
8 Appendix: Proofs

For the convenience of notation, in the following part we will use xm and xl to represent e+t and e�t ,
so xm and xl are the indicator vectors of team m and team l respectively. We use oml to represent
the game outcome between the two teams.

8.1 Proof of Lemma 1

We will use the following lemma to prove Lemma 1 (which can be found in [2]):
Lemma 2. (Bound on Expected `-risk [2]). Let ` be a loss function with Lipschitz constant L`

bounded by B with respect to its first argument, and � be a constant where 0 < � < 1. Let R(F⇥) be
the Rademacher complexity of the function class F⇥ (w.r.t ⌦ and associated with `) defined as:

R(F⇥) = E�[ sup
f2F⇥

1

T

TX

↵=1

�↵`(f(xm↵ , el↵), om↵l↵)], (7)

where each �↵ takes values {±1} with equal probability. Then with probability at least 1� �, for all
f 2 F⇥ we have:

R`(f)  R̂`(f) + 2E⌦[R(F⇥)] + B

s
log 1

�

2T
.

Proof (of Lemma 1): Note that xm is indicator vector of team m, thus
p
L = max

m2[N ]
kxmk2, where

L is the number of players on each team. The model complexity of (7) can be bounded by:

R(F⇥) = E�[ sup
f2F⇥

1

T

TX

↵=1

�↵`(fw,M (xm↵ ,xl↵), om↵l↵)]

 L`E�[ sup
f2F⇥

1

T

TX

↵=1

�↵fw,M (xm↵ ,xl↵)]

=
L`

T
E�[ sup

kwk2w,kMk⇤M

TX

↵=1

�↵(w
T (xm↵ � xl↵)

+ xT
m↵

Mxm↵ � xT
l↵Mxl↵)]

 L`E�[ sup
kwk2w

1

T

TX

↵=1

�↵w
T (xm↵ � xl↵)

+ sup
M :kMk⇤M

1

T

TX

↵=1

�↵trace(Mxm↵x
T
m↵

)

+ sup
M :kMk⇤M

1

T

TX

↵=1

�↵trace(Mxl↵x
T
l↵)]

 2w

r
L

T
+ 4L`ML

r
log(2n)

T

This is the first bound of R(F⇥). Note that the last inequality comes from the condition
p
L =

max
m2[N ]

kxmk2 and Theorem 1 in [14]. In the following part we derive another bound for R(F⇥) that

has better dependency to w and M. We can rewrite R(F⇥) as:

R(F⇥) = E�[ sup
f2F⇥

1

T

TX

↵=1

�↵`(fw,M (xm↵ ,xl↵), om↵l↵)]

= E�[ sup
f2F⇥

1

T

X

(m,l)

�ml`(fw,M (xm,xl), oml)]
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where � 2 RN⇥N with each entry defined as �ml =
P

↵:m↵=m,l↵=l �↵. Use the same method in
[18], we can decompose � into two matrices A and B, where A contains the "heavily-hit" entries,
and B the "lightly-hit" entries, where the two types of entries are differentiated according to some
threshold p.

Given m, l, let hm,l = |{↵ : m↵ = m, l↵ = l}| be the number of times the sample ⌦ hits entry m, l.
Let p > 0 be an arbitrary parameter to be specified later, and define

Am,l =

⇢
�m,l hm,l > p

0 hm,l  p
Bm,l =

⇢
0 hm,l > p

�m,l hm,l  p

Clearly, � = A+B. We can write R(F⇥) as:

R(F⇥) = E�[ sup
f2F⇥

1

T

X

(m,l)

Aml`(fw,M (xm,xl), oml)]

+ E�[ sup
f2F⇥

1

T

X

(m,l)

Bml`(fw,M (xm,xl), oml)] (8)

Since |`(fw,M (xm,xl), oml)|  B, the first term of (8) can be upper bounded by

1

T
E�[B

X

(m,l)

Aml] 
B
p
p

Using the Rademacher contraction principle, the second term of (8) can be upper bounded by:

L`

T
E�[ sup

kwk2w,kMk⇤M

X

(m,l)

Bmlfw,M (xm,xl)]

=
L`

T
E�[ sup

kwk2w,kMk⇤M

X

(m,l)

Bml(w
T (xm � xl) + xT

mMxm � xT
l Mxl)]

 L`

T
E�[ sup

kwk2w

X

(m,l)

Bmlw
T (xm � xl)] +

L`

T
E�[ sup

kMk⇤M

X

(m,l)

Bmlx
T
mMxm]

+
L`

T
E�[ sup

kMk⇤M

X

(m,l)

Bmlx
T
l Mxl]

=
L`

T
E� sup

kwk2w

X

(m,l)

Bmlw
T (xm � xl) +

L`

T
E�[ sup

kMk⇤M

X

(m,l)

Bml(XMX
T )mm]

+
L`

T
E�[ sup

kMk⇤M

X

(m,l)

Bml(XMX
T )ll]

 2wL`

p
L

T
E�[kBk2] +

2L`

T
E�[ sup

W :kWk⇤W
kBk2kXX

T k⇤]

 2wL`

p
L

T
E�[kBk2] +

2L`ML
p
n

T
E�[kBk2]


8.8c3L`

p
L(w +

p
nLM)

p
p
p
N

T
.

Choosing p = BT
8.8c3L`

p
L(w+

p
nLM)

p
N

, (8) is bounded by

s
36c3L`B

p
L(w +

p
nLM)

p
N

T
.

Applying Lemma 2, we can get the bound in Lemma 1.
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8.2 Proof of Theorem 1

Lemma 3. (Consistency of Excess Risk [1]). Let ` be a convex surrogate loss function. Then there
exists a strictly increasing function  ,  (0) = 0, such that for all measurable f :

R(f)�R
⇤   (R`(f)�R

⇤
` ),

where R
⇤ = inff R(f) and R

⇤
` = inff R`(f).

Proof (of Theorem 1). When we can observe the score differences, oml = s
+
t � s

�
t . Let

f
⇤
w,M (xm,xl), ✓⇤ = [w⇤;M⇤] 2 ⇥ to be the optimal solution of problem (6). If the scores
s
+
t , s

�
t are generated from some underlying model w

⇤
,M

⇤ following s
+
t =

P
j2I+

t
w

⇤
j +

P
j2I+

t

P
q2I+

t
M

⇤
jq with kw⇤k  w and kM⇤k⇤  M, we have `(wT ⇤

(xm � xl) + xT
mM

⇤xm �
xT
l M

⇤xl, s
+
t �s

�
t ) = `(s+t �s

�
t , s

+
t �s

�
t ) = 0. Thus, we can get R̂(f⇤). Apparently, R⇤ = R

⇤
` = 0,

so Lemma (3) here is:

R(f⇤)   (R`(f
⇤)),

Therefore, applying Lemma 1 we can get:

R`(f
⇤)  min

8
<

:4w

r
L

T
+ 8L`ML

r
log(2n)

T
,

s
144c3L`B

p
L(w +

p
nLM)

p
N

T

9
=

;+ B

s
log 1

�

2T

Let L be the bounded Lipschitz constant for  . Then we can derive:

R(f⇤)   (R`(f
⇤))

 L 

 
min

(
4w

r
L

T
+ 8L`ML

r
log(2n)

T
,

s
144c3L`B

p
L(w +

p
nLM)

p
N

T

9
=

;+ B

s
log 1

�

2T

1

A

= min

8
<

:O

 
wp
T

+M
r

log(2n)

T

!
, O

0

@

s
(w +

p
nLM)

p
N

T

1

A

9
=

;

+O

0

@

s
log 1

�

T

1

A

8.3 Proof of Theorem 2

When we can only observe the winning/losing game results, ot = sgn(s+t � s
�
t ). R⇤ = 0 still holds,

but R⇤
` may not be zero. Applying Lemma (3), we have:

R(f⇤)   (R`(f
⇤)�R

⇤
` ).

Using Lemma 1, we can bound R`(f⇤)�R
⇤
` by:

R`(f
⇤)�R

⇤
`  R̂`(f

⇤)�R
⇤
` +min

(
4w

r
L

T
+ 8L`ML

r
log(2n)

T
,

s
144c3L`B

p
L(w +

p
nLM)

p
N

T

9
=

;+ B

s
log 1

�

2T
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Therefore, we can derive:
R(f⇤)   (R`(f

⇤)�R
⇤
` )

 L 

 
R̂`(f

⇤)�R
⇤
` +min

(
4w

r
L

T
+ 8L`ML

r
log(2n)

T
,

s
144c3L`B

p
L(w +

p
nLM)

p
N

T

9
=

;+ B

s
log 1

�

2T

1

A

= O

⇣
R̂`(f

⇤)�R
⇤
`

⌘
+min

(
O

 
wp
T

+M
r

log(2n)

T

!
,

O

0

@

s
(w +

p
nLM)

p
N

T

1

A

9
=

;+O

0

@

s
log 1

�

T

1

A

8.4 Proof of Theorem 3

Theorem 3 follows directly from the following theorem provided that min
f2F⇥

R` � R
⇤
` = O(✏), so

prove Theorem 4 will suffice.
Theorem 4. (Kendall’s Tau guarantee for noisy comparisons from flip sign model). Let � be any
constant such that 0 < � < 1. Suppose that we observe T noisy group comparisons under the flip
sign model parameterized by some noise level 0  ⇢f  0.5.

Consider the following problem:

min
w,M

1

T

X

(m,l)2⌦

[wT (xm � xl) + xT
mMxm � xT

l Mxl � õml]
2
,

s.t. kwk2  (1� 2⇢f )w, kMk⇤  (1� 2⇢f )M, õml ⇠ D⇢f

(9)

where the distribution D⇢f is defined by:

P (õml = +1|sgn(oml) = �1)

=P (õml = �1|sgn(oml) = +1)

=⇢f

where oml represents the clean comparison result. Then with probability at least 1� �, the optimal
f
⇤ of the problem satisfies:

R(f⇤)  O

✓
min
f2F⇥

R` �R
⇤
`

◆
+min

(
O

 
1

1� 2⇢f
(
wp
T

+M
r

log(2n)

T
)

!
,

O

0

@
s

(w +
p
nLM)

p
N

(1� 2⇢f )T

1

A

9
=

;+O

0

@

s
log 1

�

T

1

A

To prove Theorem 4 we need the following lemma. We will give the proof of Theorem 4 after
Lemma 4
Lemma 4. (Equivalence of Problem (9) with Unbiased Estimator). The problem (9) is equivalent to
the following optimization problem:

min
w̃,M̃

1

T

X

(m,l)2⌦

˜̀(w̃T (xm � xl) + xT
mM̃xm � xT

l M̃xl, õml)

s.t. kw̃k2  w, kM̃k⇤  M,

(10)

where ˜̀(t, y) is an unviased estimator of squared loss from noisy comparisons defined by:

˜̀(t, y) =
(1� ⇢f )(t� y)2 � ⇢f (t+ y)2

1� 2⇢f
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Furthermore, the optimal solution of the problem (10), denoted as ✓̃⇤, satisfies:

✓
⇤ = (1� 2⇢f )✓̃

⇤ (11)
where ✓

⇤ is the optimal solution of the problem (9).

With Lemma 4, we will give proof of Theorem 4 in the following part. Proof of Lemma 4 is provided
at the end.

Proof (of Theorem 4). Let ✓̃⇤/f̃⇤ denote the optimal parameter/function of problem (10). Then from
Theorem 3 of [15], we can guarantee that with probability at least 1� �, the risk of f̃⇤ w.r.t. clean
distribution is bounded by:

R`(f̃
⇤)  min

f2F⇥

R`(f) +
8L`

1� 2⇢f
E⌦[R(F⇥)] + 2

s
log 1

�

2T
. (12)

From Lemma 4 we know that ✓⇤ = (1�2⇢f )✓̃⇤, so the scores learned will be scaled by a 1�2⇢f factor,
but the relative scores and the comparison result will remain the same. This implies R(f⇤) = R(f̃⇤).
Finally, by applying Lemma 1 and Lemma 3 to (12), the claim of Theorem 4 can be obtained as:

R(f̃⇤)   (R`(f̃
⇤)�R

⇤
` )

 L 

 
min
f2F⇥

R`(f)�R
⇤
` +

8L`

1� 2⇢f
min

(
4w

r
L

T
+

8L`ML

r
log(2n)

T
,

s
144c3L`B

p
L(w +

p
nLM)

p
N

T

9
=

;+ B

s
log 1

�

2T

1

A

= O

✓
min
f2F⇥

R` �R
⇤
`

◆
+min

(
O

 
1

1� 2⇢f
(
wp
T

+M
r

log(2n)

T
)

!
,

O

0

@
s

(w +
p
nLM)

p
N

(1� 2⇢f )T

1

A

9
=

;+O

0

@

s
log 1

�

T

1

A

Proof (of Lemma 4). First off, we rewrite the unbiased estimator of squared loss ˜̀(t, y) as:

˜̀(t, y) = t
2 � 2t

1� 2⇢f
y + y

2

=

✓
t� y

1� 2⇢f

◆2

+

✓
y
2 � 1

1� 2⇢f
y
2

◆

Therefore, problem (10) can be rewritten as:

min
w̃,M̃

1

T

X

(m,l)2⌦

˜̀(w̃T (xm � xl) + xT
mM̃xm � xT

l M̃xl, õml)

⌘min
w̃,M̃

1

T

X

(m,l)2⌦

✓
w̃T (xm � xl) + xT

mM̃xm � xT
l M̃xl �

õml

1� 2⇢f

◆2

s.t. kw̃k2  w, kM̃k⇤  M,

(13)

Now define two new variables as:
w = (1� 2⇢f )w̃

M = (1� 2⇢f )M̃
(14)

and substitute (14) to the problem (13). We can further derive an equivalent optimization problem
w.r.t. w and M as:

min
w,M

1

T

X

(m,l)2⌦

�
wT (xm � xl) + xT

mMxm � xT
l Mxl � õml

�2

s.t. kwk2  (1� 2⇢f )w, kMk⇤  (1� 2⇢f )M,
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Table 5: PI denotes percentage of pairs includes, and PA denotes prediction accuracy. Performance of logistic
regression with selected pairs on HotS tournament (Hero) data. We first include the most important pairs (top
tier and bottom tier) into the model, then less important pairs. In the end, we include all pairs with enough
dominance information.

PI (%) 0 5.03 12.23 20.48 32.22 37.88
PA (%) 59.73 62.28 64.00 64.93 65.24 67.27

which is the problem (9) as claimed. In addition, from (14), the optimal solutions between two
problems satisfy:

✓
⇤ = [w⇤

,M
⇤] = (1� 2⇢f )[w̃

⇤
, M̃

⇤] = (1� 2⇢f )✓̃
⇤

and the proof is thus completed.

9 Appendix: Another way to discover important higher order terms

In addition to Factorization HOI, another practical way to apply our basic logistic regression model (2)
is to pre-select important pairwise parameters and eliminate the rest (LR-select). Intuitively, we want
to identify the pairs of players that work significantly better or worse with each other. To achieve this,
we may construct a tiered ranking of all possible pairs as follows.

Each game between I
+
t and I

�
t is “expanded” into

✓
|I+t |
2

◆
·
✓

|I�t |
2

◆
subgames, where every

pair of players from I
+
t is assigned a win over every pair of players from I

�
t . The results are placed

into an Np ⇥ Np win-loss matrix, where Np is the number of observed player pairs. Winning
probabilities between player pairs are now estimated using Percolation and Conductance [6], which
takes advantage of transitivity of dominance information in order to infer the relationship between
player pairs who may not have competed directly.

A ranking of player pairs may be obtained by applying a permutation ⇢
⇤ to the rows and columns of

the estimated winning probability matrix P such that the cost function

Cost(P [⇢]) =

NpX

i=2

i�1X

j=1

max(0,� log[2(1� p⇢,ij)])e
(Np+1�j)(i�j)

N2
p (15)

is minimized, as in [8]. Such a ranking can be seen in the left panel of Figure 2, in which the upper
triangle of P mostly consists of values above 0.5. As a result of this reordering, any deviation from
⇢
⇤ incurs additional cost from cost equation (15). In particular, switching the position of a pair of

entries in ⇢
⇤ increases the cost by an amount dependent on their relative positions. A cost matrix

C = [cij ] may be constructed where cij is the cost incurred by swapping the ith and jth entries in ⇢
⇤,

an example of which is shown in the middle panel of Figure 2. By treating C as a distance matrix,
tiers of player pairs can then be identified via any common clustering method, such as hierarchical
clustering or Data Cloud Geometry [7].

From the tiers of player pairs, we can then determine those pairs that work together much better than
others (top tier) and those that work together much worse (bottom tier). We then choose to include in
our model only those player pairs with very clear dominance information over other pairs, as seen in
the right panel of Figure 2. Players involved in these pairs are likely to have significant relationships
that make them much better or worse teammates for each other.

From Table 5 we can see that after including the most important pairs, which is only a small fraction
of all pairs, the model performance improves a lot. Comparing the results with those of individual
models in Table 2, we can see that by including only 12.23% of pairs, LR-select is able to outperform
all the other individual models on Heroes of Storm tournament data (HotS Tournament (H)).
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Figure 2: Each row/column of these matrices corresponds to a pair of heroes of HotS tournament data. The
estimated winning probability matrix computed via Percolation and Conductance is shown in left, and the cost
incurred by swapping entries in ⇢⇤ is shown in middle. After constructing tiers of player pairs and removing
pairs with little dominance information, a clearer dominance hierarchy remains regarding winning probabilities
(right).
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