 x

4
sPs, and combined with (4), we have

t∑
s=1

∣∣x>t Psxs∣∣ ≤ |xt| ∑t
s=1 |xs|

Πt +
∑T
s=t+1 x

2
s

x2
sPs

1+x2
sPs

≤ |xt|
∑t
s=1 |xs|

Πt +
∑T
s=t+1 x

2
s
x2

sPs

2

.
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The arguments from the previous section show that
∑T
s=t+1 x

2
s
x2

sPs

2 can be made to grow without
bound (in particular, by taking xs = e1), and so we can always find a long enough covariate sequence
such that the B constraint is met.

Now, fix any xT1 sequence that achieves the B and C constraints. By Lemma 8, we can, for any
invertible matrix A, rescale the covariate sequence to form x′t = Axt to obtain the corresponding
P ′t = W−1PtW

−1. Since we have x>s Ptxt = x′>s P ′tx
′
t for any s and t, the B and C constraints

hold automatically. Therefore, we are free to choose A such that P ′0 = Σ, and therefore xT1
′ ∈

ABC(Σ, γ0).

Proof of Lemma 7. Since θ minimizes a convex unconstrained objective, we set the derivative to

zero and obtain the solution θ∗ =
(∑t−1

s=1 xsx
>
s + Rt

)−1

st−1. Thus, we need to verify that∑t−1
s=1 xsx

>
s +Rt = P−1

t for all t. This also guarantees that Rt � 0. The t = 0 case is by definition
of R0. Now, proceeding by induction, assume that the statement holds for t− 1. Then,

t−1∑
s=1

xsx
>
s + Rt =

t−1∑
s=1

xsx
>
s + Rt−1 +

xtx
>
t

1 + x>t Ptxt
− xt−1x

>
t−1

=

t−2∑
s=1

xsx
>
s + Rt−1 +

xtx
>
t

1 + x>t Ptxt
= P−1

t−1 +
xtx

>
t

1 + x>t Ptxt
= P−1

t ,

where the last equality is by Sherman-Morrison.

D Auxiliary Lemmas and Theorems

Lemma 2 For any t ≥ 0, x1, . . . ,xt, and symmetric matrix P � 0, the following two conditions
are equivalent:

1. P † � Πt

2. For any T ≥ t + k, where k = rank
(
P † −Πt

)
, there is a continuation of the covariate

sequence, xt+1, . . . ,xT , such that setting Pt = P and defining Pt+1, . . . ,PT by the
forward recursion (3) gives P †T = ΠT .

Proof. To see that Condition 1 implies Condition 2, we will consider the forward algorithm recursion,
starting from Pt = P , and show that we can find suitable covariate vectors xt+1, . . . ,xt+k, so that

rank

(
P †t+i −

t+i∑
s=1

xsx
>
s

)
= k − i,

which implies the result for T = t+ k. It suffices to show that, at each step, we can reduce this rank
by one. Consider the spectral decomposition

P † −Πt =

m∑
i=1

λiviv
>
i ,

for orthonormal v1, . . . , vk and non-negative λ1 ≥ · · · ≥ λk > 0. Choosing xt+1 = βvk, there is a
β ≥ 0 such that

P †t+1 −Πt−1 =

k−1∑
i=1

λiviv
>
i ,

which implies the result. Indeed, we have

P †t+1 −Πt+1 = P †t +
at+1β

2

(1− at+1)b2t+1

vkv
>
k −Πt − β2vt+1v

>
t+1

=

k−1∑
i=1

λiviv
>
i +

(
λk − β2 +

at+1β
2

(1− at+1)b2t+1

)
vkv

>
k .
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Recall

b2t+1 = x>t+1Ptxt+1

= β2v>k

(
Πt +

k∑
i=1

λiviv
>
i

)†
vk

= β2c2,

where we have defined c2 > 0. We need to choose β ≥ 0 so that

λk = β2

(
1− at+1

(1− at+1)b2t+1

)
= β2

(
1−

√
4b2t + 1− 1

2b2t

)

= β2

(
1−

√
4β2c2 + 1− 1

2β2c2

)

⇔ c2λk = β2c2 −
√

4β2c2 + 1− 1

2
.

Since c2λk ≥ 0 and the function on the right hand side maps to [0,∞) for β ≥ 0, there is a suitable
choice of β. To see that this implies the result for any T ≥ t+ k, notice that by choosing a smaller
value of β, the rank is not diminished.

To see the other direction, notice that Condition 2 and Lemma 1 together imply that there is a T
and a completion of the sequence, x1, . . . ,xT , so that plugging the sequence into the backwards
recurrence (1) gives Pt = P . But then Equation (4) shows that

P †t = Πt +

T∑
s=t+1

x>s Psxs
1 + x>s Psxs

xsx
>
s � Πt,

which is Condition 1.

Lemma 11. The definition of Rt in Equation (9) is equivalent to defining R0 = P−1
0 and

Rt = Rt−1 +
2xtx

>
t√

1 + 4x>t

(
Rt−1 +

∑t−2
s=1 xsx

>
s

)−1

xt + 1

− xt−1x
>
t−1. (11)

Proof. First, we can calculate

4b2t =

(
2

1− at
− 1

)2

− 1 =

(
1 + at
1− at

)2

− 1 =
4at

(1− at)2
, (12)

which implies that b2t = at
(1−at)2 . Using the forward recursion 1 of Pt, we have

x>t Ptxt = b2t − atb2t =
at

1− at
,

and
1

1 + x>t Ptxt
= 1− at =

2√
1 + 4b2t + 1

,

which, when combined b2t = x>t

(
Rt−1 +

∑t−2
s=1 xsx

>
s

)−1

xt, yields the desired statement.
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E The Proof of the Regret Bound

This section proves Theorem 5, which is quoted below for convenience.

Theorem 5 For any fixed T and BT1 , we can bound the minimax regret of the box-constrained game
by

sup
xT

1 ∈A(Σ)

sup
yT1 ∈L(BT

1 )

RT (s∗,xT1 , y
T
1 ) ≤ d‖BT1 ‖∞

‖Σ‖2

(
1 + 2 ln

(
1 +

||Σ||22
2‖BT1 ‖2∞

||BT1 ||22
))

.

The minimax analysis shows that the minimax regret is equal to supxT
1 ∈A(Σ)

∑
tB

2
tx
>
t Ptxt, which

we bound by defining the worst case regret function,

φt(Σ, B
t
1) = max

x1,...,xt

{
t∑

s=1

B2
sx
>
s Ps(x1, . . . ,xs)xs : Σ � Pt(x1, . . . ,xt)

t∑
s=1

xsx
>
s

}
.

We drop the explicit dependence of Pt on xT1 and reparameterize by r2
t = Ptxtx

>
t :

φt(Σ, B
t
1) = max

r1,...,rt

{
t∑

s=1

B2
s tr(r2

t ) : Σ � Pt

t∑
s=1

P−1
s r2

s

}
.

We then relax the optimization to allow rt to be a general matrix and argue that the worst case regret
function is upper bounded by d 1-dimensional functions.

Noting that Pt−1P
−1
t = I + Ptxtx

>
t = I + r2

t , we can derive an induction for φt:

φt(Σ, B
t
1) = max

x1,...,xt

B2
tx
>
t Ptxt +

{
t−1∑
s=1

B2
sx
>
s Psxs : Σ− Ptxtx

>
t � Pt

t−1∑
s=1

xsx
>
s

}

= max
x1,...,xt

B2
tx
>
t Ptxt +

{
t−1∑
s=1

B2
sx
>
s Psxs : (Σ− Ptxtx

>
t )Pt−1P

−1
t � Pt−1

t−1∑
s=1

xsx
>
s

}

= max
rt,...,rt

B2
t tr(r2

t ) +

{
t−1∑
s=1

B2
s tr(r2

s) : (Σ− r2
t )(I + r2

s) � Pt−1

t−1∑
s=1

xsx
>
s

}
= max

rt

B2
t tr(r2

t ) + φt−1

(
(Σ− r2

t )(I + r2
s), Bt−1

1

)
.

As a first step, we will bound φt in one dimension where φt(Σ, Bt1) = maxrt B
2
t r

2
t + φt−1((Σ −

r2
t )(1 + r2

t ), B
t−1
1 ). We have omitted the bolding to emphasize that we are in the scalar case. The

following lemma borrows heavily from [Bartlett et al., 2015, Theorem 5]; the proof is in
Lemma 12. For every T and every BT1 with ||BT1 ||∞ ≤ Σ,

φT (Σ, BT1 ) ≤ min

{
− ln(1− Σ), 1 + 2 log

(
1 +
||BT1 ||22

2

)}
.

Proof. In fact, we will prove the slightly stronger statement: for any positive function f(T ) with
f(0) ≥ 0 and B2

T+1e
−f(T )/2 + f(T ) ≤ f(T + 1), we have

φT (Σ, BT1 ) ≤ min{− ln(1− Σ), f(T )}.
We prove this by induction on T . The base case is trivial. Assume that the induction hypothesis holds
for T . Then,

φT+1(Σ, BT1 ) = max
r2T+1

B2
T+1r

2
T+1 + φT

(
(Σ− r2

t )(1 + r2
t ), B

T
1

)
= max

0≤x≤Σ
B2
T+1

√
(1 + Σ)2 − 4x− (1− Σ)

2
+ φT (x,BT−1

1 )

≤ max
0≤x≤Σ

B2
T+1

√
(1 + Σ)2 − 4x− (1− Σ)

2
+ min{− ln(1− x), f(T )}.
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Define x̂ = 1 − exp(−f(T )), which is where the minimum switches from the first to the second
argument. To find the maximizing x, we will calculate when the derivative is positive:

−B2
T+1√

(1 + Σ)2 − 4x
+

1

1− x
≥ 0

⇔(1 + Σ)2 − 4x−B4
T+1(1− x)2 ≥ 0

⇔(1 + Σ)2 −B4
T+1(1 + x)2 + 4(B4

T+1 − 1)x ≥ 0, (13)

which is true for all x ≤ Σ and B4 ≤ Σ. In fact, B4
T+1 may be bigger than Σ without violating the

constraint, but in particular Bt ≤ Σ is enough.

The sign of the derivative changes at x̂. If Σ ≤ x̂, then the maximum is at Σ and we have

φT+1(Σ, BT1 ) ≤B2
T+1

√
(1 + Σ)2 − 4Σ− (1− Σ)

2
+ φT (Σ)

=φT (Σ).

Otherwise, if x̂ ≤ Σ, the maximum is at x̂ and we have

φT+1(Σ, BT1 ) ≤B2
T+1

√
(1 + Σ)2 − 4x̂− (1− Σ)

2
+ f(T )

≤B2
T+1

√
1− x̂+ f(T )

=B2
T+1 exp(−f(T )/2) + f(T )

where the second line was from using Σ ≤ 1. This allows any f(T ) that satisfies

B2
T+1e

−f(T )/2 + f(T ) ≤ f(T + 1).

To check that f(T ) = 1 + 2 log(1 + 1/2
∑
tB

2
t ) indeed works, we calculate:

f(T + 1)− f(T ) = − 2 log

(
2 +

∑T
t=1B

2
t

2 +
∑T+1
t=1 B2

t

)

= − 2 log

(
1−

B2
T+1

2 +
∑T+1
t=1 B2

t

)

≥
B2
T+1

1 + 1
2

∑T+1
t=1 B2

t

≥ e−1/2 B2
T+1

1 + 1
2

∑T+1
t=1 B2

t

= B2
T+1e

−f(T )/2.

The general multidimensional case can be bounded by first relaying the assumption that r2
t = Ptxtx

>
t

to allow general matrices Rt, which only increases the value of the maximization. We can then apply
the one-dimensional bound in every direction:

Lemma 13. For any Σ ≥ 0, ψt(ΣI, Bt1) =
∑d
i=1 φt(Σ, B

t
1), where φt(Σ) is the one-dimensional

regret bound.

Proof. The base case is trivial since both sides are zero. For the inductive hypothesis, assume that
ψt−1(ΣI, Bt−1

1 ) =
∑d
i=1 φt−1(Σ, Bt−1

1 ). Denoting the eigenvalues of R by λ1, . . . , λd, we have

ψt(ΣI, Bt1) = max
R

B2
t tr(R) + ψt−1

(
(ΣI −R)(I + R), Bt−1

1

)
= max

R

{
d∑
i=1

λi +

d∑
i=1

φt−1

(
(1 + λi)(Σ− λi), Bt−1

1

)}
=

d∑
i=1

φt(Σ, B
t
1).
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Proof of Theorem 5. Recall from Theorem 1 that for given T and x1, . . . ,xT , the regret of the box
constrained game is precisely

∑T
t=1B

2
tx
>
t Ptxt. Lemma 13 bounds

∑T
t=1B

2
tx
>
t Ptxt by a quantity

that does not depend on xt. To invoke Lemma 12, we need that Bt ≤ maxi λi for all t, which
is exactly ||BT1 ||∞ ≤ ||Σ||2. Rescaling the Bt sequence (and hence the regret bound) gives the
result.

F Explicit Constraints on xt

We have seen that the learner is minimax as long as the adversary plays a covariate sequence that is
in A(Σ). The following theorem provides explicit constraints on the choice of xt+1 as a function of
the past covariates.

Theorem 6. The consistency condition

P−1
t+1 −

t+1∑
q=1

xqx
>
q � 0

is equivalent to the conjunction of

1. P−1
t −

∑t
q=1 xqx

>
q � 0,

2. xt+1 is orthogonal to the kernel of P−1
t −

∑t
q=1 xqx

>
q , and

3. x>t+1Ptxt+1 ≤ dt(x̂t+1) +
√
dt(x̂t+1),

where x̂t+1 = xt+1/‖xt+1‖ and

dt(x̂) =
x̂>Ptx̂

x̂>
(
P−1
t −

∑t
q=1 xqx

>
q

)†
x̂

.

Notice that 0 ≤ dt(x̂) ≤ 1.

Proof. The xt+1 must satisfy

P−1
t −

t∑
q=1

xqx
>
q −

(
1− at

(1− at)b2t

)
xt+1x

>
t+1 � 0.

Since
1− at

(1− at)b2t
≥ 0,

the Schur complement characterization of symmetric positive semidefinite matrices shows that this is
equivalent to the conjunction of

1. P−1
t −

∑t
q=1 xqx

>
q � 0,

2. xt+1 orthogonal to the kernel of P−1
t −

∑t
q=1 xqx

>
q , and

3.
(

1− at
(1−at)b2t

)
x>t+1

(
P−1
t −

∑t
q=1 xqx

>
q

)†
xt+1 ≤ 1.

Conditions (1) and (2) are (1) and (2).

Writing xt+1 = cx̂t+1, we see that

b2t = x>t+1Ptxt+1 = c2x̂>t+1Ptx̂t+1,
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so Condition (3) is equivalent to(
1− at

(1− at)b2t

)
c2 ≤ 1

x̂>t+1

(
P−1
t −

∑t
q=1 xqx

>
q

)†
x̂t+1

⇔
(

1− at
(1− at)b2t

)
b2t ≤

x̂>t+1Ptx̂t+1

x̂>t+1

(
P−1
t −

∑t
q=1 xqx

>
q

)†
x̂t+1

⇔
(

1− at
(1− at)b2t

)
b2t ≤ dt(x̂t+1).

Finally, it is straightforward to check that the function φ defined by

φ(b2t ) :=

(
1− at

(1− at)b2t

)
b2t

satisfies

φ(b2t ) = b2t −
√

4b2t + 1− 1

2
,

and that φ(b2t ) ≤ α iff b2t ≤ α +
√
α. Combining shows that Condition (3) is equivalent to

Condition (3).

G Calculating the Minimax Directly

As a step in justifying ourABC assumptions we show that trying to directly calculate the full minimax
game is hopeless.
Lemma 14. If we impose the box constraints |xTPT sT−1| ≤ BT on xT , the first step of the
backwards induction evaluates to

max
xT

min
ŷT

max
yT

s>TPTsT − σ2
T

= s>T−1Π†T−1sT−1 − σ2
T−1

+


α∗T

s>T−1Π†T−1sT−1+(s>T−1Π†T−1sT−1+B2
Tα
∗
T )(1−(α∗T )2s>T−1Π†T−1sT−1)

(1−(α∗T )2s>T−1Π†T−1sT−1)
2 if ΠT−1 is full rank

max

{
B2
T , α

∗
T

s>T−1Π†T−1sT−1+(s>T−1Π†T−1sT−1+B2
Tα
∗
T )(1−(α∗T )2s>T−1Π†T−1sT−1)

(1−(α∗T )2s>T−1Π†T−1sT−1)
2

}
otherwise.

This lemma makes the point that the full minimax formulation leads to an intractable backwards
induction, even from the first step.

Proof. We prove this lemma by direct calculation. For a given xT , we have already evaluated the
minŷT maxyT argument using the backwards induction under the condition that |x>TPTsT−1| ≤ BT .
Hence, the above quantity is equal to

max
xT

s>T−1PT−1sT−1 − σ2
T−1 +B2

TxTPTxT . (14)

Next, we extract the xT dependence from PT . Using PT−1 = PT + PTxTx
>
TPT and PT =

(ΠT−1 + xTxT )
†, we have

PT−1 = PT + PTxTx
>
TPT

= (ΠT−1 + xTxT )
†

+ (ΠT−1 + xTxT )
†
xTx

>
T (ΠT−1 + xTxT )

†
,

and plugging into (14) yields

max
xT

s>T−1 (ΠT−1 + xTxT )
†
sT−1 +

(
s>T−1 (ΠT−1 + xTxT )

†
xT

)2

+B2
TxT (ΠT−1 + xTxT )

†
xT − σ2

T−1.
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We need to proceed by cases. First, assume that ΠT−1 is full rank. This implies that xT ∈ R(ΠT−1)
and we can apply the second case of Lemma 9 to (14) and arrive at

max
xT

s>T−1Π†T−1sT−1 +

(
s>T−1Π†T−1xT

)2

1− x>T Π†T−1x
>
T

+

(
s>T−1Π†T−1xT +

s>T−1Π†T−1xTx
>
T Π†T−1x

>
T

1− x>T Π†T−1x
>
T

)2

+B2
T

xTΠ†T−1xT +

(
x>T Π†T−1xT

)2

1− x>T Π†T−1x
>
T

− σ2
T−1.

Since we assumed that xT ∈ R(ΠT−1) and sT−1 ∈ R(ΠT−1) by its definition, it is without loss

of generality to reparameterize the problem with v =
(

Π†T−1

) 1
2

xT and w =
(

Π†T−1

) 1
2

sT−1 to
obtain

max
v

w>w +
(w>v)2

1− v>v
+

(
w>v +

v>wv>v

1− v>v

)2

+B2
Tv
>v +B2

T

(v>v)2

1− v>v
− σ2

T−1

= max
v

w>w +
(w>v)2

1− v>v

(
1 +

1

1− v>v

)
+B2

T

v>v

1− v>v
− σ2

T−1.

The objective is direction independent except for the w>v term, which implies that we should set
v = αw for some positive α. Plugging in this value of v, the optimization problem becomes finding
α∗, where

α∗ = argmax
α≥0

α
(
w>w

)2 2− α2w>w

(1− α2w>w)
2 +B2

T

α2w>w

1− α2w>w

= argmax
α≥0

αw>w
w>w + (w>w +B2

Tα)(1− α2w>w)

(1− α2w>w)
2 .

The objective goes to infinity as α→ (w>w)−
1
2 , but fortunately the box constraints keep it bounded.

The box condition is equivalent to

|x>TPTsT−1| ≤ BT

⇔

∣∣∣∣∣ x>T Π†TsT−1

1− x>T Π†TsT−1

∣∣∣∣∣ ≤ BT
⇔
∣∣∣∣ αw>w

1− α2w>w

∣∣∣∣ ≤ BT .
The left hand side is an increasing function of α and the inequality is satisfied for α = 0, and hence
the inequality is satisfied for all α < αmax, where

αmax =

√
1 +

4BT
w>w

− 1,

the solution to αw>w = (1−α2w>w)BT . Importantly, this in inequality implies that 1−α2w>w
is bounded below, and hence the maximizer for α∗ is well defined.

Hence, we have shown that, in the case when xT ∈ R(ΠT−1),

max
xT

min
ŷT

max
yT

s>TPTsT − σ2
T

= s>T−1Π†T−1sT−1

1 + α∗T

s>T−1Π†T−1sT−1 +
(
s>T−1Π†T−1sT−1 +B2

Tα
∗
T

)(
1− (α∗T )2s>T−1Π†T−1sT−1

)
(

1− (α∗T )2s>T−1Π†T−1sT−1

)2


− σ2

T−1,
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where α∗T , a function of s>T−1Π†T−1sT−1 and BT , is

argmin
0≤α≤αmax

α
s>T−1Π†T−1sT−1 + (s>T−1Π†T−1sT−1 +B2

Tα)(1− α2s>T−1Π†T−1sT−1)(
1− α2s>T−1Π†T−1sT−1

)2

for αmax =
√

1 + 4BT

s>T−1Π†T−1sT−1
− 1.

In the case when ΠT−1 is not full rank, the adversary has the option to play xT /∈ R(ΠT−1). In this
case, applying Lemma 10 to every term yields

max
xT

min
ŷT

max
yT

s>TPTsT − σ2
T = s>T−1Π†T−1sT−1 +B2

T − σ2
T−1

for any xT /∈ R(ΠT−1) with |xTPTsT−1| ≤ BT .

All in all, the backwards induction applied to the last round yields

max
xT

min
ŷT

max
yT

s>TPTsT − σ2
T = s>T−1Π†T−1sT−1 − σ2

T−1 +G

where

G =


α∗T

s>T−1Π†T−1sT−1+(s>T−1Π†T−1sT−1+B2
Tα
∗
T )(1−(α∗T )2s>T−1Π†T−1sT−1)

(1−(α∗T )2s>T−1Π†T−1sT−1)
2 if ΠT−1 is full rank

max

{
B2
T , α

∗
T

s>T−1Π†T−1sT−1+(s>T−1Π†T−1sT−1+B2
Tα
∗
T )(1−(α∗T )2s>T−1Π†T−1sT−1)

(1−(α∗T )2s>T−1Π†T−1sT−1)
2

}
otherwise.

We observe that, in the second case, the maximum could be either term, corresponding to the adversary

playing xT /∈ R(ΠT−1) or xT = α∗T

(
Π†T−1

) 1
2

sT−1, respectively. However, in the later case, the
value function obviously ceases to be quadratic and the next step of the backwards induction does in
intractable.
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