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Abstract

The vulnerability of deep image classification networks to adversarial attack is
now well known, but less well understood. Via a novel experimental analysis, we
illustrate some facts about deep convolutional networks for image classification that
shed new light on their behaviour and how it connects to the problem of adversaries.
In short, the celebrated performance of these networks and their vulnerability to
adversarial attack are simply two sides of the same coin: the input image-space
directions along which the networks are most vulnerable to attack are the same
directions which they use to achieve their classification performance in the first
place. We develop this result in two main steps. The first uncovers the fact that
classes tend to be associated with specific image-space directions. This is shown
by an examination of the class-score outputs of nets as functions of 1D movements
along these directions. This provides a novel perspective on the existence of
universal adversarial perturbations. The second is a clear demonstration of the
tight coupling between classification performance and vulnerability to adversarial
attack within the spaces spanned by these directions. Thus, our analysis resolves
the apparent contradiction between accuracy and vulnerability. It provides a new
perspective on much of the prior art and reveals profound implications for efforts
to construct neural nets that are both accurate and robust to adversarial attack.1

1 Introduction

Those studying deep networks find themselves forced to confront an apparent paradox. On the one
hand, there is the demonstrated success of networks in learning class distinctions on training sets that
seem to generalise well to unseen test data. On the other, there is the vulnerability of the very same
networks to adversarial perturbations that produce dramatic changes in class predictions despite being
counter-intuitive or even imperceptible to humans. A common understanding of the issue can be
stated as follows: “While deep networks have proven their ability to distinguish between their target
classes so as to generalise over unseen natural variations, they curiously possess an Achilles heel
which must be defended.” In fact, efforts to formulate attacks and counteracting defences of networks
have led to a dedicated competition [1] and a body of literature already too vast to summarise in total.

In the current work we attempt to demystify this phenomenon at a fundamental level. We base our
work on the geometric decision boundary analysis of [2], which we reinterpret and extend into a
framework that we believe is simpler and more illuminating with regards to the aforementioned
paradoxical behaviour of deep convolutional networks (DCNs) for image classification. Through
a fairly straightforward set of experiments and explanations, we clarify what it is that adversarial
examples represent, and indeed, what it is that modern DCNs do and do not currently do. In doing so,
we tie together work which has focused on adversaries per se with other work which has sought to
characterise the feature spaces learned by these networks.
∗S. Jetley and N.A. Lord have contributed equally and assert joint first authorship.
1Source code for replicating all experiments is provided at https://github.com/torrvision/whoneedsadversaries.
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Figure 1: Plots of the ‘frog’ class score F̃frog(s|in,dj , θ) for the Network-in-Network [3] architecture trained
on CIFAR10, associated with two specific image-space directions d1 and d2 respectively. These directions
are visualised as 2D images in the row below; the method of estimating them is explained in Sec. 3. Each plot
corresponds to a randomly selected CIFAR10 test image in. Adding or subtracting components along d1 causes
the network to change its prediction to ‘frog’: as can be seen, a ‘deer’ with a mild diamond striping added to
it gets classified as a ‘frog’. This happens with little regard for the choice of input image in itself. Likewise,
perturbations along d2 change any ‘frog’ to a ‘non-frog’ class: notice the predicted labels for the sample images
along the red curve in the second plot. These class-transition phenomena are predicted by the framework
developed in this paper. While simplistic functions along directions d1 and d2 are used by the network to
accomplish the task of classification, perturbations along the very same directions constitute adversarial attacks.

Let ǐ represent vectorised input images and ī be the average vector-image over a given dataset. Then,
the mean-normalised version of the dataset is denoted by I = {i1, i2, · · · iN}, where the nth image
in = ǐn − ī. We define the perturbation of the image in in the direction dj as: ĩn ← in + sd̂j , where
s is the perturbation scaling factor and d̂j is the unit-norm vector in the direction dj . The image
is fed through a network parameterised by θ and the output score2 for a specific class c is given
by Fc(̃i|θ). This class-score function can be rewritten as Fc(in + sd̂j |θ), which we equivalently
denote by F̃c(s|in,dj , θ). Our work examines the nature of F̃c as a function of movement s in
specific image-space directions dj starting from randomly sampled natural images in, for a variety
of classification DCNs. With this novel analysis, we uncover three noteworthy observations about
these functions that relate directly to the phenomenon of adversarial vulnerability in these nets, all of
which are on display in Fig. 1. We now discuss these observations in more detail.

Before we begin, we note that these directions dj are obtained via the method explained in Sec. 3
and by design exhibit either positive or negative association with a specific class. In Fig. 1 we
study two such directions for the ‘frog’ class: similar directions exist for all other classes. Firstly,
notice that the score of the corresponding class c (‘frog’, in this case) as a function of s is often
approximately symmetrical about some point s0, i.e. F̃c(s−s0|in,dj , θ) ≈ F̃c(−s−s0|in,dj , θ) ∀s,
and monotonic in both half-lines. This means that simply increasing the magnitude of correlation
between the input image and a single direction causes the net to believe that more (or less) of the
class c is present. In other words, the image-space direction sends all images either towards or
away from the class c. In the former scenario, the direction represents a class-specific universal
adversarial perturbation (UAP). Second, let id = i · d̂, and let id⊥ be the projection of i onto the
space normal to d̂, such that id⊥ = i− idd̂. Then, our results illustrate that there exists a basis of
image space containing d̂ such that the class-score function is approximately additively separable
i.e. Fc(i|θ) = Fc([i

d, id⊥ ]|θ) ≈ G(id) +H(id⊥) for some functions G andH. This means that the
directions under study can be used to alter the nets’ predictions almost independently of each other.
However, despite these facts, their 2D visualisation reveals low-level structures that are devoid of
a clear semantic link to the associated classes, as shown in Fig. 1. Thus, we demonstrate that the
learned functions encode a more simplistic notion of class identity than DCNs are commonly assumed
to represent, albeit one that generalises to the test distribution to an extent. Unsurprisingly, this
does not align with the way in which the human visual system makes use of these data dimensions:
‘adversarial vulnerability’ is simply the name given to this disparity and the phenomena derived from
it, with the universal adversarial perturbations of [4] being a particularly direct example of this fact.

Finally, we show that nets’ classification performance and adversarial vulnerability are inextricably
linked by the way they make use of the above directions, on a variety of architectures. Consequently,

2The output of the layer just before the softmax operation, commonly known as the logit layer.
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efforts to improve robustness by “suppressing” nets’ responses to components in these directions
(e.g. [5]) cannot simultaneously retain full classification accuracy. The features and functions thereof
that DCNs currently rely on to solve the classification problem are, in a sense, their own worst
adversaries.

2 Related Work

2.1 Fundamental developments in attack methods

Szegedy et al. coined the term ‘adversarial example’ in [7], demonstrating the use of box-constrained
L-BFGS to estimate a minimal `2-norm additive perturbation to an input image to cause its label to
change to a target class while keeping the resulting image within intensity bounds. Strikingly, they
locate a small-norm (imperceptible) perturbation at every point, for every network tested. Further, the
adversaries thus generated are able to fool nets trained differently to one another, even when trained
with different subsets of the data. Goodfellow et al. [8] subsequently proposed the ‘fast gradient
sign method’ (FGSM) to demonstrate the effectiveness of the local linearity assumption in producing
the same result, calculating the gradient of the cost function and perturbing with a fixed-size step in
the direction of its sign (optimal under the linearity assumption and an `∞-norm constraint). The
DeepFool method of Moosavi-Dezfooli et al. [9] retains the first-order framework of FGSM, but
tailors itself precisely to the goal of finding the perturbation of minimum norm that changes the class
label of a given natural image to any label other than its own. Through iterative attempts to cross the
nearest (linear) decision boundary by a tiny margin, this method records successful perturbations with
norms that are even smaller than those of [8]. In [4], Moosavi-Dezfooli & Fawzi et al. propose an
iterative aggregation of DeepFool perturbations that produces “universal” adversarial perturbations:
single images which function as adversaries over a large fraction of an entire dataset for a targeted
net. While these perturbations are typically much larger than individual DeepFools, they do not
correspond to human perception, and indicate that there are fixed image-space directions along which
nets are vulnerable to deception independently of the image-space locations at which they are applied.
They also demonstrate some generalisation over network architectures.

Sabour & Cao et al. [10] pose an interesting variant of the problem: instead of “label adversaries”,
they target “feature adversaries” which minimise the distance from a particular guide image in a
selected network feature space, subject to a constraint on the `∞-norm of image-space distance from
a source image. Despite this constraint, the adversarial image mimics the guide very closely: not
only is it nearly always assigned to the guide’s class, but it appears to be an inlier with respect to the
guide-class distribution in the chosen feature space. Finally, while “adversaries” are conceived of as
small perturbations applied to natural images such that the resulting images are still recognisable to
humans, the “fooling images” of Nguyen et al. [11] are completely unrecognisable to humans and yet
confidently predicted by deep networks to be of particular classes. Such images are easily obtained
by both evolutionary algorithms and gradient ascent, under direct encoding of pixel intensities
(appearing to consist mostly of noise) and under CPPN [12]-regularised encoding (appearing as
abstract mid-level patterns).

2.2 Analysis of adversarial vulnerability and proposed defences

In [13], Wang et al. propose a nomenclature and theoretical framework with which to discuss the
problem of adversarial vulnerability in the abstract, agnostic of any actual net or attack thereof. They
denote an oracle relative to whose judgement robustness and accuracy must be assessed, and illustrate
that a classifier can only be both accurate and robust (invulnerable to attack) relative to its oracle if it
learns to use exactly the same feature space that the oracle does. Otherwise, a network is vulnerable to
adversarial attack in precisely the directions in which its feature space departs from that of the oracle.
Under the assumption that a net’s feature space contains some spurious directions, Gao et al. [5]
propose a subtractive scheme of suppressing the neuronal activations (i.e. feature responses) which
change significantly between the natural and adversarial inputs. Notably, the increase in robustness is
accompanied by a loss of performance accuracy. An alternative to network feature suppression is the
compression of input image data explored in e.g. [14, 15, 16].

Goodfellow et al. [8] hypothesise that the high dimensionality and excessive linearity of deep
networks explain their vulnerability. Tanay and Griffin [17] begin by taking issue with the above
via illustrative toy problems. They then advance an explanation based on the angle of intersection
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of the separating boundary with the data manifold which rests on overfitting and calls for effective
regularisation - which they note is neither solved nor known to be solvable for deep nets. A variety
of training-based [8, 18, 19, 20] methods are proposed to address the premise of the preceding
analyses. Hardening methods [8, 18] investigate the use of adversarial examples to train more robust
deep networks. Detection-based methods [19, 20] view adversaries as outliers to the training data
distribution and train detectors to identify them as such in the intermediate feature spaces of nets.
Notably, these methods [19, 20] have not been evaluated on the feature adversaries of Sabour & Cao
et al. [10]. Further, data augmentation schemes such as that of Zhang et al. [21], wherein convex
combinations of input images are mapped to convex combinations of their labels, attempt to enable
the nets to learn smoother decision boundaries. While their approach [21] offers improved resistance
to single-step gradient sign attacks, it is no more robust to iterative attacks of the same type.

Over the course of the line of work in [2], [22], [23], and [24], the authors build up an image-space
analysis of the geometry of deep networks’ decision boundaries, and its connection with adversarial
vulnerability. In [23], they note that the DeepFool perturbations of [9] tend to evince relatively
high components in the subspace spanned by the directions in which the decision boundary has a
high curvature. Also, the sign of the mean curvature of the decision boundary in the vicinity of a
DeepFooled image is typically reversed with respect to that of the corresponding natural image, which
provides a simple scheme to identify and undo the attack. They conclude that a majority of image-
space directions correspond to near-flatness of the decision boundary and are insensitive to attack,
but along the remaining directions, those of significant curvature, the network is indeed vulnerable.
Further, the directions in question are observed to be shared over sample images. They illustrate in
[2] why a hypothetical network which possessed this property would theoretically be predicted to be
vulnerable to universal adversaries, and note that the analysis suggests a direct construction method
for such adversaries as an alternative to the original randomised iterative approach of [4]: they can be
constructed as random vectors in the subspace of shared high-curvature dimensions.

3 Method

The analysis begins as in [2], with the extraction of the principal directions and principal curvatures
of the classifier’s image-space class decision boundaries. Put simply, a principal direction vector
and its associated principal curvature tell you how much a surface curves as you move along it in a
particular direction, from a particular point. Now, it takes many decision boundaries to characterise
the classification behaviour of a multiclass net:

(
C
2

)
for a C-class classifier. However, in order to

understand the boundary properties that are useful for discriminating a given class from all others, it
should suffice to analyse only the C 1-vs.-all decision boundaries. Thus, for each class c, the method
proceeds by locating samples very near to the decision boundary (Fc −Fĉ) = 0 between c and the
union of remaining classes ĉ 6= c. In practice, for each sample, this corresponds to the decision
boundary between c and the closest neighbouring class c̃, which is arrived at by perturbing the sample
from the latter (“source”) to the former (“target”). Then, the geometry of the decision boundary is
estimated as outlined in Alg. 1 below3, closely following the approach of [2]:

Algorithm 1 Computes mean principal directions and principal curvatures for a net’s image-space decision surface.

Input: network class score function F , dataset I = {i1, i2, · · · iN}, target class label c
Output: principal curvature basis matrix Vb and corresponding principal curvature-score vector vs

procedure PRINCIPALCURVATURES(F , I, c)
H← null
for each sample in ∈ I s.t. argmaxk(Fk(in)) 6= c do

ĉ← argmaxk(Fk(in)) . network predicts in to be of class ĉ
Hcĉ: define as Hessian of function (Fc −Fĉ) . subscripts select class scores
ĩn ← DEEPFOOL(in, c) . approximate nearest boundary point to in
H← H +Hcĉ(̃in) . accumulate Hessian at sample boundary point

H← H/‖I‖ . normalise mean Hessian by number of samples
(Vb,vs) = EIGS(H) . compute eigenvectors and eigenvalues of mean Hessian
return (Vb,vs)

The authors of [2] advance a hypothesis connecting positively curved directions with the universal
adversarial perturbations of [4]. Essentially, they demonstrate that if the normal section of a net’s
decision surface along a given direction can be locally bounded on the outside by a circular arc of

3For more discussion about the implementation and associated concepts, refer to the supplementary material.
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a particular positive curvature in the vicinity of a sample image point, then geometry accordingly
dictates an upper bound on the distance between that point and the boundary in that direction. If
such directions and bounds turn out to be largely common across sample image points (which they
do), then the existence of universal adversaries follows directly, with higher curvature implying
lower-norm adversaries. This argument is depicted visually in the supplementary material. It is
from this point that we move beyond the prior art and begin an iterative loop of further analysis,
experimentation, and demonstration, as follows.

4 Experiments and Analysis

Provided only that the second-order boundary approximation holds up well over a sufficiently wide
perturbation range and variety of images, the model implies that the distance of such adversaries
from the decision boundary should increase as a function of their norm. Also, the attack along any
positively curved direction should in that case be associated with the corresponding target class: the
class c in the call to Alg. 1. And while positively curved directions may be of primary interest in [2],
the extension of the above geometric argument to the negative-curvature case points to an important
corollary: as sufficient steps along positive-curvature directions should perturb increasingly into
class c, so should steps along negative-curvature directions perturb increasingly away from class c.
Finally, the plethora of approximately zero-curvature (flat) directions identified in [23, 2] should have
negligible effect on class identity.
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Figure 2: Selected class scores plotted as functions of the scaling factor s of the perturbation along the most
positively curved direction per net. The ‘Median class score’ plot compares the score of a randomly selected
target class with the supremum of the scores for the non-target classes. Each curve represents the median of the
class scores over the associated dataset, bracketed below by the 30th-percentile score and above by the 70th.
The ‘Transition into target class’ plot depicts the fraction of the dataset not originally of the target class, but
which is transitioned into the target class by the perturbation. Alongside, we graph that population’s median
softmax target-class score. The black dashed line represents the fraction of the population originally of the
target class that remains in the target class under the perturbation. The image grid on the right illustrates the 2D
visualisations of the two most-positively curved directions for randomly selected target classes: the columns
correspond, from left to right, with the four net-dataset pairs under study. To observe class scores as functions of
the norms of the perturbations along the most negatively curved and flat directions, refer to the supplement.

4.1 Class identity as a function of the component in specific image-space directions

To test how well the above conjectures hold in practice, we graph statistics of the target and non-
target class scores over the dataset as a function of the magnitude of the perturbation applied in
directions identified as above. The results are depicted in Fig. 2, in which the predicted phenomena
are readily evident. Along the selected positive-curvature directions, as the perturbation magnitude
increases (with either sign), the population’s target class score approaches and then surpasses the
highest non-target class score. The monotonicity of this effect is laid bare by graphing the fraction of
non-target samples perturbed into the target class, alongside the median target class softmax score.
Note, again, that the link between the directions in question and the target class identity is established
a priori by Alg. 1. We continue in the supplementary material and show that, as predicted, the same
phenomenon is evident in reverse when using negative-curvature directions instead. All that changes
is that it is the population’s non-target class scores that overtake its target class score with increasing
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perturbation norm, with natural samples of the target class accordingly being perturbed out of it. We
also illustrate the point that flatness of the decision boundary manifests as flatness of both target
and non-target class scores: over a wide range of magnitudes, these directions do not influence the
network in any way. While Fig. 2 illustrates these effects at the level of the population, Fig. 1 shows
a disaggregation into individual sample images, with one response curve per sample from a large
set. The population-level trends remain evident, but another fact becomes apparent: empirically, the
shapes of the curves change very little between most samples. They shift vertically to reflect the
class score contribution of the orthonormal components, but they themselves do not otherwise much
depend on those components. That is to say that at least some key components are approximately
additively separable from one another. This fact connects directly to the fact that such directions are
“shared” across samples in the first place, and thus identifiable by Alg. 1.

A more intuitive picture of what the networks are actually doing begins to emerge: they are identifying
the high-curvature image-space directions as features associated with respective class identities, with
the curvature magnitude representing the sensitivity of class identity to the presence of that feature.
But if this is true, it suggests that what we have thus identified are actually the directions which the net
relies on generally in predicting the classes of natural images, with the curvatures-cum-sensitivities
representing their relative weightings. Accordingly, it should be possible to disregard the “flat”
directions of near-zero curvature without any noticeable change in the network’s class predictions.

4.2 Network classification performance versus effective data dimensionality

To confirm the above hypothesis regarding the relative importance of different image-space directions
for classification, we plot the training and test accuracies of a sample of nets as a function of the
subspace onto which their input images are projected. The input subspace is parametrised by a
dimensionality parameter d, which controls the number of basis vectors selected per class. We use
four variants of selection: the d most positively curved directions per class (yielding the subspace
Spos); the d most negatively curved directions per class (yielding the subspace Sneg); the union of
the previous two (subspace Sneg ∪ pos); and the d least curved (flattest) directions per class (subspace
Sflat). The subspace S so obtained is represented by the orthonormalised basis matrix Qd (obtained
by QR decomposition of the aggregated directions), and each input image i is then projected4 onto S
as id = QdQ

>
d i. Accuracies on {id} as a function of d are shown in the top row of Fig. 3.

The outcome is striking: it is evident that in many cases, classification decisions have effectively
already been made based on a relatively small number of features, corresponding to the most curved
directions. The sensitivity of the nets along these directions, then, is clearly learned purposefully from
the training data, and does largely generalise in testing, as seen. Note also that at this level of analysis,
it essentially does not matter whether positively or negatively curved directions are chosen. Another
important point emerges here. Since it is the high-curvature directions that are largely responsible
for determining the nets’ classification decisions, the nets should be vulnerable to adversarial attack
along precisely these directions.

4.3 Link between classification and adversarial directions

It has already been noted in [23] that adversarial attack vectors evince high components in subspaces
spanned by high-curvature directions. We expand the analysis by repeating the procedure of Sec. 4.2
for various attack methods, to determine whether existing attacks are indeed exploiting the directions
in accordance with the classifier’s reliance on them. Results are displayed in the bottom row of
Fig. 3, and should be compared against the row above. The graphs in these figures illustrate the
direct relationship between the fraction of adversarial norm in given subspaces and the corresponding
usefulness of those subspaces for classification. The inclusion of the saliency images of [25] alongside
the attack methods makes explicit the fact that adversaries are themselves an exposure of the net’s
notion of saliency.

By now, two results hint at a simpler and more direct way of identifying bases of classifica-
tion/adversarial directions. First, a close inspection of the class-score curves sampled and displayed
in Fig. 1 reveals a direct connection between the curvature of a direction near the origin and its
derivative magnitude over a fairly large interval around it. Second, this observation is made more

4The mean training-set orthogonal component (I−QdQ
>
d )̄i can be added, but is approximately 0 in practice

for data normalised by mean subtraction, as is the case here.
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Figure 3: Top row: Training and test classification accuracies for various DCNs on image sets projected onto
the subspaces described in Sec. 4.2, as a function of their dimensionality parameter d (from 0 until the input
space is fully spanned). The principal directions defining the subspaces are obtained by applying Alg. 1 once
for each possible choice of target class c and retaining d directions per class. Note the relationship between the
ordering of curvature magnitudes and classification accuracy by comparing the Sflat curves to the others. Bottom
row: Mean `2-norms of various adversarial perturbations (DeepFool [9], FGSM [8] and UAP [4]) and saliency
maps [25] when projected onto the same subspaces as above, as a fraction of their original norms.
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Figure 4: Classification accuracies on image sets projected onto subspaces of the spans of their corresponding
DeepFool perturbations. For each net-dataset pair, DeepFool perturbations are computed over the image set
and assembled into a matrix that is decomposed into its SVD. The singular vectors are ordered as per their
singular values: Shi represents the high-to-low ordering, Slo the low-to-high, and d the number of vectors
retained. Compare this figure to Fig. 3 (while noticing how d now counts the total number of directions). For the
ImageNet experiments, owing to memory constraints, the SVD is performed on downsampled DeepFools of
size 100× 100× 3 and 120× 120× 3, respectively. The resulting singular vectors span the entire effective
classification space of correspondingly downsampled images. This is evinced by the fact that the classification
accuracy of images projected onto the singular vectors’ subspace saturates to the same performance as that
yielded when the net is tested directly on the downsampled images.

clear in Fig. 3 where it can be seen that the directions obtained by boundary curvature analysis in
Alg. 1 correspond to the directions exploited by various first-order methods. Thus, we hypothesise
that to identify such a basis, one need actually only perform SVD on a matrix of stacked class-score
gradients5. Here, we implement this using a collection of DeepFool perturbations to provide the
required gradient information, and repeat the analysis of Sec. 4.2, using singular values to order the
vectors. The results, in Fig. 4, neatly replicate the previously seen classification accuracy trends for
high-to-low and low-to-high curvature traversal of image-space directions. Henceforth, we use these
directions directly, simplifying analysis and allowing us to analyse ImageNet networks.

5In fact, this analysis is begun in [4], but only the singular values are examined.
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Figure 5: Blue curves depict the mean `2-norms of "confined DeepFool" perturbations: those that are calculated
under strict confinement to the respective subspaces of Fig. 4, also detailed in Sec. 4.3. Note the differences in
scale of the y-axes of the different plots. For MNIST and CIFAR, we also plot (in red) the mean norms of the
projections of the input images onto those subspaces: observe the inverse relationship between the two curves.
The columns on the right visualise, from top to bottom, sample images at the indicated points on the curves in the
CIFAR100-AlexNet plots, from left to right: blue-bordered images represent confined DeepFool perturbations
(rescaled for display), with their red-bordered counterparts displaying the projection of the corresponding sample
CIFAR image onto the same subspace. Observe that when the human-recognisable object appearance is captured
in any given subspace, the corresponding DeepFool perturbation becomes maximally effective (i.e. small-norm).
Likewise, when the projected image is not readily recognisable to a human, the DeepFool perturbation is large.
The feature space per se does not account for adversariality: the issue is in the net’s response to the features.

While Fig. 3 displays the magnitudes of components of pre-computed adversarial perturbations in
different subspaces, we also design a variation on the analysis to illustrate how effective an efficient
attack method (DeepFool) is when confined to the respective subspaces. This is implemented by
simply projecting the gradient vectors used in solving DeepFool’s linearised problem onto each
subspace before otherwise solving the problem as usual. The results, displayed in Fig. 5, thus
represent DeepFool’s “earnest” attempts to attack the network as efficiently as possible within each
given subspace. It is evident that the attack must exploit genuine classification directions in order to
achieve low norm.

dlow En{`2 norm(in)} En{`2 norm(δin)} Accuracy (%) Fooling rate (%)
f = 1 f = 2 f = 3 f = 4 f = 5 f = 10

227 26798.72 63.96 57.75 100.00 100.00 100.00 100.00 100.00 100.00
200 26515.20 53.19 55.80 32.75 77.25 88.95 92.20 94.35 97.65
150 26327.03 46.86 53.50 35.55 58.35 77.90 85.95 89.25 95.65
120 26159.98 41.92 51.75 36.15 49.80 66.20 76.90 82.95 92.90
100 26008.02 37.98 48.10 41.65 49.25 59.95 68.05 74.80 88.30

Table 1: The images in used to train AlexNet operate at the scale of dorig = 227 (pixels on a side). In the
pre-processing step, these images are downsized to dlow, before being upsampled back to the original scale. The
reconstructed DeepFool perturbations δin lose some of their effectiveness, as seen in the fooling-rate column
for f = 1. When the effect of downsampling is countered by increasing the value of the `2-norms of these
perturbations (using higher values of f ), their efficacy is steadily restored. Note that the mean norms of images
and perturbations are estimated in the upscaled space, as are the classification accuracies. The accuracy values
for dlow = {100, 120} should be compared to those at convergence in Fig. 4. Any difference in the performance
scores is strictly due to the random selection of the subset of 2000 test images used for evaluation.

4.4 On image compression and robustness to adversarial attack

The above observations have made it clear that the most effective directions of adversarial attack
are also the directions that contribute the most to the DCNs’ classification performance. Hence, any
attempt to mitigate adversarial vulnerability by discarding these directions, either by compressing the
input data [14, 15, 16] or by suppressing specific components of image representations at intermediate
network layers [5], must effect a loss in the classification accuracy. Further, our framework anticipates
the fact that the nets must remain just as vulnerable to attack along the remaining directions that
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continue to determine classification decisions, given that the corresponding class-score functions,
which possess the properties discussed earlier, remain unchanged. We use image downsampling as
an example data compression technique to illustrate this effect on ImageNet.

We proceed by inserting a pre-processing unit between the DCN and its input at test time. This unit
downsamples the input image in to a lower size dlow before upsampling it back to the original input
size dorig. The resizing (by bicubic interpolation) serves to reduce the effective dimensionality of the
input data. For a randomly selected set of 2000 ImageNet [26] test images, we observe the change
in classification accuracy over different values of dlow, shown in column 4 of Table 1. The fooling
rates6 for the downsampled versions of these natural images’ adversarial counterparts, produced by
applying DeepFool to the original network (without the resampling unit), follow in column 5 of the
table. At first glance, it appears that the downsampling-based pre-processing unit has afforded an
increase in the network robustness at a moderate cost in accuracy. Results pertaining to this tradeoff
have been widely reported [14, 15, 5]. Here, we take the analysis a step further.

To start, we note the fact that the methodology just described represents a transfer attack from
the original net to the net as modified by the inclusion of the resampling unit. As DeepFool
perturbations δin are not designed to transfer in this manner, we first augment them by simply
increasing their `2-norm by a scalar factor f . We adjust f from unity up to a point at which the
mean DeepFool perturbation norm is still a couple of orders of magnitude smaller than the mean
image norm, such that the perturbations remain largely imperceptible. The corresponding fooling
rates grow steadily with respect to f , as is observable in Table 1. Hence, although the original
full-resolution perturbations may be suboptimal attacks on the resampling variants of the network (as
some components are effectively lost to projection onto the compressed space), sufficient rescaling
restores their effectiveness. On the other hand, the modified net continues to be equally vulnerable
along the remaining effective classification directions, and can easily be attacked directly. To go
about this, we simply take the SVD of the stack of downsampled DeepFool perturbations, for dlow
values of 100 and 120 (owing to memory constraints). The resulting singular vectors span the entire
space of classification/adversarial directions of the corresponding resampling network, as can be seen
from the accuracy values in the rightmost subplot of Fig. 4. More crucially, lower-norm DeepFools
can be obtained by restricting the attack’s iterative linear optimisation procedure to the space spanned
by these compressed perturbations, exactly as described in Sec. 4.3 and displayed in Fig. 5. This
subspace-confined optimisation is analogous to designing a white-box DeepFool attack for the new
network architecture inclusive of the resampling unit, instead of the original network, and is as
effective as before. Note that this observation is consistent with the results reported in [16], where
the strength of the examined gradient-based attack methods increases progressively as the targeted
model better approximates the defending model.

5 Conclusion

In this work, we expose a collection of directions along which a given net’s class-score output
functions exhibit striking similarity across sample images. These functions are nonlinear, but are de
facto of a relatively constrained form: roughly axis-symmetric7 and typically monotonic over large
ranges. We illustrate a close relationship between these directions and class identity: many such
directions effectively encode the extent to which the net believes that a particular target class is or
is not present. Thus, as it stands, the predictive power and adversarial vulnerability of the studied
nets are intertwined owing to the fact that they base their classification decisions on rather simplistic
responses to components of the input images in specific directions, irrespective of whether the source
of those components is natural or adversarial. Clearly, any gain in robustness obtained by suppressing
the net’s response to these components must come at the cost of a corresponding loss of accuracy.
We demonstrate this experimentally. We also note that these robustness gains may be lower than they
appear, as the network actually remains vulnerable to a properly designed attack along the remaining
directions it continues to use. A discussion including some nuanced observations and connections to
existing work that follow from our study can be found in the supplementary material. To conclude,
we believe that for any scheme to be truly effective against the problem of adversarial vulnerability, it
must lead to a fundamentally more insightful (and likely complicated) use of features than presently
occurs. Until then, those features will continue to be the nets’ own worst adversaries.

6Measured as a percentage of samples from the dataset that undergo a change in their predicted label.
7Though not necessarily so for MNIST, because of its constraints: see supplementary material.
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