
Gradient Descent Meets Shift-and-Invert
Preconditioning for Eigenvector Computation

Zhiqiang Xu
Cognitive Computing Lab (CCL), Baidu Research

National Engineering Laboratory of Deep Learning Technology and Application, China
xuzhiqiang04@baidu.com

Abstract

Shift-and-invert preconditioning, as a classic acceleration technique for the lead-
ing eigenvector computation, has received much attention again recently, owing
to fast least-squares solvers for efficiently approximating matrix inversions in
power iterations. In this work, we adopt an inexact Riemannian gradient de-
scent perspective to investigate this technique on the effect of the step-size scheme.
The shift-and-inverted power method is included as a special case with adaptive
step-sizes. Particularly, two other step-size settings, i.e., constant step-sizes and
Barzilai-Borwein (BB) step-sizes, are examined theoretically and/or empirically.
We present a novel convergence analysis for the constant step-size setting that
achieves a rate at Õ(

√
λ1

λ1−λp+1
), where λi represents the i-th largest eigenvalue

of the given real symmetric matrix and p is the multiplicity of λ1. Our experimen-
tal studies show that the proposed algorithm can be significantly faster than the
shift-and-inverted power method in practice.

1 Introduction

Eigenvector computation is a fundamental problem in numerical algebra and often of central impor-
tance to a variety of scientific and engineering computing tasks such as principal component analysis
[Fan et al., 2018], spectral clustering [Ng et al., 2001], low-rank matrix approximation [Hastie et al.,
2015, Liu and Li, 2014], among others. Classic solvers for this problem are power methods and
Lanczos algorithms [Golub and Van Loan, 1996]. Although Lanczos algorithms possess the optimal
convergence rate Õ(1√

λ1−λ2
), it seems not amenable to stochastic optimization. People thus tend to

develop faster algorithms on top of power methods [Arora et al., 2012, 2013, Hardt and Price, 2014,
Shamir, 2015, Garber and Hazan, 2015, Garber et al., 2016, Lei et al., 2016, Wang et al., 2017]. One
notable technique among them is the shift-and-invert preconditioning that has revived recently for
this purpose [Garber and Hazan, 2015, Garber et al., 2016, Wang et al., 2017, Gao et al., 2017]. Us-
ing this technique, each power iteration step can be reduced to approximately solving a linear system
subproblem that can leverage fast least-squares solvers, e.g., accelerated gradient descent (AGD)
[Nesterov, 2014] or stochastic variance reduced gradient (SVRG) [Johnson and Zhang, 2013].

In this work, we take a Riemannian gradient descent view to investigate the shift-and-invert precon-
ditioning for the leading eigenvector computation on the effect of the step-size scheme. The resulting
algorithm thus is termed as the shift-and-inverted Riemannian gradient descent eigensolver, or SI-
rgEIGS for short. It includes the shift-and-invert preconditioned power method (termed as SI-PM for
short) as a special case with adaptive step-sizes. Applying the shift-and-invert preconditioning tech-
nique needs to locate an appropriate upper bound of the largest eigenvalue, i.e., σ > λ1, as the shift
parameter. We reply on the crude phase of the shift-and-inverted power method [Garber and Hazan,
2015, Garber et al., 2016] to get this upper bound in theory. However, in practice, the plain power

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

method often works via the proposed heuristics in experiments. In addition, the crude phase can
warm-start the Riemannian gradient descent method. Similarly, Shamir [2016a] adopted the plain
power method to warm-start the stochastic variance reduced projected gradient descent without pre-
conditioning for principal component analysis (VR-PCA). The crude phase only consumes non-
dominant time due to the independence of the final accuracy parameter ϵ [Wang et al., 2017]. The
algorithm then steps into an accurate phase by calling the Riemannian gradient descent solver on the
shift-and-inverted matrix (σI−A)−1, i.e., solving the following problem:

min
x∈Rn×1:∥x∥2=1

h(x) = −1

2
x⊤(σI−A)−1x. (1)

In each gradient descent step, we have to solve a linear system (σI − A)z = xt−1 in order to
get the Euclidean gradient (σI − A)−1xt−1. The key advantage of the preconditioning technique
is that we only need to solve the system to an approximate level commensurate with the quality
of the current iterate. This can be easily accomplished by performing convex optimization on the
associated least-squares problem (see Equation (3)). Another advantage of the reduction to convex
optimization is that it enables stochastic optimization [Garber and Hazan, 2015, Garber et al., 2016],
especially for the covariance structure of A = 1

mYY⊤, where Y ∈ Rm×d. Approximate solutions
to the linear systems requires one to cope with inexact Riemannian gradients. In fact, as we will
see for Problem (1), the inexact Riemannian gradient method includes the shift-and-inverted power
method as a special case with adaptive step-sizes. In the present paper, two other step-size schemes,
i.e., constant step-sizes and Barzilai-Borwein (BB) step-sizes, are examined theoretically and/or
empirically. Different from Shamir [2015] and Wang et al. [2017] which only consider the positive
eigengap between λ1 and λ2, i.e., λ1 > λ2, for the constant step-size setting we explicitly take care
of all the cases of this eigengap and achieve a unified convergence rate at Õ(

√
λ1

λ1−λp+1
) via a novel

analysis (e.g., the potential function and the way we cope with the solution space), where p < n is
the multiplicity of λ1 and λ1 − λp+1 > 0 always holds without loss of generality. To the best of our
knowledge, this is the first time that a gradient descent solver for the problem with fixed step-sizes
reaches this type of rate, which is a nearly biquadratic improvement over Õ(1

(λ1−λ2)2
) [Shamir,

2015]. In addition, the rate logarithmically depends on the initial iterate, instead of quadratically
as in Shamir [2015]. Theoretical properties are verified on synthetic data in experiments. For real
data, we explore an automatic step-size scheme, i.e, Barzilai-Borwein (BB) step-sizes, to eliminate
the difficulty of hand-tuning step-sizes. Experimental results indicate that the shift-and-inverted
Riemannian gradient descent method can be significantly faster than the shift-and-inverted power
method that has gained much popularity recently.

The rest of the paper is organized as follows. We briefly discuss recent literature in Section 2 and
then present our shift-and-inverted Riemannian gradient descent solver with theoretical analysis in
Section 3. Experiments are reported in Section 4. The paper then ends with discussions in Section
5.

2 Related Work

Recent research on eigenvector computation has been mainly focusing on theoretically scaling up
related algorithms. Halko et al. [2011] surveyed and extended randomized algorithms for truncated
singular value decomposition (SVD), while Musco and Musco [2015] proposed randomized block
Krylov methods for stronger and faster approximate SVD. Convergence rates for both versions are
provided in Musco and Musco [2015]. Hardt and Price [2014] studied the noisy power method for
the small noise case, and Balcan et al. [2016] extended this method to achieve an improved gap de-
pendency by using subspace iterates of larger dimensions. Garber et al. [2016] presented a robust
analysis of the shift-and-invert preconditioned power method and achieved optimal convergence
rates. Allen-Zhu and Li [2016] reproved the result for this method and extended to the case that
k > 1 by deflation via a careful analysis, while Wang et al. [2017] improved the associated anal-
ysis and advocated coordinate descent as the solver for linear systems. Lei et al. [2016] proposed
a different coordinate-wise power method. Sa et al. [2017] proposed the accelerated (stochastic)
power method with optimal rate. However, its empirical performance seems not as good as ex-
pected in our experiments. Our work is more related to another line of work on gradient descent
solvers. Arora et al. [2012] proposed the stochastic power method without theoretical guarantees
which runs the projected stochastic gradient descent (PSGD) for the PCA problem. Arora et al.

2

Table 1: Typical convergence rates. Õ notations hide logarithmic factors, e.g., log 1
ϵ , log 1

λ1−λ2
.

Paper Rate

PSGD [Arora et al., 2013] O(1/ϵ2)
Oja’s algorithm [Balsubramani et al., 2013] O(1/((λ1 − λ2)

2ϵ))
Noisy PM [Hardt and Price, 2014] Õ(1/(λ1 − λ2))
VR-PCA [Shamir, 2015] Õ(1/(λ1 − λ2)

2)
Power Method (PM) [Musco and Musco, 2015] Õ(1/(λ1 − λ2))
Block Krylov [Musco and Musco, 2015] Õ(1/

√
λ1 − λ2)

SGD-PCA [Shamir, 2016b] O(1/((λ1 − λ2)ϵ))
Shift-and-Inverted PM [Garber et al., 2016] Õ(1/

√
λ1 − λ2)

Coordiante-wise PM [Lei et al., 2016] Õ(1/(λ1 − λ2))
Accelerated PM [Sa et al., 2017] Õ(1/

√
λ1 − λ2)

This work Õ(1/
√
λ1 − λp+1)

[2013] subsequently extended this method via the convex relaxation with theoretical guarantees.
Balsubramani et al. [2013] achieved a better guarantee for PCA via the martingale analysis. [Shamir,
2015, 2016a] proposed the VR-PCA which extended the projected stochastic variance reduced gra-
dient (SVRG) to the non-convex PCA problem with global convergence guarantees for the case that
λ1 > λ2. Shamir [2016b] also studied SGD for the non-convex PCA problem and established its
sub-linear convergence rates. Wen and Yin [2013] proposed a practical curvilinear search method
for addressing the eigenvalue problem but without theoretical analysis. It actually belongs to the
Riemannian gradient descent method. By proving an explicit Łojasiewicz exponent at 1

2 , Liu et al.
[2016] established the local and linear convergence rate of the Riemannian gradient method with a
line-search procedure for quadratic optimization problems under orthogonality constraints. Details
of typical theoretical results are summarized in Table 1.

3 Shift-and-Inverted Riemannian Gradient Descent Solver

In this section, we present our shift-and-inverted Riemannian gradient descent solver. Without loss
of generality, eigenvalues of the given real symmetric matrix A are assumed to be in [0, 1] and the
multiplicity of the largest eigenvalue λ1 is p, , i.e., 1 ≥ λ1 = · · · = λp > λp+1 ≥ · · · ≥ λn ≥ 0.
Define the i-th eigengap of A as ∆i = λi − λi+1. Most of existing work handle only the case that
∆1 = λ1−λ2 > 0, ignoring the case that ∆1 = 0. In this work, the two cases are unified via ∆p > 0
which holds always without loss of generality1, i.e., p < n. Suppose that corresponding eigenvectors
are v1, · · · ,vn. Our goal then is to find one of the leading eigenvectors, i.e., v ∈ span(v1, · · · ,vp)
and ∥v∥2 = 1. Let Vp = (v1, · · · ,vp) and denote B = (σI−A)−1 as the shift-and-inverted matrix,
where σ > λ1. B’s eigenvalues then are µi = 1

σ−λi
satisfying µ1 = · · · = µp > µp+1 ≥ · · · ≥ µn,

while eigenvectors remain unchanged. Accordingly, define the i-th eigengap of B as τi = µi−µi+1.
In particular,

τp
µ1

=
µp − µp+1

µ1
=

1
σ−λp

− 1
σ−λp+1

1
σ−λ1

=
∆p

σ − λp+1
.

A faster rate can be obtained if the relative eigengap can be enlarged from A to B, which is ex-
actly the idea behind the shift-and-invert preconditioning. To this end, we follow Garber and Hazan
[2015] and Wang et al. [2017]’s procedure (see the supplementary material) to choose an appropri-
ate constant σ such that it is only slightly larger than λ1, i.e., σ = λ1 + c∆p where c ∈ [14 ,

3
2], as

guaranteed by the following theorem.

Theorem 3.1 [Garber and Hazan, 2015, Wang et al., 2017] Let ϵ(x) = l(x) − minx l(x) be the
function error with the least-squares subproblem. If the initial to final error ratio for the least-
squares subproblems can be maintained as ϵ(z0)

ϵ(z∗) = 32·102m+1
η2m and ϵ(w0)

ϵ(w∗) = 1024
η2 where m =

1If p = n, the objective function h(x) is constant and Problem (1) is trivial.

3

⌈8 log 16
∥V⊤

p ỹ0∥2
2
⌉, then we have the output σ = λ1 + c∆p for certain c ∈ [14 ,

3
2] after S = O(log 1

η)

iterations in the outer repeat-until loop.

We then have τp
µ1

= 1
c+1 ≥ 2

5 and can run Riemannian gradient descent to solve Problem (1). The
algorithmic steps are described in Algorithm 1 which caters to all the step-size settings. Riemannian
gradient descent with normalization retraction [Absil et al., 2008], i.e., R(x, ξ) = x+ξ

∥x+ξ∥2
for any ξ

from the tangent space of the sphere ∥x∥2 = 1 at x, can be written as

xt = R(xt−1,−αt∇̃h(xt−1))

= R(xt−1,−αt(I− xt−1x
⊤
t−1)∇h(xt−1))

= R(xt−1, αt(I− xt−1x
⊤
t−1)Bxt−1), (2)

where ∇̃h(xt−1) and ∇h(xt−1) represent the Riemannian gradient2 and Euclidean gradient, respec-
tively. As (µ1

τp
)2 = O(1), gradient descent takes only a logarithmic number of iterations O(log 1

ϵ)

to converge now, which does not have the quadratic dependence on λ1

λ1−λ2
any more [Shamir, 2015,

2016a, Xu et al., 2017, Xu and Gao, 2018, Xu et al., 2018]. However, we need to calculate the Eu-
clidean gradient ∇h(x) = −Bx, which by inverting the shifted matrix σI − A will be inefficient.
Fortunately, as stated in Line 3, Algorithm 1, we can make it efficient by solving an equivalent least-
squares subproblem, and an approximate solution to the subproblem will suffice. It is worth noting
that when αt = 1/x⊤

t Bxt Algorithm 1 will recover the shift-and-inverted power method.

Algorithm 1 Shift-and-Inverted Riemannian Gradient Descent Eigensolver
1: Input: matrix A, shift σ, and initial x0.
2: for t = 1, 2, · · · do
3: approximate negative Euclidean gradient

yt−1 ≈ argmin
z
lt(z) = z⊤B−1z/2− x⊤

t−1z (3)

by a fast least-squares solver, e.g., AGD, starting from z0 = xt−1/x
⊤
t−1B

−1xt−1

4: approximate Riemannian gradient ĝt−1 = −(I− xt−1x
⊤
t−1)yt−1

5: choose a step size αt > 0
6: set xt = (xt−1 − αtĝt−1)/∥xt−1 − αtĝt−1∥2
7: terminate if stopping criterion is met
8: end for

3.1 Analysis

We now provide the convergence analysis of Algorithm 1 under the constant step-size setting. To
measure the progress of iterates to one of the leading eigenvectors, we use a novel potential function
defined by

ψ(xt,Vp) = −2 log ∥V⊤
p xt∥2

for analysis. As ∥V⊤
p xt∥2 ≤ ∥Vp∥2∥xt∥2 = 1, we have ψ(xt) ≥ 0. In fact, ∥V⊤

p xt∥2 =
cos θ(xt,Vp), where θ(xt,Vp) ∈ [0, π2] represents the principal angle [Golub and Van Loan, 1996]
between xt and the space of the leading eigenvectors span(Vp). Particularly, it is worth noting that

θ(xt,Vp) = min
v∈span(Vp)

θ(xt,v),

where θ(xt,v) ∈ [0, π2]. That is, the angle between a vector x and a p-dimensional subspace
span(Vp) is equal to the minimum angle between x and any v ∈ span(Vp). Thus, we can write

ψ(xt,Vp) = min
v∈Vp,1

ψ(xt,v),

where Vp,1 , {v ∈ span(Vp) : ∥v∥2 = 1} and ψ(xt,v) = −2 log |v⊤xt| = −2 log cos θ(xt,v)
for any v ∈ Vp,1. This property will play an important role in our analysis. It is easy to see that if

2It can be obtained by projecting the Euclidean gradient onto the tangent space [Absil et al., 2008] at xt−1,
i.e., ∇̃h(xt−1) = Pxt−1∇h(xt−1), where Pxt−1 = I− xt−1x

⊤
t−1.

4

ψ(xt,Vp) goes to 0, xt must converge to certain vector v ∈ Vp,1. We also use another potential
function

sin2 θ(xt,Vp) = 1− ∥V⊤
p xt∥22.

Our main results then can be stated as follows.

Theorem 3.2 Given a shift parameter σ = λ1 + c∆1 for c ∈ (0, 32], Algorithm 1 with fixed step-
sizes and using accelerated gradient descent as a least-squares solver is able to converge to one of
the leading eigenvectors of A, i.e., ψ(xT ,Vp) < ϵ, after T = O(log

ψ(x0,Vp)
ϵ) gradient steps, and

the overall complexity is O(
√

λ1

∆p
log λ1

∆p
log

ψ(x0,Vp)
ϵ).

To prove the theorem, we need the following auxiliary lemmas whose proofs are given in the supple-
mentary material.

Lemma 3.3 τp sin
2 θ(x,Vp) ≤ µ1 − x⊤Bx ≤ (µ1 − µn) sin

2 θ(x,Vp) and ∥∇̃h(x)∥2 ≤
2µ1 sin θ(x,Vp).

Lemma 3.4 x
1+x ≤ log(1 + x) ≤ x for any x > −1, while for any x ∈ (0, 1) it holds that

x
− log(1−x) ≥

1
1−log(1−x) .

Lemma 3.5 [Wang et al., 2017] Let z⋆ = argmin lt(z) = Bxt−1, ξt = yt−z⋆, and ϵt = lt(yt)−
lt(z

⋆). Then ∥ξt∥2 ≤
√
2µ1ϵt and lt(z0) − lt(z

⋆) ≤ µ2
1

2µn
sin2 θ(xt−1,Vp). Moreover, Nesterov’s

accelerated gradient descent takes O(
√

λ1

∆p
log lt(z0)−lt(z⋆)

ϵt
) complexity for solving Problem (3) to

sub-optimality ϵt.

Since the least-squares solver for Problem (3) is warm-started with z0 = xt−1

x⊤
t−1B

−1xt−1
, the initial

error lt(z0)− lt(z⋆) is much smaller than the error from the random initial z0. We can also try other
least-squares solvers, such as SVRG [Johnson and Zhang, 2013], accelerated SVRG [Garber et al.,
2016], and coordinate descent [Wang et al., 2017].

Proof of Theorem 3.2

Proof For brevity, denote θt = θ(xt,Vp) and ψt = ψ(xt,Vp) throughout the proof. First, for any
v ∈ Vp,1,

ψ(xt+1,v) = −2 log |v⊤xt+1|
= −2 log |v⊤(xt − αt+1ĝt)|+ 2 log ∥xt − αt+1ĝt∥2.

From Lemma 3.5 and Equation (2), we can write ĝt = ∇̃h(xt) − (I − xtx
⊤
t)ξt, where ξt is the

error with the approximate negative Euclidean gradient in Line 4 of Algorithm 1 incurred from
least-squares subproblems (3). We then can expand

|v⊤(xt − αt+1ĝt)|2

= |v⊤(xt − αt+1∇̃h(xt)) + αt+1v
⊤(I− xtx

⊤
t)ξt|2

≥ |v⊤(xt − αt+1∇̃h(xt))|2 + α2
t+1|v⊤(I− xtx

⊤
t)ξt|2

−2αt+1|v⊤(xt − αt+1∇̃h(xt))| · |v⊤(I− xtx
⊤
t)ξt|

≥ |v⊤(xt − αt+1∇̃h(xt))|2 − 2αt+1|v⊤(xt − αt+1∇̃h(xt))| · |v⊤(I− xtx
⊤
t)ξt|

≥ |v⊤(xt − αt+1∇̃h(xt))|2(1− 2αt+1
∥v⊤(I− xtx

⊤
t)∥2∥ξt∥2

|v⊤(xt − αt+1∇̃h(xt))|
), (4)

where the last inequality is by the Cauchy-Schwartz inequality. To proceed, we note that

v⊤∇̃h(xt) = −(v⊤Bxt − v⊤xtx
⊤
t Bxt) = −(µ1 − x⊤

t Bxt)v
⊤xt.

Together with Lemma 3.3, we then have

|v⊤(xt − αt+1∇̃h(xt))| = (1 + αt+1(µ1 − x⊤
t Bxt))|v⊤xt|

≥ (1 + αt+1τp sin
2 θt)|v⊤xt|. (5)

5

In addition, one can write
∥v⊤(I− xtx

⊤
t)∥2 = ∥v⊤x⊥

t ∥2 = (v⊤x⊥
t (x

⊥
t)

⊤v)1/2 = (v⊤(I− xtx
⊤
t)v)

1/2

= (1− (v⊤xt)
2)1/2 = sin θ(xt,v), (6)

and
∥xt − αt+1ĝt∥22 = (xt − αt+1ĝt)

⊤(xt − αt+1ĝt) = 1 + α2
t+1∥ĝt∥22

≤ 1 + 2α2
t+1(∥∇̃h(xt)∥22 + ∥ξt∥22) ≤ 1 + 2α2

t+1(4µ
2
1 sin

2 θt + ∥ξt∥22), (7)
where the last inequality is due to Lemma 3.3. By (4)-(7), one can arrive at

ψ(xt+1,v) ≤ ψ(xt,v)− 2 log(1 + αt+1τp sin
2 θt)− log(1− 2αt+1∥ξt∥2 tan θ(xt,v)

1 + αt+1τp sin
2 θt

)

+ log(1 + 2α2
t+1(4µ

2
1 sin

2 θt + ∥ξt∥22)).
Taking the minimum with respect to v over Vp,1 on both sides and noting that ∥ξt∥2 ≤

√
2µ1ϵt by

Lemma 3.5, we then get

ψt+1 ≤ ψt − 2 log(1 + αt+1τp sin
2 θt)− log(1− 2αt+1

√
2µ1ϵt tan θt

1 + αt+1τp sin
2 θt

)

+ log(1 + 2α2
t+1(4µ

2
1 sin

2 θt + 2µ1ϵt)).

Letting ϵt =
τ2
p

µ1

sin2(2θt)
32 , the above inequality can be reduced:

ψt+1 ≤ ψt − 2 log(1 + αt+1τp sin
2 θt)− log(1− αt+1τp sin

2 θt

1 + αt+1τp sin
2 θt

)

+ log(1 + 2α2
t+1(4µ

2
1 sin

2 θt +
τ2p
4

sin2 θt cos
2 θt))

≤ ψt − log(1 + αt+1τp sin
2 θt) + log(1 + 10α2

t+1µ
2
1 sin

2 θt)

≤ ψt −
αt+1τp sin

2 θt

1 + αt+1τp sin
2 θt

+ 10α2
t+1µ

2
1 sin

2 θt) (by Lemma 3.4)

≤ ψt − αt+1(
τp

1 + αt+1τp
− 10αt+1µ

2
1) sin

2 θt.

Thus, if τp
2(1+αt+1τp)

− 10αt+1µ
2
1 > 0, i.e., αt+1 <

τp
20µ2

1(1+αt+1τp)
, we then get ψt+1 < ψt and

ψt+1 ≤ ψt − αt+1τp sin2 θt
2(1+αt+1τp)

. Note that

sin2 θt =
sin2 θt

− log(1− sin2 θt)
· ψt ≥

ψt

1− log(1− sin2 θt)
=

ψt
1 + ψt

≥ ψt
1 + ψ0

,

where the first inequality is by Lemma 3.4. If αt ≡ α, we then can arrive at

ψT ≤ (1− ατp
2(1 + ατp)

· 1

1 + ψ0
)ψT−1 ≤ (1− ατp

2(1 + ατp)
· 1

1 + ψ0
)Tψ0

≤ exp{−T ατp
2(1 + ατp)

· 1

1 + ψ0
}ψ0 , Ξ.

Setting Ξ = ϵ and noting α < τp
20µ2

1(1+ατp)
yields

T =
2(1 + ατp)(1 + ψ0)

ατp
log

ψ0

ϵ
= O(

1

ατp
log

ψ0

ϵ
) = O((

µ1

τp
)2 log

ψ0

ϵ
) = O(log

ψ0

ϵ
).

On the other hand, by Lemma 3.5, the complexity for computing yt is

O(

√
λ1
∆p

log
lt(z0)− lt(Bxt−1)

ϵt
) = O(

√
λ1
∆p

log

µ2
1

µn
sin2 θt

τ2
p

µ1

sin2(2θt)
32

)

= O(

√
λ1
∆p

(log
µ1

µn
+ ψt)) = O(

√
λ1
∆p

(log
µ1

µn
+ ψ0)) = O(

√
λ1
∆p

log
λ1
∆p

),

Thus, the overall complexity is O(
√

λ1

∆p
log λ1

∆p
log ψ0

ϵ) = Õ(
√

λ1

∆p
). �

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

time (seconds)

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

(
f(

x t)
-

f(
v 1

)
)

/ f
(v

1
)

 = 5 10-3

rgEIGS =1.84
rgEIGS =1.92
rgEIGS =2.00
SI-rgEIGS =0.012
SI-rgEIGS =0.016
SI-rgEIGS =0.020
SI-PM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

time (seconds)

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

si
n2

(x
t ,

v 1
)

 = 5 10-3

rgEIGS =1.84
rgEIGS =1.92
rgEIGS =2.00
SI-rgEIGS =0.012
SI-rgEIGS =0.016
SI-rgEIGS =0.020
SI-PM

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

time (seconds)

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

(
f(

x t)
-

f(
v 1

)
)

/ f
(v

1
)

 = 5 10-4

rgEIGS =1.37
rgEIGS =1.99
rgEIGS =2.00
SI-rgEIGS =0.011
SI-rgEIGS =0.015
SI-rgEIGS =0.019
SI-PM

Relative function error

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

time (seconds)

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

si
n2

(x
t ,

v 1
)

 = 5 10-4

rgEIGS =1.37
rgEIGS =1.99
rgEIGS =2.00
SI-rgEIGS =0.011
SI-rgEIGS =0.015
SI-rgEIGS =0.019
SI-PM

Potential function sin2 θt

Figure 1: Synthetic data.

4 Experiments

We test our algorithm on both synthetic and real data. Throughout experiments, our SI-rgEIGS
solver is warm-started by a few power iterations, and four iterations of Nesterov’s AGD are run to
approximately solve the least-squares subproblems. The same initial x0 is used for different solvers.
All the algorithms are implemented in matlab and running single threaded. All the ground-truth
information is obtained by matlab’s eigs function for benchmarking purpose. The implementation
of our algorithm is available at https://github.com/zhiqiangxu2001/SI-rgEIGS.

4.1 Synthetic Data

We follow Shamir [2015] to generate synthetic data. Note that A’s full eigenvalue decomposition
can be written as A = VnΣV⊤

n , where Σ is diagonal. Thus, it suffices to generate random orthog-
onal matrix Vn and set Σ = diag(1, 1 −∆, 1 − 1.1∆, · · · , 1 − 1.4∆, g1/n, · · · , gn−6/n) with gi
being standard normal samples, i.e., gi ∼ N (0, 1). Here we set n = 1000 and σ = 1.005, and three
solvers are compared: Rimennian gradient descent solver with/without shift-and-invert precondi-
tioning under the constant step-size setting, and the shift-and-inverted power method [Garber et al.,
2016]. Constant step-sizes are hand-tuned. Figure 1 reports the performance of three algorithms,
in terms of relative function error (f(xt) − f(v1))/f(v1) or the potential sin2 θt, where we use
f(x) = x⊤Ax and then f(v1) = λ1 = max

x∈Rn×1:∥x∥2=1
f(x). We see that Riemannian gradient de-

scent with shift-and-invert preconditioning indeed outperforms the counterpart without precondition-
ing which is also worse than the SI-PM. This demonstrates the effectiveness of the shift-and-invert
preconditioning for acceleration again. Second, unexpectedly, SI-rgEIGS runs faster than SI-PM,
despite an extra log factor in theory. This may hint at the possibility of removing this factor in
analysis of our method. Last, note that convergence behaviors are consistent in terms of two quality
measures.

4.2 Real Data

We now demonstrate the performance of Algorithm 1 on real data from the sparse matrix collection,
and also compare with the accelerated power method with optimal momentum β = λ22/4 (abbrevi-
ated as APM-OM) [Sa et al., 2017]. However, two issues need to be fixed. First, the crude phase of
Garber and Hazan [2015], Wang et al. [2017] for locating the shift parameter is hard to use as there

7

0 0.02 0.04 0.06 0.08 0.1 0.12

time (seconds)

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

(
f(

x t)
-

f(
v 1

)
)

/ f
(v

1
)

hangGlider5

SI-rgEIGS
SI-PM
APM-OM

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

time (seconds)

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

si
n2

(x
t ,

v 1
)

hangGlider5

SI-rgEIGS
SI-PM
APM-OM

0 0.2 0.4 0.6 0.8 1 1.2 1.4

time (seconds)

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

(
f(

x t)
-

f(
v 1

)
)

/ f
(v

1
)

Boeing35

SI-rgEIGS
SI-PM
APM-OM

0 0.5 1 1.5

time (seconds)

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

si
n2

(x
t ,

v 1
)

Boeing35

SI-rgEIGS
SI-PM
APM-OM

0 1 2 3 4 5 6

time (seconds)

10-10

10-8

10-6

10-4

10-2

100

(
f(

x t)
-

f(
v 1

)
)

/ f
(v

1
)

indef_d

SI-rgEIGS
SI-PM
APM-OM

0 1 2 3 4 5 6

time (seconds)

10-6

10-5

10-4

10-3

10-2

10-1

100

si
n

2
(x

t ,
v 1

)

indef_d

SI-rgEIGS
SI-PM
APM-OM

0 0.5 1 1.5 2 2.5 3 3.5 4

time (seconds)

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

(
f(

x t)
-

f(
v 1

)
)

/ f
(v

1
)

indef_a

SI-rgEIGS
SI-PM
APM-OM

0 0.5 1 1.5 2 2.5 3 3.5 4

time (seconds)

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

si
n2

(x
t ,

v 1
)

indef_a

SI-rgEIGS
SI-PM
APM-OM

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

time (seconds)

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

(
f(

x t)
-

f(
v 1

)
)

/ f
(v

1
)

dimacs10_ct

SI-rgEIGS
SI-PM
APM-OM

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

time (seconds)

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

si
n2

(x
t ,

v 1
)

dimacs10_ct

SI-rgEIGS
SI-PM
APM-OM

0 2 4 6 8 10 12 14

time (seconds)

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

(
f(

x t)
-

f(
v 1

)
)

/ f
(v

1
)

dimacs10_nv

SI-rgEIGS
SI-PM
APM-OM

0 2 4 6 8 10 12 14 16 18

time (seconds)

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

si
n

2
(x

t ,
v 1

)

dimacs10_nv

SI-rgEIGS
SI-PM
APM-OM

Figure 2: Real data.

are three parameters that need to be tuned. We use heuristics based on Lemma 3.3. The lemma
shows that λ1 ≤ x⊤

t Axt+(λ1 −λn) sin
2 θt and ∥∇̃f(xt)∥2 ≤ 2λ1 sin θt. Then we have the upper

bound on λ1: σ = x⊤
Tc
AxTc

+β∥∇̃f(xTc
)∥22 for proper constant β > 1

2 and wart-start xTc
from the

crude phrase. We find that setting β = 1/∥∇̃f(xTc
)∥2 works well on our data. Second, hand-tuning

of step-sizes, even for constant step-sizes, is a difficult task. We thus use an automatic step-size
scheme, specifically, Barzilai-Borwein (BB) step-size, which is a non-monotone step-size scheme
and performs well in practice [Wen and Yin, 2013]. In our context, it is set as follows:

αt+1 =
∥xt − xt−1∥22

|(xt − xt−1)⊤(ĝt − ĝt−1)|
, or αt+1 =

|(xt − xt−1)
⊤(ĝt − ĝt−1)|

∥ĝt − ĝt−1∥22
.

Note that we use inexact Riemannian gradients ĝt here, instead of exact ones ∇̃h(x) as in the
traditional case. Nonetheless, it still performs well and significantly better than the shift-and-inverted
power method as observed in Figure 2. See the supplementary material for the description of the
real data.

5 Discussions

In this work, we investigated Riemannian gradient descent with shift-and-invert preconditioning
for the leading eigenvector computation on the effect of step-size schemes, in comparison to the
recently popular shift-and-inverted power method. Specifically, the constant step-size scheme and
the Barzilai-Borwein (BB) step-size scheme were considered theoretically and/or empirically. The
algorithm was theoretically analyzed under the constant step-size setting and shown for the first
time to able to achieve a rate of the type Õ(

√
λ1

λ1−λp+1
) and a logarithmic dependence on the initial

iterate. It is a nearly biquadratic improvement for the gradient descent solver, covering both ∆1 > 0
and ∆1 = 0. Experimental results demonstrated that the shift-and-invert preconditioning can indeed
accelerate gradient descent solver. Unexpectedly, the adaptive step-size setting with the shift-and-
inverted power method is outperformed by the considered step-size settings, especially the BB step-
size scheme on real data, albeit with a provable optimal rate. For future work, we may further
investigate if the log factor log λ1

λ1−λp+1
can be removed from the overall complexity and test our

algorithms with other least-squares solvers for deeper understanding of its performance.

8

Acknowledgments

Authors would like to thank the reviewers, AC, and SAC for their valuable comments.

References
P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix manifolds.

Princeton University Press, 2008.

Zeyuan Allen-Zhu and Yuanzhi Li. Even faster svd decomposition yet without agonizing pain. In
Advances in Neural Information Processing Systems, pages 974–982, 2016.

Raman Arora, Andrew Cotter, Karen Livescu, and Nathan Srebro. Stochastic optimiza-
tion for PCA and PLS. In 50th Annual Allerton Conference on Communication, Con-
trol, and Computing, Allerton 2012, Allerton Park & Retreat Center, Monticello, IL, USA,
October 1-5, 2012, pages 861–868, 2012. doi: 10.1109/Allerton.2012.6483308. URL
https://doi.org/10.1109/Allerton.2012.6483308.

Raman Arora, Andrew Cotter, and Nati Srebro. Stochastic optimization of PCA with capped MSG.
In Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural
Information Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake
Tahoe, Nevada, United States., pages 1815–1823, 2013.

Maria-Florina Balcan, Simon Shaolei Du, Yining Wang, and Adams Wei Yu. An improved gap-
dependency analysis of the noisy power method. In Proceedings of the 29th Conference on
Learning Theory, COLT 2016, New York, USA, June 23-26, 2016, pages 284–309, 2016. URL
http://jmlr.org/proceedings/papers/v49/balcan16a.html.

Akshay Balsubramani, Sanjoy Dasgupta, and Yoav Freund. The fast convergence of incremental pca.
In C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors, Advances
in Neural Information Processing Systems 26, pages 3174–3182. Curran Associates, Inc., 2013.

Jianqing Fan, Qiang Sun, Wen-Xin Zhou, and Ziwei Zhu. Principal component analysis for big data.
arXiv preprint arXiv:1801.01602, 2018.

Chao Gao, Dan Garber, Nathan Srebro, Jialei Wang, and Weiran Wang. Stochastic canonical corre-
lation analysis. CoRR, abs/1702.06533, 2017. URL http://arxiv.org/abs/1702.06533.

Dan Garber and Elad Hazan. Fast and simple pca via convex optimization. arXiv preprint
arXiv:1509.05647, 2015.

Dan Garber, Elad Hazan, Chi Jin, Sham M. Kakade, Cameron Musco, Praneeth Netrapalli, and
Aaron Sidford. Faster eigenvector computation via shift-and-invert preconditioning. In Interna-
tional Conference on Machine Learning, pages 2626–2634, 2016.

Gene H. Golub and Charles F. Van Loan. Matrix Computations (3rd Ed.). Johns Hopkins University
Press, Baltimore, MD, USA, 1996. ISBN 0-8018-5414-8.

Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review, 53
(2):217–288, 2011. doi: 10.1137/090771806.

Moritz Hardt and Eric Price. The noisy power method: A meta algorithm with applications. In
Advances in Neural Information Processing Systems, pages 2861–2869, 2014.

Trevor Hastie, Rahul Mazumder, Jason D. Lee, and Reza Zadeh. Matrix completion and low-rank
SVD via fast alternating least squares. Journal of Machine Learning Research, 16:3367–3402,
2015. URL http://dl.acm.org/citation.cfm?id=2912106.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in Neural Information Processing Systems 26: 27th Annual Conference
on Neural Information Processing Systems 2013. Proceedings of a meeting held December 5-8,
2013, Lake Tahoe, Nevada, United States., pages 315–323, 2013.

9

Qi Lei, Kai Zhong, and Inderjit S. Dhillon. Coordinate-wise power method. In Advances in
Neural Information Processing Systems 29: Annual Conference on Neural Information Process-
ing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 2056–2064, 2016. URL
http://papers.nips.cc/paper/6103-coordinate-wise-power-method.

Guangcan Liu and Ping Li. Recovery of coherent data via low-rank dictionary pursuit. In Ad-
vances in Neural Information Processing Systems 27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pages 1206–1214,
2014.

Huikang Liu, Weijie Wu, and Anthony Man-Cho So. Quadratic optimization with orthogonality
constraints: Explicit lojasiewicz exponent and linear convergence of line-search methods. In
ICML, pages 1158–1167, 2016.

Cameron Musco and Christopher Musco. Randomized block krylov methods for stronger and faster
approximate singular value decomposition. In Advances in Neural Information Processing Sys-
tems, pages 1396–1404, 2015.

Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Springer Publishing
Company, Incorporated, 1 edition, 2014. ISBN 1461346916, 9781461346913.

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Anal-
ysis and an algorithm. In Advances in Neural Information Processing Systems 14
[Neural Information Processing Systems: Natural and Synthetic, NIPS 2001, Decem-
ber 3-8, 2001, Vancouver, British Columbia, Canada], pages 849–856, 2001. URL
http://www-2.cs.cmu.edu/Groups/NIPS/NIPS2001/papers/psgz/AA35.ps.gz.

Christopher De Sa, Bryan D. He, Ioannis Mitliagkas, Christopher Ré, and Peng
Xu. Accelerated stochastic power iteration. CoRR, abs/1707.02670, 2017. URL
http://arxiv.org/abs/1707.02670.

Ohad Shamir. A stochastic PCA and SVD algorithm with an exponential convergence rate. In Pro-
ceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France,
6-11 July 2015, pages 144–152, 2015.

Ohad Shamir. Fast stochastic algorithms for SVD and PCA: convergence properties and convexity.
In International Conference on Machine Learning, pages 248–256, 2016a.

Ohad Shamir. Convergence of stochastic gradient descent for PCA. In ICML, pages 257–265, 2016b.

Jialei Wang, Weiran Wang, Dan Garber, and Nathan Srebro. Efficient coordinate-
wise leading eigenvector computation. CoRR, abs/1702.07834, 2017. URL
http://arxiv.org/abs/1702.07834.

Zaiwen Wen and Wotao Yin. A feasible method for optimization with orthogonality constraints.
Mathematical Programming, 142(1-2):397–434, 2013. doi: 10.1007/s10107-012-0584-1. URL
http://dx.doi.org/10.1007/s10107-012-0584-1.

Zhiqiang Xu and Xin Gao. On truly block eigensolvers via riemannian optimization. In In-
ternational Conference on Artificial Intelligence and Statistics, AISTATS 2018, 9-11 April
2018, Playa Blanca, Lanzarote, Canary Islands, Spain, pages 168–177, 2018. URL
http://proceedings.mlr.press/v84/xu18b.html.

Zhiqiang Xu, Yiping Ke, and Xin Gao. A fast stochastic riemannian eigensolver. In UAI, 2017.

Zhiqiang Xu, Xin Cao, and Xin Gao. Convergence analysis of gradient descent for eigen-
vector computation. In Proceedings of the Twenty-Seventh International Joint Confer-
ence on Artificial Intelligence, IJCAI-18, pages 2933–2939. International Joint Conferences
on Artificial Intelligence Organization, 7 2018. doi: 10.24963/ijcai.2018/407. URL
https://doi.org/10.24963/ijcai.2018/407.

10

