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Abstract

The supplementary material consists of two parts. In the first part, we prove all
the mathematical results presented in the paper. In the second part, we provide the
detailed descriptions of the benchmark graph datasets used in the paper.

1 Proofs

1.1 Proving Proposition 1

Proposition 1. Let G and H be two isomorphic graphs of n nodes, and let τ : {1, 2, ..., n} →
{1, 2, ..., n} be the corresponding isomorphism. Then,

∀vi ∈ VG, s = 1, 2, ...,∞, P s
G(i, i) = P

s
H(τ(i), τ(i)). (1)

Proof. Let Π be the permutation matrix induced by τ , i.e., Π(i, j) = δj=τ(i), then, ΠTΠ =

ΠΠT = In. Since G and H are isomorphic, we have AH(τ(i), τ(j)) = AG(i, j), and
DH(τ(i), τ(i)) =DG(i, i), which is equivalent withAH = ΠTAGΠ andDH = ΠTDGΠ.

Then PH = D−1H AH = (ΠTDGΠ)−1(ΠTAGΠ) = ΠTPGΠ. So P s
H = (ΠTPGΠ)s =

ΠTP s
GΠ, which implies P s

G(i, i) = P
s
H(τ(i), τ(i)).

1.2 Proving Theorem 1

Theorem 1. Let G and H be two connected graphs of the same size n and volume Vol, and let PG
andPH be the corresponding transition probability matrices. Let {(λk, ~ψk)}nk=1 and {(µk, ~ϕk)}nk=1
be eigenpairs of PG and PH , respectively. Let τ : {1, 2, ..., n} → {1, 2, ..., n} be a permutation
map. If P s

G(i, i) = P
s
H(τ(i), τ(i)),∀vi ∈ VG,∀s = 1, 2, ..., n, i.e., RPFnG = RPFnH , then,

1. RPFSG = RPFSH , ∀S = n+ 1, n+ 2, ...,∞;
2. {λ1, λ2, ..., λn} = {µ1, µ2, ..., µn};
3. If the eigenvalues sorted by their magnitudes satisfy: |λ1| > |λ2| > ... > |λm| > 0,
|λm+1| = ... = |λn| = 0, then we have that | ~ψk(i)| = |~ϕk(τ(i))|, ∀vi ∈ VG, ∀k =
1, 2, ...,m.

We first present some useful lemmas.
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Lemma 1. (Cayley-Hamilton Theorem, see[11, 16]) Let A be an n × n matrix, and let P (λ) =
det(λIn −A) be the corresponding characteristic polynomial ofA, then P (A) = 0, i.e.,

An + cn−1A
n−1 + · · ·+ c1A+ (−1)ndet(A)In = 0, (2)

where cn−k = (−1)k
k! Bk

(
s1, (−1)s2, 2!s3, · · ·, (−1)k−1(k − 1)!sk

)
, and Bk is the Bell polynomial

and si = trace(Ai). In particular, det(A) = 1
n!Bn

(
s1, (−1)s2, 2!s3, · · ·, (−1)n−1(n− 1)!sn

)
.

Remark 1. We observe that all the coefficients in (2) are determined by trace(A), trace(A2),· ·
·,trace(An).

Corollary 1. LetA andB be two n×n matrices. If trace(Ak) = trace(Bk), k = 1, 2, · · ·, n, then
A andB have the same eigenvalues set.

Proof. Let PA(λ) and PB(λ) be the characteristic polynomials of A and B respectively, and let
cAn−k and cBn−k, k = 1, 2, ···, n−1 be the corresponding coefficients. Since trace(Ak) = trace(Bk),
k = 1, 2, · · ·, n, we have that cAn−k = cBn−k, k = 1, 2, · · ·, n− 1, and det(A) = det(B). Therefore,
the roots of PA(λ) and PB(λ) are the same, which is equivalent to A and B having the same
eigenvalues set.

Corollary 2. Let A and B be two n × n matrices. If As(i, i) = Bs(i, i), s = 1, 2, · · ·, n,
i = 1, 2, · · ·, n, thenAs(i, i) = Bs(i, i), s = n+ 1, n+ 2, · · ·, i = 1, 2, · · ·, n.

Proof. It is easy to obtain trace(As) = trace(Bs), s = 1, 2, · · ·, n. Then based on the lemma 1, the
characteristic polynomials ofA andB are same. Moreover,

An = −cn−1An−1 − cn−2An−2 − · · · − c1A− (−1)ndet(A)In. (3)

MultiplyAs−n, s ≥ n+ 1 on both sides, and we have

As = −cn−1As−1 − cn−2As−2 − · · · − c1As−(n−1) − (−1)ndet(A)As−n. (4)

Immediately, for any i = 1, 2, · · ·, n,

As(i, i) = −cn−1As−1(i, i)−cn−2As−2(i, i)−···−c1As−(n−1)(i, i)−(−1)ndet(A)As−n(i, i).
(5)

From the iterative formula (5), we can see thatAs(i, i), s = n+1, n+2, · · · are uniquely determined
by {A(i, i),A2(i, i), · · ·,An(i, i)}. Similarly,Bs(i, i), s = n+1, n+2, · · · are uniquely determined
by {B(i, i),B2(i, i), · · ·,Bn(i, i)}. Combining with the factAs(i, i) = Bs(i, i), s = 1, 2, .., n, we
obtain the desired result.

Lemma 2. (Time-reversible Markov chains, see [2]) If for an irreducible Markov chain with transition
matrix P , there exists a probability solution ~π to the “Time-reversibility" set of equations,

~πTi P (i, j) = ~πTj P (j, i), (6)

for all pairs of states i, j, then the solution ~π is the unique stationary distribution, i.e.,
lims→+∞P

s(i, j) = ~πj .
Remark 2. For a connected graph G, the random walk defined on it can be considered as a
irreducible Markov chain. We define a probability vector ~π as ~πi =

DG(i,i)
VolG

, where VolG is the
volume of the graph, i.e.,VolG =

∑n
i=1DG(i, i). Then we have,

~πTi PG(i, j) =
DG(i, i)

VolG
× wij
DG(i, i)

=
DG(j, j)

VolG
× wji
DG(j, j)

= ~πTj PG(j, i). (7)

Therefore, ~π defined above is the stationary distribution of the random walk.

Now we prove theorem 1.

Proof. (1). Let Π be the permutation matrix induced by τ , i.e., Π(i, j) = δj=τ(i). Then we
have ∀i, j = 1, 2, · · ·, n, PH(τ(i), τ(j)) = (ΠPHΠT )(i, j). Since P s

G(i, i) = P s
H(τ(i), τ(i)) =

(ΠP s
HΠT )(i, i) = (ΠPHΠT )s(i, i), ∀vi ∈ VG, and ∀s = 1, 2, · · ·, n, by Corollary 2, we have
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P s
G(i, i) = (ΠPHΠT )s(i, i) = P s

H(τ(i), τ(i)), ∀s = n+1, n+2 · · ·+∞. Now, the first conclusion
has been proved.

(2). The second one can be directly concluded from corollary 1.

(3). LetDG andDH be the degree matrices of graph G and H , respectively. Then by Remark 2,

DG(i, i)

Vol
= lim
s→+∞

P s
G(i, i) = lim

s→+∞
P s
H(τ(i), τ(i)) =

DH(τ(i), τ(i))

Vol
. (8)

So
DG(i, i) =DH(τ(i), τ(i)),∀vi ∈ VG. (9)

Let AG and AH be the adjacent matrices of G and H respectively, and write PG = D−1G AG =

D
− 1

2

G (D
− 1

2

G AGD
− 1

2

G )D
1
2

G. Let BG = D
− 1

2

G AGD
− 1

2

G =⇒ PG = D
− 1

2

G BGD
1
2

G =⇒ P s
G =

D
− 1

2

G Bs
GD

1
2

G =⇒ P s
G(i, i) = B

s
G(i, i). BG is a symmetric matrix, and has the same eigenvalues

as PG. Write the orthonormal eigen-decomposition ofBG asBG =
∑n
k=1 λk~uk~u

T
k , then

P s
G(i, i) = B

s
G(i, i) =

n∑
k=1

λsk~uk(i)
2, (10)

where ~uk(i) denotes the ith component of the eigenvector ~uk. Similarly, we have

P s
H(τ(i), τ(i)) = Bs

H(τ(i), τ(i)) =

n∑
k=1

µsk~vk(τ(i))
2 =

n∑
k=1

λsk~vk(τ(i))
2, (11)

where ~vk(τ(i)) denotes the τ(i)th component of ~vk, and ~vk is the kth eigenvector of BH =

D
− 1

2

H AHD
− 1

2

H . The last equality of (11) holds because {λ1, λ2, ..., λn} = {µ1, µ2, ..., µn}.
Next, we use mathematical induction to show that |~uk(i)| = |~vk(τ(i))|, ∀vi ∈ VG, ∀k = 1, 2, · · ·,m.

Step1: For k = 1, PG~1 = ~1 ⇔ BGD
1
2

G
~1 = D

1
2

G
~1 ⇔ ~u1 = ±D

1
2

G
~1/
√
Vol. Similarly, we have

~v1 = ±D
1
2

H
~1/
√
Vol. Since ∀vi ∈ VG, DG(i, i) = DH(τ(i), τ(i)), we have |~u1(i)| = |~v1(τ(i))|,

∀vi ∈ VG.

Step2: We show that if the first k eigenvectors satisfy, |~u1(i)| = |~v1(τ(i))|, |~u2(i)| = |~v2(τ(i))|,· · ·,
|~uk(i)| = |~vk(τ(i))|, then |~uk+1(i)| = |~vk+1(τ(i))|,∀vi ∈ VG,∀k = 1, 2, ...,m− 2.

We suppose that ∃vi∗ ∈ VG, such that |~uk+1(i
∗)| 6= |~vk+1(τ(i

∗))|. Without loss of generality, we
assume that ~uk+1(i

∗)2 − ~vk+1(τ(i
∗))2 = ε > 0. Write

P s
G(i
∗, i∗)− P s

H(τ(i∗), τ(i∗))

=

n∑
l=1

λsl ~ul(i
∗)2 −

n∑
l=1

λsl ~vl(τ(i
∗))2

=

m∑
l=1

λsl ~ul(i
∗)2 −

m∑
l=1

λsl ~vl(τ(i
∗))2

=

m∑
l=k+1

λsl ~ul(i
∗)2 −

m∑
l=k+1

λsl ~vl(τ(i
∗))2

=λsk+1

[
~uk+1(i

∗)2 − ~vk+1(τ(i
∗))2

]
−

m∑
l=k+2

λsl
[
~ul(i

∗)2 − ~vl(τ(i∗))2
]

=λsk+1

(
ε−

m∑
l=k+2

(
λl
λk+1

)s
[
~ul(i

∗)2 − ~vl(τ(i∗))2
])
,

(12)

where the second equality holds because |λ1| > |λ2| > ... > |λm| > 0, |λm+1| = ... = |λn| = 0.
With the fact that |~ul(i∗)2 − ~vl(τ(i∗))2| ≤ 1

(
since 0 ≤ ~ul(i

∗)2, ~vl(τ(i
∗))2 ≤ 1

)
, and | λl

λk+1
| < 1,
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we have that there is a positive integer, M , such that,

ε−
m∑

l=k+2

(
λl
λk+1

)2M
[
~ul(i

∗)2 − ~vl(τ(i∗))2
]
> 0. (13)

Therefore, P 2M
G (i∗, i∗) − P 2M

H (τ(i∗), τ(i∗)) > 0, contradicting the fact that P s
G(i, i) =

P s
H(τ(i), τ(i)),∀vi ∈ VG,∀s = 1, 2, ...,∞. So |~uk+1(i)| = |~vk+1(τ(i))|,∀vi ∈ VG.

Step 3: We show that if |~u1(i)| = |~v1(τ(i))|, |~u2(i)| = |~v2(τ(i))|,· · ·, |~um−1(i)| = |~vm−1(τ(i))|,
then |~um(i)| = |~vm(τ(i))|,∀vi ∈ VG. Since

0 = P s
G(i
∗, i∗)− P s

H(τ(i∗), τ(i∗)) = λsm
[
~um(i∗)2 − ~vm(τ(i∗))2

]
, (14)

and λsm 6= 0, we immediately have that |~um(i∗)| = |~vm(τ(i∗))|.
Combining all these three steps, we obtain the desired result |~uk(i)| = |~vk(τ(i))|, ∀vi ∈ VG,
∀k = 1, 2, · · ·,m.

Since PG = D
− 1

2

G BGD
1
2

G, we have the fact that (λk, ~uk) is an eigenpair of BG if and only

if (λk,D
− 1

2

G ~uk) is an eigenpair of PG. The above implies that ~ψk = D−1G ~uk, and similarly
~ϕk =D−1H ~vk. Now, ∀vi ∈ VG, ∀k = 1, 2, ...,m, we have

|~ϕk(τ(i))| =D−1H (τ(i))|~vk(τ(i))| =D−1G (i)|~vk(τ(i))| =D−1G (i)|~uk(i)| = | ~ψk(i)|. (15)

1.3 Proving proposition 2

Given two graphs G and H , let {4Gi }
nG
i=1 and {4Hi }

nH
j=1 be the respective set representa-

tions
(
4Gi = (~pi, a

1
i , a

2
i , ..., a

L
i ) and likewise 4Hj

)
. Let KGG, KHH , and KGH be the

kernel matrices, induced by the embedding kernel k = ⊗Ll=0kl. That is, they are defined
such that (KGG)ij = k(4Gi ,4Gj ), (KHH)ij = k(4Hi ,4Hj ), and (KGH)ij = k(4Gi ,4Hj ).

Proposition 2. Let G be the set of graphs with attribute domains A1,A2, ...,AL. Let G and H be
two graphs in G. Let mG and mH be the corresponding mean embeddings. Then the following
functions are positive definite graph kernels defined on G × G.

K1(G,H) = (c+ 〈mG,mH〉H)d = (c+
1

nGnH
~1TnG

KGH
~1nH

)d, c > 0, d ∈ N, (16a)

K2(G,H) = exp(−γ‖mG −mH‖pH) = exp
[
− γMMDp(µG, µH)

]
, γ > 0, 0 < p ≤ 2, (16b)

where MMD(µG, µH) = ( 1
n2
G

~1TnG
KGG

~1nG
+ 1

n2
H

~1TnH
KHH

~1nH
− 2

nGnH

~1TnG
KGH

~1nH
)

1
2 is the

maximum mean discrepancy (MMD) [6].

Proof. (a). We first consider two kernels Kα(G,H) = 〈mG,mH〉H and Kβ(G,K) = c. It can be
easily observed that Kα and Kβ are positive definite graph kernels. Since the sum and multiplication
of positive definite kernels are still positive definite, we conclude that (16a) are positive definite.

(b). The positive definiteness of (16b) is obtained from Corollary 3 in [12].

1.4 Proving theorem 2

Theorem 2. Let G and H be two graphs with attribute domains A1, ...,AL. Let φ̂l : Al →
RDl , l = 0, 1, ..., L be the approximate explicit feature maps. Let {(~pi, a1i , a2i , ..., aLi )}

nG
i=1 and

{(~qj , b1j , b2j , ..., bLj )}
nH
j=1 be the respective set representations of G and H . Then their approximate

explicit graph embeddings, m̂G and m̂H , are tensors in RD0×D1×...×DL , and can be written as

m̂G =
1

nG

nG∑
i=1

φ̂0(~pi)◦ φ̂1(a1i )◦ ...◦ φ̂L(aLi ), m̂H =
1

nH

nH∑
j=1

φ̂0(~qj)◦ φ̂1(b1j )◦ ...◦ φ̂L(bLj ). (17)

That is, as D0, D1, ..., DL →∞, we have 〈m̂G, m̂H〉T → 〈mG,mH〉H.
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Before we prove theorem 2, we first introduce a lemma about the inner product of multi-
dimensional tensors.
Lemma 3. Let U = ~u(0) ◦ ~u(1) ◦ ... ◦ ~u(L) and V = ~v(0) ◦ ~v(1) ◦ ... ◦ ~v(L) be two rank-one tensors
in RD0×D1×...×DL . Then we have 〈U, V 〉T = 〈~u(0), ~v(0)〉〈~u(1), ~v(1)〉...〈~u(L), ~v(L)〉.

Proof.
〈U, V 〉T

=

D0∑
i0=1

D1∑
i1=1

...

DL∑
iL=1

Ui1i2,...,iLVi1i2,...,iL

=

D0∑
i0=1

D1∑
i1=1

...

DL∑
iL=1

~u
(0)
i0
~u
(1)
i1
...~u

(L)
iL
~v
(0)
i0
~v
(1)
i1
...~v

(L)
iL

=(

D0∑
i0=1

~u
(0)
i0
~v
(0)
i0

)(

D1∑
i1=1

~u
(1)
i1
~v
(1)
i1

)...(

DL∑
iL=1

~u
(L)
iL
~v
(L)
iL

)

=〈~u(0), ~v(0)〉〈~u(1), ~v(1)〉...〈~u(L), ~v(L)〉.

(18)

Now we prove theorem 2.

Proof. First we calculate 〈m̂G, m̂H〉T .

〈m̂G, m̂H〉T

=
〈 1

nG

nG∑
i=1

φ̂0(~pi) ◦ φ̂1(a1i ) ◦ ... ◦ φ̂L(aLi ),
1

nH

nH∑
j=1

φ̂0(~qj) ◦ φ̂1(b1j ) ◦ ... ◦ φ̂L(bLj )
〉
T

=
1

nGnH

nG∑
i=1

nH∑
j=1

〈
φ̂0(~pi) ◦ φ̂1(a1i ) ◦ ... ◦ φ̂L(aLi ), φ̂0(~qj) ◦ φ̂1(b1j ) ◦ ... ◦ φ̂L(bLj )

〉
T

=
1

nGnH

nG∑
i=1

nH∑
j=1

〈φ̂0(~pi), φ̂0(~qj)〉〈φ̂1(a1i ), φ̂1(b1j )〉...〈φ̂1(aLi ), φ̂1(bLj )〉

=
1

nGnH

nG∑
i=1

nH∑
j=1

k̂0(~pi, ~qj)k̂1(a
1
i , b

1
j )...k̂L(a

L
i , b

L
j ),

(19)

where the 3rd equality holds because of lemma 3.

Next we calculate 〈mG,mH〉H.

〈mG,mH〉H

=〈 1

nG

nG∑
i=1

φ(pi, a
1
i , ..., a

L
i ),

1

nH

nH∑
j=1

φ(qj , b
1
j , ..., b

L
j )〉H

=
1

nGnH

nG∑
i=1

nH∑
j=1

〈φ(pi, a1i , ..., aLi ), φ(qj , b1j , ..., bLj )〉H

=
1

nGnH

nG∑
i=1

nH∑
j=1

k
[
(pi, a

1
i , ..., a

L
i ), (qj , b

1
j , ..., b

L
j )
]

=
1

nGnH

nG∑
i=1

nH∑
j=1

k0(~pi, ~qj)k1(a
1
i , b

1
j )...kL(a

L
i , b

L
j ),

(20)

where the last equality holds because of the definition of the embedding kernel k = ⊗Ll=0kl.
Since k̂0(~pi, ~qj) → k0(~pi, ~qj), k̂1(a1i , b

1
j ) → k1(a

1
i , b

1
j ),..., k̂L(a

L
i , b

L
j ) → kL(a

L
i , b

L
j ), as

D0, D1, ..., DL →∞, we conclude that 〈m̂G, m̂H〉T → 〈mG,mH〉H.
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1.5 Proving proposition 3

Proposition 3. Let G be the set of graphs with attribute domains A1,A2, ...,AL. The following
functions are positive definite graph kernels defined on G × G.

K̂1(G,H) = (c+ 〈m̂G, m̂H〉T )d =
[
c+ vec(m̂G)

Tvec(m̂H)
]d
, c > 0, d ∈ N

K̂2(G,H) = exp(−γ‖m̂G − m̂H‖pT ) = exp(−γ‖vec(m̂G)− vec(m̂H)‖p2), γ > 0, 0 < p ≤ 2.

As D0, D1, ..., DL →∞, we have K̂1(G,H)→ K1(G,H) and K̂2(G,H)→ K2(G,H).

Proof. The positive definiteness of K̂1 and K̂2 can be proved in the same way with Theorem 2. The
convergence property can be obtained by Theorem 2.

2 Datasets description

The statistics of the benchmark graph datasets used in the paper are reported in Table 1. Next, we
describe in these datasets in detail.

2.1 Non-attributed (unlabeled) graph datasets

COLLAB [15] is a scientific collaboration dataset that consists of the ego-networks of 5,000 re-
searchers from three scientific fields: High Energy Physics, Condensed Matter Physics, and Astro
Physics. The task is to determine the field of each researcher based on their ego-networks.

IMDB-BINARY [15] is a movie collaboration dataset that consists of the ego-networks of 1,000
actors/actresses who played roles in movies in IMDB. In each graph, nodes represent actors/actress,
and there is an edge between them if they appear in the same movie. These graphs are derived from
the Action and Romance genres.

IMDB-MULTI [15] is generated in a similar way to IMDB-BINARY. The difference is that it is
derived from three genres: Comedy, Romance, and Sci-Fi.

REDDIT-BINARY [15] consists of graphs corresponding to online discussions on Reddit. In each
graph, nodes represent users, and there is an edge between them if at least one of them respond to the
other’s comment. There are four popular subreddits, namely, IAmA, AskReddit, TrollXChromosomes,
and atheism. IAmA and AskReddit are two question/answerbased subreddits, and TrollXChromosomes
and atheism are two discussion-based subreddits. A graph is labeled according to whether it belongs
to a question/answer-based community or a discussion-based community.

REDDIT-MULTI(5K) [15] is generated in a similar way to REDDIT-BINARY. The difference
is that there are five subreddits involved, namely, worldnews, videos, AdviceAnimals, aww, and
mildlyinteresting. Graphs are labeled with their corresponding subreddits.

REDDIT-MULTI(12K) [15] is generated in a similar way to REDDIT-BINARY and REDDIT-
MULTI(5K). The difference is that there are eleven subreddits involved, namely, AskReddit, Ad-
viceAnimals, atheism, aww, IAmA, mildlyinteresting, Showerthoughts, videos, todayilearned, world-
news, and TrollXChromosomes. Still, graphs are labeled with their corresponding subreddits.

2.2 Graphs with discrete attributes

MUTAG [3] consists of graph representations of 188 mutagenic aromatic and heteroaromatic nitro
chemical compounds. These graphs are labeled according to whether or not they have a mutagenic
effect on the Gramnegative bacterium Salmonella typhimurium.

DD [4] consists of graph representations of 1,178 proteins. In each graph, nodes represent amino
acids, and there is an edge if they are less than six Angstroms apart. Graphs are labeled according to
whether they are enzymes or not.

NCI1 [13] consists of graph representations of 4,110 chemical compounds s screened for activity
against non-small cell lung cancer and ovarian cancer cell lines, respectively.
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PTC [7] consists of graph representations of chemical molecules. In each graph, nodes represent
atoms, and edges represent chemical bonds. Graphs are labeled according to carcinogenicity on
rodents, divided into male mice (MM), male rats (MR), female mice (FM), and female rats (FR).

2.3 Graphs with continuous attributes

FRANK [8] is a chemical molecule dataset that consists of 2,401 mutagens and 1,936 nonmutagens.
Originally, nodes are associated with chemical atom symbols. The most frequent atom symbols
are mapped to MNIST digit images. By doing this, the original atom symbols can be recovered
through the high dimensional MNIST vectors of pixel intensities, which are treated as the continuous
attributes on graphs.

SYNTHETIC [5] consists of 300 random graphs. The continuous node attributes are sampled from
the distributionN(0, 1). There are two classes, A and B. Class A has 150 graphs, which are generated
by randomly rewiring five edges and permuting ten node attributes. Class B has 150 graphs, which
are generated by randomly rewiring ten edges and permuting five node attributes.

Synthie [10] consists of 400 random graphs, all of which are variants of two Erdos-Renyi graphs.
The nodes are associated with 15-dimensional continuous attributes. All graphs are divided into four
classes. The generation process of these graphs is described in [10].

2.4 Graphs with both discrete and continuous attributes

ENZYMES and PROTEINS [1] consist of graph representations of proteins. Nodes represent
secondary structure elements (SSE), and there is an edge if they are neighbors along the amino
acid sequence or one of three neareset neighbors in space. The discrete attributes are SSE’s types.
The continuous attributes are the 3D length of the SSE. Graphs are labeled according to which EC
top-level class they belong to.

BZR, COX2, and DHFR [14], [9] all are chemical compound datasets. Still, in each graph, nodes
represent atoms, and edges represent chemical bonds. The discrete attributes correspond to atom
types. The continuous attributes are 3D coordinates.

Table 1: Statistics of the benchmark graph datasets

Datasets graph # class # average node # average edge # discrete attributes continuous attributes (Dim)
COLLAB 5000 3 74.49 2457.78 × ×

IMDB-BINARY 1000 2 19.77 96.53 × ×
IMDB-MULTI 1500 3 13.00 65.94 × ×

REDDIT-BINARY 2000 2 429.63 497.75 × ×
REDDIT-MULTI(5K) 4999 5 508.52 594.87 × ×
REDDIT-MULTI(12K) 11929 11 391.41 456.89 × ×

MUTAG 188 2 17.93 19.79
√

×
DD 1178 2 284.32 715.66

√
×

NCI1 4110 2 29.87 32.30
√

×
PTC-FM 349 2 14.11 14.48

√
×

PTC-FR 351 2 14.56 15.00
√

×
PTC-MM 336 2 13.97 14.32

√
×

PTC-MR 344 2 14.29 14.69
√

×
FRANK 4337 2 16.90 17.88 ×

√
(780)

SYNTHETIC 300 2 100 196.25 ×
√

(1)
Synthie 400 4 95.00 172.93 ×

√
(15)

ENZYMES 600 6 32.63 64.14
√ √

(18)
PROTEINS 1113 2 39.06 72.82

√ √
(1)

BZR 405 2 35.75 38.36
√ √

(3)
COX2 467 2 41.22 43.45

√ √
(3)

DHFR 467 2 42.43 44.54
√ √

(3)

3 Additional Experiments

3.1 Experimental results of linear/nonlinear transformation on top of graph kernels

In Table 2, we empirically show that the observed improvements are mainly due to the power of
our RPF and Hilbert space embeddings, instead of the nonlinear transformations on top of RPF and
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node information. We show the classification results of our RetGKII with linear transformation, the
modified WL and HGK kernels with RBF transformation on the top of WL and HGK. Comparing
the results in Table 2 with those shown in the paper, we can see that: (1) with linear transformation,
RetGKII still keeps the superior performance; (2) with RBF transformation, WL and HGK don’t get
observable improvements (in some cases, their performance even degrades).

Table 2: The classification results of RetGKII (with linear transformation), WL (with RBF transfor-
mation), and HGK (with RBF transformation), respectively. Top two rows: unlabeled. Middle two
rows: discrete labels only. Bottom two rows: continuous labels only

3.2 Experimental results of graph kernels using eigenvector embeddings

In Table 3, we show the experimental results of using eigenvector embeddings to obtain approximated
Hilbert embeddings. The experiment setup is the same with that in the paper. The embedding
dimension d is selected from {2, 3, 4, 5, 10, 15, 20}. Clearly, RPF significantly outperforms EE.

Table 3: The classification results of eigenvector embeddings. Top two rows: unlabeled. Middle two
rows: discrete labels only. Bottom two rows: continuous labels only (left), discrete and continuous
labels (right).
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