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Abstract

Metric learning, aiming to learn a discriminative Mahalanobis distance matrix M
that can effectively reflect the similarity between data samples, has been widely
studied in various image recognition problems. Most of the existing metric learning
methods input the features extracted directly from the original data in the prepro-
cess phase. What’s worse, these features usually take no consideration of the local
geometrical structure of the data and the noise that exists in the data, thus they
may not be optimal for the subsequent metric learning task. In this paper, we
integrate both feature extraction and metric learning into one joint optimization
framework and propose a new bilevel distance metric learning model. Specifically,
the lower level characterizes the intrinsic data structure using graph regularized
sparse coefficients, while the upper level forces the data samples from the same
class to be close to each other and pushes those from different classes far away.
In addition, leveraging the KKT conditions and the alternating direction method
(ADM), we derive an efficient algorithm to solve the proposed new model. Exten-
sive experiments on various occluded datasets demonstrate the effectiveness and
robustness of our method.

1 Introduction

Metric learning problem is concerned with learning an optimal distance matrix M that captures the
important relationships among data for a given task, i.e., assigning smaller distances between similar
items and larger distances between dissimilar items. Generally, metric learning can be formulated
as a minimal optimization about the objective function: µReg(M) + Loss(M,A), where Reg(M)
is a regularization term on the distance matrix M and Loss(M,A) is a loss function that penalizes
constraints. Different choices of regularization terms and constraints result in various metric learning
methods, e.g., large-margin nearest neighbor (LMNN) [16], information-theoretic metric learning
(ITML) [4], FANTOPE [7], CAP [5], etc. More recent works focus on using maximum correntropy
criterion [18], smoothed wasserstein distance [19], matrix variate Gaussian mixture distribution [11]
for metric learning formulations to improve the robustness. Although these methods achieve great
success, they all mainly focus on improving the discriminability of the distance matrix M but ignore
the discriminating power of input features. Especially, the descriptors of the sample pairs they address
are usually extracted directly from the original data in the preprocess phase without considering the
local geometrical structure of the data, thus such descriptors may not be optimal for the subsequent
metric learning task.

Besides metric learning methods, many other machine learning tasks such as clustering and dictionary
learning also suffer from the above limitation. To address this issue, the recently proposed solution
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is to adopt the strategy of joint learning or bilevel model, and fortunately, great achievements have
been made by many researchers. Wang et al. [15] propose a joint optimization framework in terms of
both feature extraction and discriminative clustering. They utilize graph regularized sparse codes as
the features, and formulate sparse coding as the constraint for clustering. Zhou et al. [23] present a
novel bilevel model-based discriminative dictionary learning method for recognition tasks. The upper
level directly minimizes the classification error, while the lower level uses the sparsity term and the
Laplacian term to characterize the intrinsic data structure. Yang et al. [20] propose a bilevel sparse
coding model for coupled feature spaces, where they aim to learn dictionaries for sparse modeling
in both spaces while enforcing some desired relationships between the two signal spaces. All these
models benefit from the joint learning strategy or the bilevel model and achieve an overall optimality
to a great extent. Inspired by these works, we propose to extract features and learn the Mahalanobis
distance matrix M through a unified joint optimization model.

How to choose the feature extraction model is also an important problem. Although metric learning
task aims to learn a discriminative M, it would be better if the input features are also of discriminating
power. The common choice is principal component analysis (PCA) feature, which is able to reduce the
data dimension and identify the most important features [1]. However, PCA feature is not necessarily
discriminative and also may loss the useful information. More recently, sparse coefficients prove to be
an effective feature which is not only robust to noise but also scalable to high dimensional data [17].
Furthermore, motivated by recent progress in manifold learning, Zheng et al. [22] incorporate
the graph Laplacian into the sparse coding objective function as a regularizer, achieving more
discriminating power compared with traditional sparse coding algorithms.

In this paper, we integrate the graph regularized sparse coding model into the distance metric learning
framework and propose our new bilevel model. The lower level focus on detecting the underlying
data structure, while the upper level directly forces the data samples from the same class to be close to
each other and pushes those samples from different classes far away. Note that the input data samples
of the upper level are represented by the sparse coefficients learnt from the lower level model. And
benefiting from the feature extraction operation of the lower level model, the new features become
more robust to noise with the sparsity norm and more discriminative with the Laplacian graph term.
In addition, to solve our bilevel model, we transform the lower level problem of the proposed model
into equality and inequality constraints and then apply ADM to solve it. Extensive experiments
on various occluded datasets indicate that the proposed bilevel model can achieve more promising
performance than other related methods.

Notations: Let S+ denotes the set of real-valued symmetric positive semi-definite (PSD) matrices.
For matrices A and B, denote the Frobenius inner product by 〈A,B〉 = Tr(A>B), where ‘Tr’
denotes the trace of a matrix. For a given vector a = (a1, a2, ..., ad)>, diag(a) = A corresponds to
a squared diagonal matrix such that ∀i, Ai,i = ai. ek ∈ Rk represents a unit vector of length k, and I
is a unit matrix. Finally, for x ∈ R, let [x]+ = max(0, x).

2 Bilevel Distance Metric Learning

2.1 Large Margin Nearest Neighbor

Let {(x1, y1), ..., (xn, yn)} ∈ Rd × C be a set of labeled training data with discrete labels C =
{1, ..., c}, where n is the number of samples. Most of the metric learning methods aim to learn
a metric, such as widely used Mahalanobis distance dM(xi,xj) =

√
(xi − xj)>M(xi − xj), to

effectively reflect the similarity between data.

Large margin nearest neighbor (LMNN) [16], as one of the most widely used metric learning methods,
requires the learned Mahalanobis distance to satisfy two objectives, i.e., samples from the same class
are forced to be close to each other and those from different classes are pushed far away. If we denote
the similar pairs by S and triplet constraints by T as:

S = {(xi,xj) : yi = yj and xj belongs to the k-neighborhood of xi},
T = {(xi,xj ,xk) : (xi,xj) ∈ S, yi 6= yk},

(1)

then LMNN model can be formulated as:

min
M∈S+

(1− λ)
∑

(i,j)∈S

d2
M(xi,xj) + λ

∑
(i,j,k)∈T

[1 + d2
M(xi,xj)− d2

M(xi,xk)]+, (2)
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Figure 1: Original data X and the corresponding sparse coefficients A learned from the proposed
bilevel distance metric learning model. The x-axis represents different samples belonged to eight
classes.

where λ ∈ [0, 1] controls the relative weight between two terms. The objective function in Eq. (2)
pulls the “target” neighbors whose labels are the same as xi’s toward xi and pushes away the
“impostor” neighbors whose labels are different from xi’s.

Although LMNN achieves good results, it learns the distance matrix to characterize the point-to-
point distance which is sensitive to the noise. Furthermore, the descriptors of the sample pairs
it addresses are usually extracted directly from the original data in the preprocess phase without
considering the local geometrical structure of the data. Thus such features may not be optimal for the
subsequent metric learning task. To address these problems, in this paper, we propose a bilevel model
which jointly learns the distance matrix M and extracts features under a sparse representation-based
framework.

2.2 Bilevel Distance Metric Learning

Sparse representations prove to be an effective feature for classification. Also, some researchers
suggest that the contribution of one sample to the reconstruction of another sample is a good indicator
of similarity between these two samples [3]. Thus the reconstruction coefficients can be used to
constitute the similarity graph. Inspired by these findings, we integrate both sparse representation and
graph regularization into a metric learning framework and propose our new bilevel distance metric
learning model.

We assume all the data samples X = [x1,x2, ...,xn] ∈ Rd×n are represented by their cor-
responding sparse coefficients A = [a1,a2, ...,an] ∈ Rk×n based on a learned dictionary
U = [u1,u2, ...,uk] ∈ Rd×k. Then the proposed bilevel distance metric learning model can
be expressed as follows:

min
M∈Sd+,U

(1− λ)
∑

(i,j)∈S

d2
M(ai,aj) + λ

∑
(i,j,k)∈T

[ξ + d2
M(ai,aj)− d2

M(ai,ak)]+

s.t. A = arg min
A

1

2
||X−UA||2F + α||A||1 +

β

2
Tr(ALA>), ||ui||22 ≤ 1,∀i,

(3)

where the Laplacian term Tr(ALA>) is introduced to guarantee the sparse coefficients can capture
the geometric structure of the data. L is the graph Laplacian matrix constructed from the label vector
Y = [y1, y2, ..., yn] ∈ Rn. λ, α and β are three regularization parameters.

In our bilevel model (3), the upper level feeds the representation (ai,aj ,ak) of the triplet constraint
(xi,xj ,xk) into the LMNN model and directly minimizes the loss function. The lower level tries to
capture the intrinsic data structure. Note that the Laplacian matrix L is constructed in a supervised
way, thus the data structure can be well preserved even if there exists noise in the data. By solving
the above optimization problem (3), a recognition-driven dictionary U can be learnt and accordingly
leading to a well representative sparse coefficients A. In the meantime, we can also obtain a good
Mahalanobis distance matrix M with the new discriminative feature A.

It is worth mentioning that the sparsity penalty and Laplacian regularization encourage the group
sparsity of coefficients, thus the samples from the same class are forced to have similar sparse
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representations and those from different classes are to have dissimilar sparse codes. For clarity, we
show the original data (including eight classes) and its corresponding sparse coefficients learnt by
our bilevel model in Fig. 1. The coefficients equipped with this useful property make the upper level
easier to fulfill its mission which is to force the data samples from the same class to be close to each
other and pushes those samples from different classes far away.

2.3 Optimization

We use the alternating direction method (ADM) to solve the optimization problem (3) after some
delicate reformulations.

Let A = B−C, where B ∈ Rk×n and C ∈ Rk×n are two nonnegative matrices such that B takes
all the positive elements in A and the remaining elements of B are set to 0, while C does the same for
the negative elements in A (after negation). Then the lower level optimization problem of model (3)
can be transformed into the following problem:

min
Z

1

2
||X−UPZ||2F + αe>2kZen +

β

2
Tr(PZLZ>P>), s.t. Z ≥ 0, (4)

where Z = [B;C] ∈ R2k×n and P = [I,−I] ∈ Rk×2k. Obviously, problem (4) is a convex problem,
which can be replaced by its KKT conditions [23]. Then we obtain the following equivalent model:

min
M∈Sd+,Z,B,U

(1− λ)
∑

(i,j)∈S

d2P>MP(zi, zj) + λ
∑

(i,j,k)∈T

[ξ + d2P>MP(zi, zj)− d
2
P>MP(zi, zk)]+

s.t. P>U>UPZ−P>U>X+ αE+ βP>PZL+B = 0,

B� Z = 0, Z ≥ 0, B ≤ 0, ||ui||22 ≤ 1, ∀i ∈ {1, 2, ..., k}.

(5)

where B ∈ R2k×n is the Lagrange multiplier matrix and B satisfies the constraint B ≤ 0. E ∈
R2k×n is an all-one matrix.

With all these steps, the proposed bilevel distance metric learning model (3) is reformulated to a
unilevel optimization problem which can be solved by ADM. We introduce two auxiliary variables
W and S and relax (5) to the following problem:

min
M∈Sd+,Z,B,W,S,U

(1− λ)
∑

(i,j)∈S

d2P>MP(zi, zj) + λ
∑

(i,j,k)∈T

[ξ + d2P>MP(zi, zj)− d
2
P>MP(zi, zk)]+

s.t. P>U>UPZ−P>U>X+ αE+ βWL+B = 0,B� S = 0,P>PZ−W = 0,

Z− S = 0, S ≥ 0, B ≤ 0, ||ui||22 ≤ 1, ∀i ∈ {1, 2, ..., k}.
(6)

The augmented Lagrangian function of problem (6) is:

L(Z,B,W,S,U,M,R1,R2,R3,R4, µ)

=(1− λ)
∑

(i,j)∈S

d2P>MP(zi, zj) + λ
∑

(i,j,k)∈T

[ξ + d2P>MP(zi, zj)− d
2
P>MP(zi, zk)]+

+〈R1,P
>U>UPZ−P>U>X+ αE+ βWL+B〉+ 〈R2,B� S〉+ 〈R3,P

>PZ−W〉

+〈R4,Z− S〉+ µ

2
||P>U>UPZ−P>U>X+ αE+ βWL+B||2F

+
µ

2
(||B� S||2F + ||P>PZ−W||2F + ||Z− S||2F ),

(7)

where R1 ∼ R4 are Lagrange multipliers, and µ ≥ 0 is the penalty parameter.

We alternately update the variables Z, B, W, S, U and M in each iteration by minimizing the
augmented Lagrangian function of problem (6) with other variables fixed. We initialize the Maha-
lanobis distance matrix M as a unit matrix. The initialization processes of the dictionary U and the
coefficients A are same as in FDDL [21]. More specifically, the iterations go as follows:

Step 1: Update Z by fixing B, W, S, U and M. For each zi ∈ Z, we have

zi = G−1
1 (qi + (1− λ)P>MP

∑
(i,j)∈S

zj + λP>MP
∑

(i,j,k)∈T

(zj − zk)), (8)
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where G1 = 2µP>U>UU>UP+2µP>P+µI+(1−λ)
∑

(i,j)∈S P
>MP. qi is the i-th column

of Q, Q = µP>U>UP(P>U>X−αE− βWL−B−R1/µ)−P>P(R3 − µW)−R4 + µS.

Step 2: Update B by fixing Z, W, S, U and M.

B = −Π+ ((S�R2/µ+ G2 + βWL + R1/µ)� (S� S + E)) , (9)

where G2 = P>U>UPZ−P>U>X + αE. Π+(·) is an operator that projects a matrix onto the
nonnegative cone, which can be defined as follows:

Π+(Xij) =

{
Xij , if Xij ≥ 0;

0, otherwise.
(10)

Step 3: Update W by fixing Z, B, S, U and M.

W =
[
P>PZ + R3/µ− β(G2 + B + R1/µ)L>

] (
β2LL> + I

)−1
. (11)

Step 4: Update S by fixing Z, B, W, U and M.

S = Π+ ((Z + R4/µ−B�R2/µ)� (B�B + E)) . (12)

Step 5: Update U by fixing Z, B, W, S and M. We need to solve the following problem:

U = arg min
U∈Ω

||G2 + βWL + B + R1/µ||2F , (13)

where Ω = {U | ||Ui||22 ≤ 1, i = 1, ..., k}. The problem (13) is a quartic polynomial minimization
problem. It is difficult to compute its exact solution. So we use the projected gradient descent method
to update U:

U = ΠΩ(U− η1OU), (14)

with OU = 2
(
U(G>4 + G4) + U(G>5 + G5)

)
− 4

(
U(G>6 + G6) + G>7

)
+ 2U(G>8 + G8) −

2XG>3 P
> + 4XX>U, where G3 = αE + βWL + B + R1/µ, G4 = PZZ>P>U>U,

G5 = U>UPZZ>P>, G6 = PZX>U, G7 = U>UPZX>, G8 = PZG>1 P
>. ΠΩ(U) is

the projection of the matrix U onto Ω and η1 is a step size.

Step 6: Update M by fixing Z, B, W, S and U. The objective function is linear with respect to M ,
we directly adopt subgradient descent to update M in each iteration. As before, set zij = zi − zj ,
then the subgradient of problem (6) with respect to M can be calculated as follows:

OM = (1− λ)
∑

(i,j)∈S

Pzijz
>
ijP
> + λ

∑
(i,j,k)∈T +

(Pzijz
>
ijP
> −Pzikz

>
ikP
>), (15)

where T + denotes the subset of constraints in T that is larger than 0 in function (6). After each
iteration, M is projected onto the positive semidefinite cone:

M = ΠSd+(M− η2OM), (16)

where η2 is a step size, and ΠSd+(M) is the orthogonal projection of the matrix M ∈ Sd onto the
positive semidefinite cone Sd+. The specific procedures are summarized in Algorithm 1.

2.4 Classification Scheme

When problem (6) is solved, we obtain a dictionary U and the sparse coefficients A = PZ of training
samples. In the testing phase, given a testing sample x, we first compute its sparse coefficient by the
vector form of the lower level optimization model:

a∗ = arg min
a

1

2
||x−Ua||2F + α||a||1 +

β

2

∑
i∈Ns(x)

qi||a− ai||22, (17)

where Ns(x) denotes the set of s nearest neighbors of x and the s nearest neighbors are chosen from
training samples X. ai is the coefficient of the i-th training sample xi. qi is the weight between the
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Algorithm 1 Algorithm to solve Eq. (6)

1: Input: S,T , X ∈ Rd×n, L, λ, α, β
2: Output: M ∈ Sd+, U, A
3: Initialization: M0, U0, A0, Z0 = P†A0, S0 = Z0, W0 = P>PZ0, and B0 =

P>(U0)>X − P>(U0)>U0PZ0 − αE − βW0L. Set R1 = 0d, R2 = 0d, R3 = 0d,
R4 = 0d, µ0 = 1e− 3, µmax = 1e+ 8, ρ = 1.3, ε1 = 1e− 4, ε2 = 1e− 5, and t = 0.

4: repeat
5: Steps 1∼6;
6: Update Lagrange multipliers and µt+1:

Rt+1
1 = Rt

1+µ
(
P>(Ut+1)>Ut+1PZt+1 −P>(Ut+1)>X + αE + βWt+1L + Bt+1

)
,

Rt+1
2 = Rt

2 + µ(Bt+1 � St+1), Rt+1
3 = Rt

3 + µ(P>PZt+1 −Wt+1),
Rt+1

4 = Rt
4 + µ(Zt+1 − St+1), µt+1 = min(ρµt, µmax);

7: t← t+ 1;
8: until Converge

training sample xi and the test sample x. Note that in the training phase, we construct the weight
matrix Q as follows:

Qij =

{
1, if samples xi and xj belong to the same class,
0, otherwise.

(18)

Then we compute the corresponding Laplacian matrix L = T−Q, where T is a diagonal matrix
and Tii =

∑
j Qij . In the testing phase, we find s nearest neighbors from training set for each test

sample. In the experiment, we set s = 5 and the weight qi = 1 (∀i ∈ Ns(·)).

After the coefficient a∗ of the test sample x is obtained, the squared Mahalanobis distance between
the test sample x and the training sample xi can be calculated as:

d2
M(a∗,ai) = (a∗ − ai)

>M(a∗ − ai), (19)

where M is the learned optimal distance matrix. The test sample x is then classified to the class
where its nearest training sample belongs.

2.5 Convergence Analysis

There are lots of researchers focusing on the convergence of ADM with two blocks of variables.
However, there is still no affirmative convergence proof for multi-block convex minimization problem
where the objective function consists of more than two separable convex functions. The recent
solution is to use an additional dual step-size parameter µ in updating Lagrange multipliers (as shown
in Algorithm 1). This scheme is simple and effective because it not only requires no additional
assumptions associated with the objective function but also guarantees the convergence of ADM with
multi-block variable under mild assumptions [9]. For these reasons, it is enough that we only need to
choose a proper step-size parameter µ and termination conditions.

To further illustrate the convergence of ADM in solving the proposed model (6), we conduct
several experiments on three datasets, including NUST Robust Face database (NUST-RF) [2], OSR
dataset [13] and PubFig database [6]. Note that there are two environments in NUST-RG database,
i.e., indoor and outdoor. The objective function values versus number of iterations are shown in Fig. 2.
From the figure we can see that the objective values reduce reasonably well.

3 Experimental Results

We evaluate the proposed algorithm over different classification databases, including real-world
malicious occlusion datasets, contiguous occlusion and corruption datasets. There are two main goals
in our experiments: first, we will show that our bilevel model is more robust to be applied to solve
real-world occlusion problems; second, our model is able to outperform the related metric learning
methods.
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Figure 2: Objective value vs. the number of iterations.

(a) Indoor (b) Outdoor

Figure 3: Cropped images of one subject captured in two environments in NUST-RF database, i.e.,
(a) indoor, and (b) outdoor.

3.1 Compared Methods

We compare the proposed bilevel distance metric learning model with the following methods: the
base-line KNN [14], LMNN [16], FANTOPE [7], CAP [5] and RML [10]. Specifically, as baselines,
we consider the most relevant technique from the literature, i.e., k-nearest neighbor method (KNN).
KNN computes Euclidean distance to measure the similarity between any two images. LMNN is
one of the most widely-used Mahalanobis distance metric learning methods, which uses labeled
information to generate triplet constraints. FANTOPE method is based on LMNN, and it utilizes
a fantope regularization which minimizes sum of k smallest singular values of distance matrix M.
Same as FANTOPE method, CAP method is also based on LMNN, and it uses a capped trace norm
to penalize the singular values of distance matrix M that are less than a threshold adaptively learned
in the optimization. RML learns the discriminative distance matrix by enforcing a margin between
the inter-class sparse reconstruction residual and intra-class sparse reconstruction residual.

For all metric learners, we use 5-fold cross validation and gauge the average accuracy and stan-
dard deviation as final performance. All the regularization parameters are tuned from range
{10−4, 10−3, 10−2, 10−1, 1, 10, 102}. For CAP and FANTOPE methods, the parameter rank of
distance matrix M is tuned from [10 : 5 : 30]. For a fair comparison, we specify 1 “target” neighbor
for each training sample for all LMNN related methods. In testing phase, we use 1-NN method.

3.2 Real-World Malicious Occlusion

First we consider the NUST Robust Face database (NUST-RF) [2]. It is mainly designed for robust
face recognition under various occlusions. Except occlusion, it also includes variations of illumination,
expression and pose. We use a subset face images of NUST-RF database, and there are 50 subjects
captured in two environments (indoor and outdoor). We manually crop the face portion of the image
and then normalize it to 80× 60 pixels. Fig. 3 shows an example of several selected images of one
subject. We extracted LOMO features for each image [8], which not only achieve some invariance to
viewpoint changes, but also capture local region characteristics of a person. PCA is further applied to
reduce the feature dimension to 30.

Table 1 shows the recognition performance of different methods on NUST-RF database of two
environments. Obviously, our method outperforms other competing methods in indoor case and gets
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Table 1: Recognition accuracy (%) and standard deviation of different methods on NUST-RF database
in two environments.

KNN [14] LMNN [16] FANTOPE [7] CAP [5] RML [10] Proposed

Indoor 36.14 ± 2.70 36.20 ± 3.30 41.87 ± 2.50 41.70 ± 2.86 35.56 ± 3.04 47.84 ± 1.18
Outdoor 45.24 ± 1.51 46.01 ± 2.06 58.72 ± 1.33 58.34 ± 1.33 42.81 ± 2.16 58.21 ± 1.68

(a) OSR dataset (b) PubFig dataset

Figure 4: Example pairs of images from two datasets, i.e., (a) OSR dataset, (b) PubFig dataset.
For each subfigure, from left to right: original image, its noisy versions (with sparse noise, regular
occlusion and irregular occlusion, respectively).

comparable results with FANTOPE method in outdoor case. This is because the proposed model
jointly extracts features under a sparse-representation model and performs distance metric learning
task at the same time. In this way, our features are more robust to noise, thus we can get better results
than LMNN which is only based on extracted features. For FANTOPE and CAP methods, they
also achieve relatively good results because the low-rank regularization on M fits this face database
just right. Moreover, as shown in Fig. 3, if occlusions exist, it is unlikely that the test image will
be very close to any single training image of the same class, so that the KNN classifier performs
poorly. Although LMNN can improve the recognition rates compared to KNN, their improvements
are limited. RML also performs poorly because it is based on the MSE criterion which is sensitive to
outliers.

3.3 Sparse Noise and Contiguous Occlusion

Next we did three groups of occlusion experiments associated with two datasets, i.e., OSR dataset [13]
and PubFig database [6], to validate the robustness of the proposed algorithm. There are 2688 images
from 8 scene categories in OSR dataset. We extract gist features as representation [12]. For PubFig
database, we use a subset face images and there are 771 images from 8 face categories [6]. Similarly
with NUST-RF database, we extract LOMO features as representation. We simulate various types
of contiguous occlusion by adding sparse noise to both training and testing data or by replacing a
randomly selected local region in each image with an unrelated square block of the “baboon” image
for regular occlusion and a randomly located “tiger” image for irregular occlusion. Sparse noise
is simulated by 20 adding Gaussian noise with zero mean and 0.01 variance to both training and
testing data. And the size of the added image is 60% of the size of the original image. Fig. 4 shows a
clean image and its noisy versions from two datasets. Since the differences between the pixels of
the unrelated “baboon” image or “tiger” image and the pixels of the images from two datasets are
relatively small, the contiguous occlusion caused by these unrelated images is much more challenging
than by random black or white dots.

Table 2 and Table 3 show the classification accuracy and the standard derivation of different methods
on two datasets, i.e., OSR dataset and PubFig dataset. It is obvious our method consistently outper-
forms other competing methods in most cases, especially on the occlusion data. This is because our
bilevel model jointly performs metric learning and extracts features at the same time. And since we
use the sparsity penalty and graph regularization in the lower level model, the new features is not
only more robust to noise but also discriminative. For this classification task, both FANTOPE and
CAP methods are based on LMNN method. Since they all have similar results, which indicates the
low-rank regularization on M for Mahalanobis distance metric learning is not particularly effective in
this case. Especially for regular occlusion that replaces a randomly selected local region with “baboon”
image and irregular occlusion that replaces local region with “tiger” image, LMNN, FANTOPE and
CAP achieve almost the same result. For RML method, due to the limitation that RML is based on
the MSE criterion, it still performs poorly.
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Table 2: Recognition accuracy (%) and standard deviation of different methods on OSR dataset,
where sparse noise, regular and irregular occlusions are added.

KNN [14] LMNN [16] FANTOPE [7] CAP [5] RML [10] Proposed

Original 69.01 ± 1.96 74.41 ± 1.20 74.97 ± 0.88 74.45 ± 1.19 61.34 ± 1.62 74.43 ± 1.14
Sparse 61.83 ± 1.75 66.67 ± 1.70 66.70 ± 1.68 66.67 ± 1.70 56.57 ± 2.60 68.72 ± 2.72
Regular 55.34 ± 2.72 58.66 ±1.31 58.73 ± 1.43 58.70 ± 1.27 54.38 ± 3.26 64.77 ± 1.46
Irregular 52.25 ± 1.74 57.02 ± 1.80 57.10 ± 1.74 57.13 ± 1.68 50.45 ± 2.17 62.72 ± 3.06

Table 3: Recognition accuracy (%) and standard deviation of different methods on PubFig dataset,
where sparse noise, regular and irregular occlusions are added.

KNN [14] LMNN [16] FANTOPE [7] CAP [5] RML [10] Proposed

Original 56.73 ± 1.12 61.65 ± 1.63 61.69 ± 1.60 61.80 ± 1.72 55.86 ± 1.54 63.46 ± 1.65
Sparse 48.46 ± 1.35 51.35 ± 1.55 51.39 ± 1.69 51.39 ± 1.99 48.23 ± 1.26 54.40 ± 1.59
Regular 35.30 ± 1.14 37.48 ± 1.64 37.71 ± 1.56 38.05 ± 1.57 35.80 ± 1.59 44.29 ± 0.54
Irregular 40.94 ± 2.30 41.73 ± 3.39 41.88 ± 2.78 42.33 ± 2.35 40.23 ± 2.48 49.10 ± 1.09

To discuss the influences of individual parameters on the performance of the proposed model, we
take PubFig dataset with regular occlusion as an example. We test the influence of parameters λ, α,
β on the recognition accuracy as shown in Fig. 5.
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Figure 5: The influence of parameters λ, α, β on the recognition accuracy of PubFig dataset with
regular occlusion.

4 Conclusion

We propose a new bilevel distance metric learning model for robust image recognition task. Different
from conventional metric learning methods which learn a Mahalanobis distance matrix based on
extracted features, we dig the intrinsic data structures using the Laplacian graph regularized sparse
coefficients and jointly perform distance metric learning at the same time. Due to the feature
extraction operation of the lower level model, the new descriptors become more robust to noise with
the sparsity norm and more discriminative with the Laplacian graph term, leading to good recognition
performance. Moreover, we also derive an efficient algorithm to solve the proposed new model.
Extensive experiments on several occluded datasets verify the remarkable performance improvements
led by the proposed bilevel model.
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