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Abstract

Generative adversarial network (GAN) is a minimax game between a generator
mimicking the true model and a discriminator distinguishing the samples produced
by the generator from the real training samples. Given an unconstrained discrimi-
nator able to approximate any function, this game reduces to finding the generative
model minimizing a divergence score, e.g. the Jensen-Shannon (JS) divergence, to
the data distribution. However, in practice the discriminator is constrained to be
in a smaller class F such as convolutional neural nets. Then, a natural question is
how the divergence minimization interpretation will change as we constrain F . In
this work, we address this question by developing a convex duality framework for
analyzing GAN minimax problems. For a convex set F , this duality framework
interprets the original vanilla GAN problem as finding the generative model with
the minimum JS-divergence to the distributions penalized to match the moments
of the data distribution, with the moments specified by the discriminators in F .
We show that this interpretation more generally holds for f-GAN and Wasserstein
GAN. We further apply the convex duality framework to explain why regularizing
the discriminator’s Lipschitz constant, e.g. via spectral normalization or gradi-
ent penalty, can greatly improve the training performance in a general f-GAN
problem including the vanilla GAN formulation. We prove that Lipschitz regu-
larization can be interpreted as convolving the original divergence score with the
first-order Wasserstein distance, which results in a continuously-behaving target
divergence measure. We numerically explore the power of Lipschitz regularization
for improving the continuity behavior and training performance in GAN problems.

1 Introduction

Learning a probability model from data samples is a fundamental task in unsupervised learning. The
recently developed generative adversarial network (GAN) [1] leverages the power of deep neural
networks to successfully address this task across various domains [2]. In contrast to traditional
methods of parameter fitting like maximum likelihood estimation, the GAN approach views the
problem as a game between a generator G whose goal is to generate fake samples that are close to
the real data training samples and a discriminator D whose goal is to distinguish between the real
and fake samples. The generator creates the fake samples by mapping from random noise input.

The following minimax problem is the original GAN problem, also called vanilla GAN, introduced in
[1]

min
G∈G

max
D∈F

E
[
logD(X)

]
+ E

[
log
(
1−D(G(Z))

)]
. (1)

Here Z denotes the generator’s noise input, X represents the random vector for the real data distributed
as PX, and G and F respectively represent the generator and discriminator function sets. Implement-
ing this minimax game using deep neural network classes G and F has lead to the state-of-the-art
generative model for many different tasks.
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Figure 1: (a) Divergence minimization in vanilla GAN with D unconstrained, between the generative
models and PX, (b) Divergence minimization in vanilla GAN with D constrained to a linear space F ,
between the generative models and the discriminator moment matching models formed around PX.

To shed light on the probabilistic meaning of vanilla GAN, [1] shows that given an unconstrained
discriminator D, i.e. if F contains all possible functions, the minimax problem (1) will reduce to

min
G∈G

JSD(PX, PG(Z)), (2)

where JSD denotes the Jensen-Shannon (JS) divergence. The optimization problem (2) can be
interpreted as finding the closest generative model to the data distribution PX (Figure 1a), where
distance is measured using the JS-divergence. Various GAN formulations were later proposed by
changing the divergence measure in (2). f-GAN [3] generalizes vanilla GAN by minimizing a general
f-divergence. Wasserstein GAN (WGAN) [4] is based on the first-order Wasserstein (the earth-
mover’s) distance. MMD-GAN [5, 6, 7] considers the maximum mean discrepancy. Energy-based
GAN [8] uses the total variation distance. Quadratic GAN [9] finds the distribution minimizing the
second-order Wasserstein distance.

However, GANs trained in practice differ from this minimum divergence formulation, since their
discriminator is not optimized over an unconstrained set and is constrained to smaller classes such as
convolutional neural nets. As shown in [9, 10], constraining the discriminator is in fact necessary to
guarantee good generalization properties for a GAN’s learned model. Then, how does the minimum
divergence interpretation illustarted in Figure 1a change after we constrain the discrminator? An
existing approach used in [10, 11] is to view the maximum discriminator objective as a discriminator
class F -based distance between probability distributions. For unconstrained F , the F -based distance
reduces to the original divergence measure, e.g. the JS-divergence in vanilla GAN.

While [10] demonstrates a useful application of F -based distances in analyzing GANs’ generalization
properties, the connection between F-based distances and the original divergence score remains
unclear for a constrained F . Then, what is the probabilistic interpretation of GAN minimax game
in practice where a constrained discriminator is used? In this work, we address this question by
interpreting the dual problem to the discriminator maximization problem. To analyze the dual problem,
we develop a convex duality framework for divergence minimization problems with generalized
moment matching constraints. We apply this convex duality framework to the f-divergence and
Wasserstein distance families, providing interpretation for f-GAN, including vanilla GAN minimizing
the JS-divergence, and Wasserstein GAN.

Specifically, we generalize [1]’s interpretation of the vanilla GAN problem (1), which only holds
for an unconstrained discriminator set, to the more general case with linear space discriminator
sets. Under this assumption, we interpret vanilla GAN as the following JS-divergence minimization
between two sets of probability distributions (Figure 1b), the generative models and the discriminator
moment-matching models,

min
G∈G

min
Q∈PF (PX)

JSD(PG(Z), Q). (3)

HerePF (PX) denotes the set of discriminator moment matching models that contains any distribution
Q satisfying moment matching constraints EQ[D(X)] = EP [D(X)] for any discriminator D ∈ F .
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More generally, we show that a similar interpretation holds for GANs trained over convex discrimina-
tor sets. We also discuss the application of our duality framework to neural net discriminators with
bounded Lipschitz constants. While a set of neural network functions is not necessarily convex, we
prove that a convex combination of Lipschitz-bounded neural nets can be approximated by uniformly
combining boundedly-many neural net functions. This result applied to our duality framework shows
that the convex duality interpretation approximately holds for neural net discriminators.

As a byproduct, we apply the duality framework to the infimal convolution hybrid of f-divergence
and the first-order Wasserstein (W1) distance, e.g. the following hybrid of JS-divergence and W1

distance:
dJSD,W1

(P1, P2) := min
Q

W1(P1, Q) + JSD(Q,P2). (4)

We prove that unlike the JS-divergence this hybrid divergence changes continuously and remedies the
undesired discontinuous behavior of JS-divergence in optimizing generator parameters for vanilla
GAN. [4] observes this issue with minimzing the JS-divergence in vanilla GAN and proposes
to instead minimize the continuously-changing W1 distance in WGAN. However, as empirically
demonstrated in [12] vanilla GAN with a Lipschitz-bounded discriminator results in superior and
state-of-the-art generative models over multiple benchmark tasks. In this paper, we leverage the
convex duality framework to prove that the infimal convolution hybrid dJSD,W1 , possessing the
same desired continuity property as in the W1-distance, is in fact the divergence score minimized in
vanilla GAN with a Lipschitz-bounded discriminator. Hence, our analysis provides an explanation
for why regularizing the discriminator’s Lipschitz constant via gradient penalty [13] or spectral
normalization [12] greatly improves the training performance in vanilla GAN. We then extend our
focus to the infimal convolution hybrid between the f-divergence and the second-order Wasserstein
(W2) distance. In this case, we derive the f-GAN (e.g. vanilla GAN) problem with its discriminator
being adversarially trained over the generator’s samples. We numerically evaluate the power of these
hybrid divergences and their implied regularization schemes for training GANs.

2 Divergence Measures

2.1 Jensen-Shannon divergence

The Jensen-Shannon divergence is defined in terms of the KL-divergence (denoted by KL) as

JSD(P,Q) :=
1

2
KL(P‖M) +

1

2
KL(Q‖M)

where M = P+Q
2 is the mid-distribution between P and Q. Unlike the KL-divergence, the JS-

divergence is symmetric JSD(P,Q) = JSD(Q,P ) and bounded 0 ≤ JSD(P,Q) ≤ log 2.

2.2 f-divergence

The f-divergence family [14] generalizes the KL and JS divergence measures. Given a convex lower
semicontinuous function f with f(1) = 0, the f-divergence df is defined as

df (P,Q) := EP
[
f
(q(X)

p(X)

)]
=

∫
p(x)f

(q(x)

p(x)

)
dx. (5)

Here EP denotes expectation over distributionP and p, q denote the density functions for distributions
P, Q, respectively. The KL-divergence and the JS-divergence are members of the f-divergence family,
corresponding to respectively fKL(t) = t log t and fJSD(t) = t

2 log t− t+1
2 log t+1

2 .

2.3 Optimal transport cost, Wasserstein distance

The optimal transport cost for cost function c(x,x′), which we denote by Wc, is defined as

Wc(P,Q) := inf
M∈Π(P,Q)

E
[
c(X,X′)

]
, (6)

where Π(P,Q) contains all couplings with marginals P,Q. The Kantorovich duality [15] shows that
for a non-negative lower semi-continuous cost c,

Wc(P,Q) = max
D c-concave

EP
[
D(X)

]
− EQ

[
Dc(X)

]
, (7)
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where we use Dc to denote D’s c-transform defined as Dc(x) := supx′ D(x′)− c(x,x′) and call
D c-concave if D is the c-transform of a valid function. An important special case is the first-order
Wasserstein (W1) distance corresponding to the norm cost c(x,x′) = ‖x− x′‖, i.e.

W1(P,Q) := inf
M∈Π(P,Q)

E
[
‖X−X′‖

]
. (8)

For the norm cost function, a function D is c-concave if and only if D is 1-Lipschitz, and the
c-transform Dc = D holds for a 1-Lipschitz D. Therefore, the Kantorovich duality result (7) implies

W1(P,Q) = max
D 1-Lipschitz

EP
[
D(X)

]
− EQ

[
D(X)

]
. (9)

In this paper, we also consider and analyze the second-order Wasserstein (W2) distance, corresponding
to the norm-squared cost c(x,x′) = ‖x− x′‖2, defined as

W2(P,Q) := inf
M∈Π(P,Q)

E
[
‖X−X′‖2

]1/2
. (10)

3 Divergence minimization in GANs: a convex duality framework

In this section, we develop a convex duality framework for analyzing divergence minimization
problems conditioned to moment-matching constraints. Our framework generalizes the duality
framework developed in [16] for the f-divergence family.

For a general divergence measure d(P,Q), we define d’s convex conjugate for distribution P , which
we denote by d∗P , as the following operator mapping a real-valued function with domain X to a real
number

d∗P (D) := sup
Q

EQ[D(X)]− d(P,Q). (11)

Here the supremum is over all distributions on the support set X . The following theorem connects this
operation to divergence minimization problems under moment matching constraints. Next section,
we discuss the application of this theorem in deriving several well-known GAN formulations for
divergence measures discussed in Section 2.

Theorem 1. Suppose divergence d(P,Q) is non-negative, lower semicontinuous and convex in
distribution Q. Consider a convex set of continuous functions F and assume support set X is
compact. Then,

min
G∈G

max
D∈F

EPX
[D(X)]− d∗PG(Z)

(D) (12)

= min
G∈G

min
Q

{
d(PG(Z), Q) + max

D∈F
{EPX

[D(X)]− EQ[D(X)] }
}
.

Proof. We defer the proof to the Appendix.

Theorem 1 interprets the LHS minimax problem in (12) as finding the closest generative model to
a set of distributions penalized to share the same generalized moments specified by discriminators
in F with PX. The following corollary of Theorem 1 shows if we further assume that F is a linear
space, then the additive penalty term penalizing the worst-case moment mismatch will turn to hard
constraints in the discriminator optimization problem. This result reveals a divergence minimization
problem between the generative models and the following set PF (P ) which we call the discriminator
moment matching models,

PF (P ) :=
{
Q : ∀D ∈ F , EQ[D(X)] = EP [D(X)]

}
. (13)

Corollary 1. In Theorem 1 suppose F is also a linear space, i.e. for any D1, D2 ∈ F , λ ∈ R we
have D1 +D2 ∈ F and λD1 ∈ F . Then,

min
G∈G

max
D∈F

EPX
[D(X)]− d∗PG(Z)

(D) = min
G∈G

min
Q∈PF (PX)

d(PG(Z), Q). (14)

In next section, we apply this duality framework to divergence measures discussed in Section 2 and
show how to derive various GAN problems through this convex duality framework.
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4 Duality framework applied to different divergence measures

4.1 f-divergence: f-GAN and vanilla GAN

Theorem 2 shows the application of Theorem 1 to an f-divergence. Here we use f∗ to denote
f ’s convex-conjugate [17], defined as f∗(u) := supt ut − f(t). Theorem 2 applies to a general
f-divergence df as long as the convex-conjugate f∗ is a non-deacreasing function, a condition met by
all f-divergence examples discussed in [3] with the only exception of Pearson χ2-divergence.
Theorem 2. Consider f-divergence df where the corresponding f has a non-decreasing convex-
conjugate f∗. In addition to the assumptions in Theorem 1, suppose that F is closed to adding
constants, i.e. D + λ ∈ F for any D ∈ F , λ ∈ R. Then, the minimax problem in the LHS of (12)
and (14), reduces to

min
G∈G

max
D∈F

E[D(X)]− E
[
f∗
(
D(G(Z))

)]
. (15)

Proof. We defer the proof to the Appendix.

The minimax problem (15) is the f-GAN problem introduced and discussed in [3]. Therefore,
Theorem 2 reveals that f-GAN searches for the generative model minimizing the f-divergence to the
discriminator moment matching models specified by discriminator set F . The following example
shows the application of this result to the vanilla GAN introduced in the original GAN work [1].
Example 1. Consider the JS-divergence, i.e. f-divergence corresponding to fJSD(t) = t

2 log t −
t+1

2 log t+1
2 . Then, (15) up to additive and multiplicative constants reduces to

min
G∈G

max
D∈F

E[D(X)] + E
[
log
(
1− exp(D(G(Z))

)]
. (16)

Moreover, if for function set F̃ the corresponding F = {D : D(x) = − log(1 + exp(D̃(x))), D̃ ∈
F̃} is a convex set, then (16) will reduce to the following minimax game which is the vanilla GAN
problem (1) with sigmoid activation applied to the discriminator output,

min
G∈G

max
D̃∈F̃

E
[

log
1

1 + exp(D̃(X))

]
+ E

[
log

exp(D̃(X))

1 + exp(D̃(X))

]
. (17)

4.2 Optimal Transport Cost: Wasserstein GAN

Theorem 3. Let divergence d be optimal transport cost Wc where c is a non-negative lower semi-
continuous cost function. Then, the minimax problem in the LHS of (12) and (14) reduces to

min
G∈G

max
D∈F

E[D(X)]− E
[
Dc(G(Z))

]
. (18)

Proof. We defer the proof to the Appendix.

Therefore the minimax game between G and D in (18) can be viewed as minimizing the optimal
transport cost between generative models and the distributions matching moments over F with PX’s
moments. The following example applies this result to the first-order Wasserstein distance and
recovers the WGAN problem [4] with a constrained 1-Lipschitz discriminator.
Example 2. Let the optimal transport cost in (18) be the W1 distance, and suppose F is a convex
subset of 1-Lipschitz functions. Then, the minimax problem (18) will reduce to

min
G∈G

max
D∈F

E[D(X)]− E
[
D(G(Z))

]
. (19)

Therefore, the moment-matching interpretation also holds for WGAN: for a convex set F of 1-
Lipschitz functions WGAN finds the generative model with minimumW1 distance to the distributions
penalized to share the same moments over F with the data distribution. We discuss two more
examples in the Appendix: 1) for the indicator cost cI(x,x′) = I(x 6= x′) corresponding to the total
variation distance we draw the connection to the energy-based GAN [8], 2) for the second-order
cost c2(x,x′) = ‖x − x′‖2 we recover [9]’s quadratic GAN formulation under the LQG setting
assumptions, i.e. linear generator, quadratic discriminator and Gaussian input data.
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5 Duality framework applied to neural net discriminators

We applied the duality framework to analyze GAN problems with convex discriminator sets. However,
a neural net set Fnn = {fw : w ∈ W}, where fw denotes a neural net function with fixed
architecture and weights w in feasible setW , does not generally satisfy this convexity assumption.
Note that a linear combination of several neural net functions in Fnn may not remain in Fnn.

Therefore, we apply the duality framework to Fnn’s convex hull, which we denote by conv(Fnn),
containing any convex combination of neural net functions in Fnn. However, a convex combination
of infinitely-many neural nets from Fnn is characterized by infinitely-many parameters, which makes
optimizing the discriminator over conv(Fnn) computationally intractable. In the following theorem,
we show that although a function in conv(Fnn) is a combination of infinitely-many neural nets, that
function can be approximated by uniformly combining boundedly-many neural nets in Fnn.
Theorem 4. Suppose any function fw ∈ Fnn is L-Lipschitz and bounded as |fw(x)| ≤ M . Also,
assume that the k-dimensional random input X is norm-bounded as ‖X‖2 ≤ R. Then, any function
in conv(Fnn) can be uniformly approximated over the ball ‖x‖2 ≤ R within ε-error by a uniform
combination f̂(x) = 1

m

∑m
i=1 fwi(x) of m = O(M

2k log(LR/ε)
ε2 ) functions (fwi)

m
i=1 ∈ Fnn.

Proof. We defer the proof to the Appendix.

The above theorem suggests using a uniform combination of multiple discriminator nets to find a
better approximation of the solution to the divergence minimization problem in Theorem 1 solved
over conv(Fnn). Note that this approach is different from MIX-GAN [10] proposed for achieving
equilibrium in GAN minimiax game. While our approach considers a uniform combination of
multiple neural nets as the discriminator, MIX-GAN considers a randomized combination of the
minimax game over multiple neural net discriminators and generators.

6 Infimal Convolution hybrid of f-divergence and Wasserstein distance:
GAN with Lipschitz or adversarially-trained discriminator

Here we apply the convex duality framework to a novel class of divergence measures. For an f-
divergence df , we define the divergence score df,W1

, which we call the infimal convolution hybrid of
df and W1 divergence measures, as follows

df,W1
(P1, P2) := inf

Q
W1(P1, Q) + df (Q,P2). (20)

The above infimum is taken over all distributions on the support set X , finding the distribution Q∗
minimizing the sum of the Wasserstein distance between P1 and Q and the f-divergence from Q to P2.
Earlier in the introduction, we mentioned and discussed a special case of the above definition for the
hybrid between the JS-divergence and W1-distance. While f-divergence in f-GAN, e.g. JS-divergence
in vanilla GAN, does not change continuously with the generator parameters, the following theorem
proves that similar to the continuous behavior ofW1-distance shown in [18, 4] the infimal convolution
hybrid divergence changes continuously with the generative model.
Theorem 5. Suppose Gθ ∈ G is continuously changing with parameters θ. Then, for any Q and
Z, df,W1(PGθ(Z), Q) will behave continuously as a function of θ. Moreover, if Gθ is assumed to be
locally Lipschitz, then df,W1

(PGθ(Z), Q) will be differentiable w.r.t. θ almost everywhere.

Proof. We defer the proof to the Appendix.

Our next result reveals the minimax problem dual to minimizing this hybrid divergence with symmet-
ric f-divergence component. We note that this symmetricity condition is met by the JS-divergence
and the squared Hellinger divergence among the f-divergence examples discussed in [3].
Theorem 6. Consider df,W1 with a symmetric f-divergence df , i.e. df (P,Q) = df (Q,P ), satisfying
the assumptions in Theorem 2. If the composition f∗ ◦D is 1-Lipschitz for all D ∈ F , the minimax
problem in Theorem 1 for the hybrid df,W1 reduces to the f-GAN problem, i.e.

min
G∈G

max
D∈F

E[D(X)]− E
[
f∗
(
D(G(Z)

) ]
. (21)

Proof. We defer the proof to the Appendix.
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The above theorem reveals that if the discriminator’s Lipschitz constant in f-GAN is properly
regularized, then solving the f-GAN problem over the regularized discriminator in fact minimizes
the continuously-changing divergence df,W1 . As a special case, in vanilla GAN (17) we only need
to constrain the discriminator D̃ to be 1-Lipschitz, which can be done via the gradient penalty
regularization [13] or the spectral normalization of D̃’s weight matrices [12]. Therefore, using these
techniques we indeed minimize the continuously-behaving divergence score dJSD,W1 . These results
are consistent with [12]’s empirical results indicating that regularizing the discriminator’s Lipschitz
constant improves the training performance in vanilla GAN.

Our discussion has so far focused on convolving f-divergence with the first order Wasserstein distance,
which translates into training f-GAN with a Lipschitz-bounded discriminator. As another solution,
we show that the desired continuity property can also be achieved through the following infimal
convolution with the second-order Wasserstein (W2) distance-squared:

df,W2(P1, P2) := inf
Q

W 2
2 (P1, Q) + df (Q,P2). (22)

Theorem 7. Suppose Gθ ∈ G continuously changes with parameters θ ∈ Rk. Then, for any
distribution Q and random vector Z, df,W2(PGθ(Z), Q) will be continuous in θ. Also, if we further
assume Gθ is bounded and locally-Lipschitz w.r.t. θ, then the divergence df,W2

(PGθ(Z), Q) is almost
everywhere differentiable w.r.t. θ.

Proof. We defer the proof to the Appendix.

The following result shows that minimizing df,W2
reduces to f-GAN problem where the discriminator

is being adversarially trained.
Theorem 8. Assume df and F satisfy the assumptions in Theorem 6. Then, the minimax problem in
Theorem 1 corresponding to the hybrid df,W2

divergence reduces to

min
G∈G

max
D∈F

E[D(X)] + E
[

min
u
−f∗

(
D(G(Z) + u )

)
+ ‖u‖2

]
. (23)

Proof. We defer the proof to the Appendix.

The above result reduces minimizing the hybrid df,W2
divergence to an f-GAN minimax game with

an additional third player. Here, the third player assists the generator by perturbing the generated fake
samples in order to make them harder to be distinguished from the real samples by the discriminator.
The cost for perturbing a fake sample G(Z) to G(Z) + u will be proportional to ‖u‖2, constraining
the power of the third player who plays adversarially against the discriminator. To implement the
game between the three players, we can adversarially learn the discriminator while we are training
GAN, via the Wasserstein risk minimization (WRM) adversarial learning scheme discussed in [19].

7 Numerical Experiments

To evaluate our theoretical results, we used the CelebA [20] and LSUN-bedroom [21] datasets.
Furthermore, in the Appendix we include the results of our experiments over the MNIST [22]
dataset. We considered vanilla GAN [1] with the minimax formulation in (17) and DCGAN [23]
convolutional architecture for the neural net discriminator and generator. We used the code provided
by [13] and trained DCGAN via Adam optimizer [24] for 200,000 generator iterations. We applied 5
discriminator updates per generator update.

Figure 2 shows how the discriminator loss evaluated over 2000 validation samples, which is an
estimate of the divergence measure, changed as we trained the DCGAN over LSUN samples. Using
standard DCGAN regularizied by only batch normalization (BN) [25], we observed (Figure 2- top
left) that the JS-divergence estimate always remained close to its maximum value log2 2 = 1 and also
correlated poorly with the visual quality of the generated samples. In this experiment, the vanilla GAN
training failed and led to mode collapse starting at about the 110,000th iteration. On the other hand,
after replacing BN with two different Lipschitz regularization tecniques, spectral normalization (SN)
[12] and gradient penalty (GP) [13], to ensure that the discriminator is 1-Lipschitz, the discriminator
loss decreased in a continuous monotonic fashion (Figures 2-top right and 2-bottom left).

These observations are consistent with Theorems 5 and 6 showing that the discriminator loss will
become an estimate for the infimal convolution hybrid dJSD,W1

divergence which is behaving contin-
uously with generator parameters. Also, the samples generated by the Lipschitz-regularized DCGAN
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Figure 2: Divergence estimate in DCGAN trained over LSUN samples, (top-left) JS-divergence in
DCGAN regularized with batch normalization (BN), (top-right) hybrid dJSD,W1

in DCGAN with a
1-Lipschitz spectrally-normalized (SN) discriminator, (bottom-left) hybrid dJSD,W1

in DCGAN with
a 1-Lipschitz discriminator regularized via the gradient penalty (GP), (bottom-right) hybrid dJSD,W2

in DCGAN with discriminator being adversarially-trained using WRM.

looked qualitatively better and correlated well with the estimate of dJSD,W1
divergence. Figure

2-bottom right shows that a similar desired behavior with nice monotonic decrease in discriminator’s
loss can also be achieved through minimizing the second-order hybrid divergence dJSD,W2 . In this
experiment, we trained the discriminator in vanilla GAN via the Wasserstein risk minimization
(WRM) adversarial learning scheme [19].

Figure 3 shows the results of similar experiments over the CelebA dataset. Again, we observed
(Figure 3-top left) that the JS-divergence estimate remains close to 1 while training DCGAN with
BN. However, after applying two different Lipschitz regularization methods, SN and GP in Figures
3-top right and bottom left, we observed that the hybrid dJSD,W1 changed nicely and monotonically,
and correlated well with the quality of samples generated. Figure 3-bottom right shows that a similar
desired behavior can also be obtained after minimizing the second-order infimal convolution hybrid
dJSD,W2 divergence. We defer the presentation of some random samples generated by the generators
trained in these experiments to the Appendix.

8 Related Work

Theoretical studies of GAN have focused on three different aspects: approximation, generalization,
and optimization. Regarding the approximation properties of GANs, [11] studies GANs’ approxima-
tion power through a moment-matching approach. The authors view the maximized discriminator
objective as an F -based adversarial divergence, showing that the adversarial divergence between two
distributions will be at its minimum value if the two distributions have the same generalized moments
specified by F . Our convex duality framework provides a dual interpretation for their results and
draws the connection between the adversarial diveregnce and the original divergence scores. [26]
studies the f-GAN problem through an information geometric approach and the connection between
the Bregman divergence and the f-divergence.
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Figure 3: Divergence estimate in DCGAN trained over CelebA samples, (top-left) JS-divergence
in DCGAN regularized with batch normalization, (top-right) hybrid dJSD,W1 in DCGAN with a
1-Lipschitz spectrally-normalized discriminator, (bottom-left) hybrid dJSD,W1

in DCGAN with a
1-Lipschitz discriminator regularized via the gradient penalty, (bottom-right) hybrid dJSD,W2

in
DCGAN with its discriminator being adversarially-trained using WRM.

Analyzing the generalization performance in GANs has been another problem of interest in the
machine learning literature. [10] proves generalization guarantee results for GANs in terms of the
F -based distance measures. [27] uses an elegant approach based on birthday paradox to empirically
study the generalizibility of a GAN’s learned models. [28] develops a quantitative approach for
examining diversity and generalization for a GAN’s learned distribution. [29] studies approximation-
generalization trade-offs in GANs by analyzing the discriminative power in F-based distances.

Regarding the optimization aspects of GANs, [30, 31] propose duality-based methods for improving
optimization performance in training deep generative models. [32] suggests convolving the data
distribution with a Gassian distribution for regularizing the learning problem in f-GANs. Moreover,
several other works including [33, 34, 35, 9, 36] explore the optimization and stability properties of
GANs. We also note that the same convex analysis approach used in this paper for studying GANs
has also provided several powerful frameworks for analyzing other supervised and unsupervised
learning problems [37, 38, 39, 40, 41].
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