Exact natural gradient in deep linear networks and
application to the nonlinear case

Alberto Bernacchia Maté Lengyel
Department of Engineering Department of Engineering  Department of Cognitive Science
University of Cambridge University of Cambridge Central European University
Cambridge, UK, CB2 1PZ Cambridge CB2 1PZ, UK Budapest H-1051, Hungary
ab23470@cam.ac.uk m.lengyel@eng.cam.ac.uk

Guillaume Hennequin
Department of Engineering
University of Cambridge
Cambridge, UK, CB2 1PZ
g.hennequin@eng.cam.ac.uk

Abstract

Stochastic gradient descent (SGD) remains the method of choice for deep learning,
despite the limitations arising for ill-behaved objective functions. In cases where it
could be estimated, the natural gradient has proven very effective at mitigating the
catastrophic effects of pathological curvature in the objective function, but little
is known theoretically about its convergence properties, and it has yet to find a
practical implementation that would scale to very deep and large networks. Here,
we derive an exact expression for the natural gradient in deep linear networks, which
exhibit pathological curvature similar to the nonlinear case. We provide for the first
time an analytical solution for its convergence rate, showing that the loss decreases
exponentially to the global minimum in parameter space. Our expression for the
natural gradient is surprisingly simple, computationally tractable, and explains why
some approximations proposed previously work well in practice. This opens new
avenues for approximating the natural gradient in the nonlinear case, and we show
in preliminary experiments that our online natural gradient descent outperforms
SGD on MNIST autoencoding while sharing its computational simplicity.

1 Introduction

Stochastic gradient descent (SGD) is used ubiquitously to train deep neural networks, due to its
low computational cost and ease of implementation. However, long narrow valleys, saddle points
and plateaus in the objective function dramatically slow down learning and often give the illusory
impression of having reached a local minimum [Martens} 2010; |Dauphin et al.| 2014]. The natural
gradient is an appealing alternative to the standard gradient: it accelerates convergence by using
curvature information, it represents the steepest descent direction in the space of distributions, and is
invariant to reparametrization of the network [[Amari, |1998; Le Roux et al., 2008|]. However, besides
some numerical evidence, the exact convergence rate of natural gradient remains unknown, and its
implementation remains prohibitive due to its very expensive numerical computation [Pascanu and
Bengiol 2013} [Martens), |2014; |Ollivier, [2015].

In order to gain theoretical insight into the convergence rate of natural gradient descent, we analyze a
deep (multilayer) linear network. While deep linear networks have obviously no practical relevance
(they can only perform linear regression and are grossly over-parameterized, see below), their
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optimization is non-convex and is plagued with similar pathological curvature effects as their nonlinear
counterparts. Critically, the dynamics of learning in linear networks are exactly solvable, making
them an ideal case study to understand the essence of the deep learning problem and find efficient
solutions [Saxe et al.,2013]]. Here, we derive an exact expression for the natural gradient in deep
linear networks, from which we garner two major insights. First, we prove that the exact natural
gradient leads to exponentially fast convergence towards the minimum achievable loss. This, to our
knowledge, is the first case where a functional form for the natural gradient’s convergence rate has
been obtained for an arbitrarily deep multilayer network, and it confirms the long-standing conjecture
that the natural gradient mitigates the problem of pathological curvature [Pascanu and Bengio, 2013}
Martens|, 2014] (and indeed, annihilates it completely in the linear case). Second, our exact solution
reveals that the natural gradient can be computed much more efficiently than previously thought. By
definition, the natural gradient is the product of the inverse of the P x P Fisher information matrix F'
with the P-dimensional gradient vector, where P is the number of network parameters (often in the
millions) [Yang and Amari, |1998;|Amari et al., 2000; [Park et al., | 2000]]. In contrast, our expression
exploits the structure of degeneracies in F’ and requires computing a similar matrix-vector product
but in dimension N, the number of neurons in each layer (in the tens/hundreds). Although this simple
expression does not formally apply to the nonlinear case, we adapt it to nonlinear deep networks and
show that it outperforms SGD on the MNIST autoencoder problem.

Our exact expression for the natural gradient suggests retrospective theoretical justifications for
several previously proposed modifications of standard gradient descent that empirically improved its
convergence. In particular, we revisit previous approximations of the Fisher matrix (in the nonlinear
case) based on block-diagonal truncations, and provide a possible explanation for their performance
(K-FAC, [Martens and Grosse, [2015}; |Grosse and Martens|, 2016} Ba et al., [2016]], see also [Heskes|,
2000; [Povey et al., [2014; Desjardins et al., 2015])). We show that, even in the simple linear case, the
exact inverse Fisher matrix is not block-diagonal and the contributions of the off-diagonal blocks to
the natural gradient have the same order of magnitude as the on-diagonal blocks. Therefore, contrary
to what has been proposed previously, the off-diagonal blocks cannot in principle be neglected.
Instead, our analysis reveals that, when taking the inverse and multiplying by the gradient, the
off-diagonal blocks of F' contribute the exact same terms as the diagonal blocks. This observation
is at the core of the surprisingly efficient yet exact way of computing the natural gradient that we
propose here.

Finally, our algebraic expression for the natural gradient exhibits similarities with recent, biologically-
inspired backpropagation algorithms. To obtain the natural gradient, we show that the error must
back-propagate through the (pseudo-)inverses of the weight matrices, rather than their transposes.
Multiplication by the matrix pseudo-inverse emerges automatically in algorithms where both forward
and backward weights are free parameters [Lillicrap et al., 2016; [Luo et al.,[2017].

2 Natural gradient in deep networks

We consider the problem of learning an input-output relationship on the basis of observed data
samples {(x;,y;)} (input-output pairs) drawn from an underlying, unknown distribution p*(z, y).
This is achieved by a deep discriminative model, which, given an input z, specifies a conditional
density gy (y|x) over possible outputs y, parameterized by the output layer of a deep network with a
set of parameters 6. Specifically, the input vector z € R™° propagates through a network of L layers
according to:

= ¢ Wiz +b;) i=1,...,L (1

where z; € R™ is the output of layer ¢ (which then serves as an input to layer ¢ + 1), W; € R™¢*"i—1
is a weight matrix into layer 4, b; € R™¢ is a vector of bias parameters, ¢; is a function applied element-
wise to its vector argument, and x is defined as equal to the input x. The set of parameters 6 includes
all the elements of the weight matrices and bias vectors of all layers, for a total of P parameters. For
ease of notation, in the following we include the bias vector b; for each layer as an additional row
in W;, and augment the activation vector z;_; accordingly with one constant component equal to
one. The output of the last layer is z,: it depends on all parameters 6 and determines the conditional
density gg(y|x), which we assume here is a Gaussian with a mean determined by ', and a constant

covariance matrix, . Our theoretical results will be obtained for linear networks (¢;(z) = = and
b; = 0), but we later return to nonlinear networks in numerical simulations.



The above model specifies a joint distribution of input/output pairs, i.e. po(z,y) = qo(y|z) ¢*(x)
where ¢*(z) = [ dyp*(x,y) is the marginal distribution of the input and does not depend on the
parameters 6. The network is trained via maximum likelihood, i.e. by minimizing the following loss
function:

L(0) = (= logpe(z,y)),. = (—logqe(ylz)),. + const )

where the average is over the true distribution p*(z, y). In the following, we will use the shorthand
notation £(0|x,y) = logps(z,y). Note that, in this setting, maximum likelihood is equivalent to
minimizing the KL divergence Dky (p*|| pg) between the true distribution p*(z,y) and the model
distribution py(z, y).

A common way of minimizing £(6) is gradient descent, i.e. parameter updates of the form:

de oL <8€(0|x,y)>
X —— = —_—
p*

dt a0 a0 )

where ¢ denotes time elapsed in the optimization process. Although the theory of natural gradient we
develop below applies to this continuous-time formulation [Mandt et al., 2017]], numerical experiments
are performed by discretizing [Eq. 3] and setting a finite learning rate parameter. The dynamics of
are guaranteed to decrease the loss function in continuous time when the expectation over p*
can be evaluated exactly; in practice, these dynamics are approximated by sampling from p* using a
batch of training data points, and using a small but finite time step (learning rate) — this is SGD.

The natural gradient corresponds to a modification of which consists of multiplying the
(negative) gradient by the inverse of the Fisher information matrix F':
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where the Fisher information matrix F € RY*P
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Note that the average is taken over the model distribution py(x,y) = go(y|z)g*(x), rather than
the true distribution p*(x, y). Since the Fisher matrix is positive definite, the natural gradient also
guarantees decreasing loss in continuous time. The Fisher information matrix quantifies the accuracy
with which a set of parameters can be estimated by the observation of data, and the natural gradient
thus rescales the standard gradient accordingly. The natural gradient has a number of desirable
properties: it corresponds to steepest gradient descent in the space of distributions py(z,y), it is
parameterization-invariant, and affords good generalization performance [[Amari, |1998; [Le Roux
et al., 2008|]. Moreover, natural gradient descent can be regarded as a second-order method in the
space of parameters (e.g. it reduces to the Gauss-Newton method in some cases [Pascanu and Bengio|
2013; Martens, [2014])).

3 Exact natural gradient for deep linear networks and quadratic loss

In this paper, we focus on regression problems where the conditional model distribution gp (y|x) is
Gaussian, with a mean equal to the output =, of the last layer of a deep network and some covariance
3. Note that other types of distributions can also be used, e.g. a categorical distribution parameterized
by the output of a final softmax layer to address classification problems. Using[Eq. 2] the loss function

for a Gaussian distribution is equal to the mean squared error weighted by the inverse covariance
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£:§<(y—zL) 2 1(y7:z:L)> + const (6)
p*
where the loss depends on the parameters of the deep network through the conditional mean 1, and
the constant includes all the terms that do not depend on x;, and thus on the network parameters.
Using the expression for the loss, we can compute the gradient with respect to the weight matrix into
layer 1, as

oL
ow;

= —(eivi_1),. (7)



where e; € R™ is the error propagated backward to layer ¢ (see below, [Eq. §), and z;_1 is the
activation of layer ¢ — 1 propagated forward (Eq. I)). Note that this expression for the gradient is a
matrix of the size of ;. The expression for the backpropagated error is given by

er =0 |27 (v — )]
ei:¢{°[Wz£1€i+1] t=1,...,L—-1 (8)

3
where the symbol o denotes the element-wise (Hadamard) vector product, and ¢ denotes the scalar
derivative of ¢;, evaluated at its argument defined in[Eq. 1] The gradient is computationally cheap to
evaluate, since a single forward pass is used to compute the activations z; of all layers, and a single
backward pass is used to compute the corresponding errors e;.

It is currently unknown if the natural gradient affords an expression as simple and computationally
cheap as those used to evaluate the standard gradient (Eqgs. 7}f8). Here, we derive such an expression
in the case of a deep linear network. We thus take ¢;(z) = = (i), and set the bias vectors to zero
without loss of generality if the input has zero mean, (x) 4+ = 0. Using the activation of the
last layer is therefore equal to

xL:(WL~WL_1--~W2-W1)x:Wx (9)

where we defined the total weight matrix product W in the last expression, equal to the chain of
matrix multiplications along all layers 1,2, ..., L. This expression makes obvious the uselessness of
having multiple, successive linear layers, as their combined effect reduces to a single one. However,
the dynamics of learning (e.g. by gradient descent) in each layer is highly nonlinear, while being
amenable to analytical solutions [Saxe et al.|[2013].

In the Supplementary Material, we calculate the Fisher information matrix F' for a deep linear network.
As expected, the Fisher matrix is singular, due to the aforementioned parameter redundancies, and
therefore the model cannot be identified in certain directions in parameter space. In particular, the

total number of parameters is P = Zle n; n;_1, where n; x n;_; are the dimensions of matrix
W; in layer ¢, and the total number of parameters is obtained by summing over all layers. However,
there are only ny, ng independent parameters, which are the dimensions of the total product of weight
matrices, W, in Thus, the Fisher matrix is of rank ny, ng at most, and is therefore necessarily
singular.

Due to the above singularity, the matrix inversion prescribed by [Eq. 4]to obtain the natural gradient
must be replaced by a generalized inverse (indeed, this is the appropriate way of dealing with this
singularity, and it comes from the interpretation of the Fisher matrix as a metric in the space of
distributions [Pascanu and Bengiol [2013])). Note that there exist an infinite number of generalized
inverses. Our main result is proving that under the natural gradient, the dynamics of pg, and therefore
also the dynamics of the loss function, are identical for all possible generalized inverses of the
Fisher matrix (Supplementary Material). Moreover, any choice thereof leads to exponentially fast
convergence towards the minimum loss. Critically though, all those possible generalized inverses
might differ greatly in the simplicity and associated computational cost of the resulting parameter
updates. We find that one particular generalized inverse leads to the following, remarkably simple
expression:
aw;, 1 -1 -1

dtz x 7 <ez- eiT>p9 <ei xiT_1>p* <xi_1 xIT_1>m (10)
This expression is equal to the standard gradient (middle term, cf.[Eq. 7), multiplied by the inverse
covariance of both the backward error e; (left) and forward activation x;_; (right). Note that these
covariances correspond to averages over the model distribution py(z, y), and not the true distribution
p*(z,y). When the inverses of those covariances do not exist, it is their Moore-Penrose pseudoinverse
that must be used instead (Supplementary Material). As expected for the natural gradient, is
dimensionally consistent (weight updates have the same “units” as the weight matrices themselves),
and is covariant for linear transformations.

At first glance, [Eq. T10|requires two matrix multiplications and inversions per layer, which make it
more costly than standard gradient descent. However, if the expectation over p* is approximated by
sampling as in SGD, then one only needs to perform two matrix-vector products, and make rank-1
updates of W;, which brings the computational cost down to that of SGD. Finally, one can either
(pseudo-)invert the two covariance matrices in[Eq. 10|e.g. using an SVD (scales poorly with layer size,




but otherwise cache efficient), or directly estimate their inverses using Sherman-Morrison updates
(in which case the complexity scales with both layer size and network depth in the same way as for
SGD). We discuss these practical issues further below.

4 Analytic expression for convergence rate

In this section, we provide a simplified derivation of the exponential decrease of the loss function
under the the natural gradient updates given by which are based on a particular form of the
generalized inverse of F'. The equation for the natural gradient is given by [Eq. 16| below, which
corresponds to in the Supplementary Material. A more general derivation of the exponential
decrease of the loss function is given in the Supplementary Material, where we show that the same
exponential decay of the loss holds for all possible generalized inverses.

Using and[8] the forward activation and backward error in a linear network are given by
Ti—1 = (Wifl"'Wl)x (11)

ei= (W Wip)' S (y — 2p) (12)

Using the gradient of the loss function is equal to the averaged outer product of the backward
error and the forward activity, namely

oL
S = (e xﬁﬁp* = — (W W) 571 {(y—zr) £CT>:D* (Wi_y---Wp)T (13)

In order to derive the natural gradient update, we calculate the covariance matrices in[Eq. 10] The
covariance of the backward error is equal to

(eel),, = (W Wipn) 57 <(y —zL)(y — IL)T> STHWL o Wisa)

Peo

= (WL"'Wi+1)T ST (W Wig) (14)

The second line results from averaging over the model distribution pg(z,y) = go(y|x)g*(x): the
first average over the conditional distribution g (y|x) = N (y; x1, ) yields the covariance 3 itself,
and the latter does not depend on the input (making the average over ¢*(x) unnecessary). Similar
arguments lead to the covariance of the forward activity:

(wimaai_y), = Wimi- W) (aa®) (Wioy - W) = (Wi W) S (Wiy - )T
5)
where ¥ = <m:T>q* is the covariance of the input (the average is taken over the model distribution

pg, but zzT depends on the input distribution ¢* only).

In order to compute the natural gradient of [Eq. 10} we need to invert the covariances in
and[I5] However, they may not be invertible, except in special cases, such as when all weight matrices
are square and invertible, and when both ¥ and ¥ are full rank. We consider this simple case first,
and then address the general case of non-square matrices. If we can invert explicitly the relevant
covariance matrices, substituting into [Eq. 10| along with[Eq. T3] yields updates of the form
: 1 _ _

d:l? oc 7 (Wp - Wipy) - wp)ag ), B (Wisy - W) ! (16)
This equation does not immediately suggest any advantage with respect to standard gradient descent.
However, it is revealing to derive the dynamics of the total weight matrix product, W = Wy, - - W7,
which represents the net input-output mapping performed by the network. Using the product rule of
differentiation:

L

dw dW;
=y W Wisn) S (Wi - W 17
i i:1( L i+1) i Wiy 1) (17)
Substituting the expression for the update, and using x;, = Wxq we obtain
dw S



Thus, under natural gradient descent in continuous time, the total weight matrix obeys first order
dynamics, and therefore converges exponentially fast towards <yxT> ¥.~1, which is indeed the least
squares solution to the linear regression problem [Bishopl [2016]. Since the loss is a quadratic function
of W (cf. [Eq. 6)),[Eq. 18] also proves that the loss decays exponentially towards zero under natural
gradient descent. This result holds provided that the network parameters are not initialized at a saddle
point (for example, weights should not be initialized at zero).

When the covariances in and[I3]cannot be inverted, e.g. when the weight matrices are not
square (the network is contracting, expanding, or contains a bottleneck), we show in the Supplemen-
tary Material (Eq. 43)) that the Moore-Penrose pseudo-inverse must be used instead, inducing similar
dynamics for W:

L
dw 1 T —1pb

S X TWAE Y P (e, 3R (19)

i=1

Here, P? and P! are projection matrices that express the way in which the network architecture
constrains the space of solutions that the network is allowed to reach. For example, if the network has
a bottleneck, the total matrix W will only be able to attain a low-rank approximation of the optimal
solution to the regression problem, <y:cg> 71, Note, for example, that P = I (identity matrix) for

a non-expanding network, while P? = I for a non-contracting network.

5 Implementation of natural gradient descent and experiments

Similar to SGD, we approximate the average over p* in[Eq. 7|by using mini-batches of size M. For
each input mini-batch x, we use the forward activations (already calculated in the forward pass to get
the gradient information) to estimate A; = <:ci,1:cg;1 >p9. Then, for the same input mini-batch, we

also sample K times from the model predictive distribution gg(y|x), use these outputs as targets, and
perform the corresponding K backward passes to obtain K M backpropagated error samples used to
estimate A; = <eieiT>pe. Note that the true outputs of the training set are only used to compute (a

stochastic estimate of) the gradient of the loss function, but never used to estimate A; nor /~\Z (indeed,
these are averages over py, not p*). In practice, we find that K = 1 suffices.

Weights are updated according to [Eq. 10] discretized using a small time step (learning rate ).
Inspired by the interpretation of NGD as a second-order method [Martens, 2014, we also incorporate
a Levenberg-Marquardt-type damping scheme: at each iteration %, we add v/\;,I to both covariance
matrices A; and A; prior to inverting them, where A, is an adaptive damping factor. Note that this is
not equivalent to adding Ay, to the Fisher matrix. Nevertheless, it does become equivalent to a small
SGD step in the limit of large damping factor Ai. Therefore, at iteration k we update the synaptic
weights in layer ¢ according to

AW =% (Rt VD) (e, (Nt VART) 0)

We update \; in each iteration to reflect the ratio p; between i) the actual decrease in the loss
resulting from the latest damped NG parameter update, and ii) the decrease predicted by a quadratic
approximation to the losﬂ The damping factor is updated as follows:

B
Moss = o if pp < 0.25 @)
2% if py > 0.75

We experimented with deep networks (linear and nonlinear) trained on regression problems (Fig. T).
First, we trained three linear networks to recover the mappings defined by random networks in their
model class. The first network (Fig. TIA) had L = 16 layers of the same size n; = 20. The second
) had L = 16 layers, of size 20(input), 30, 40, . . ., 100, .. ., 30, 20. While these two networks

"Here, the quadratic approximation is implicitly defined as the quadratic function whose minimization by the
Newton method would require a step in the direction of AW, the momentary update taken by our damped NGD
step. The predicted decrease in loss under such a quadratic approximation is cheap to compute: if AW, is the NG

update for layer ¢, then the predicted decrease in the loss is given by (—a + %2) >t (AWZ-T <ei:ciT_1>p*).
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Figure 1: Natural gradient in deep networks. (A—C) Dynamics of the loss function under opti-
mization with SGD (black) and NGD (red), for three deep linear networks with different architectures
(see main text for details). Training time is reported both as number of training examples seen so
far (top) and wall-clock time (bottom). Both optimization algorithms start from the same initial
network parameters. Dashed gray lines denote the smallest possible loss, determined by the variance
of the true underlying conditional density of y|x. (D) Test error for MNIST autoencoding in a deep
nonlinear network (see main text for details); colors are the same as in (A—C). SGD parameters:
M = 20, learning rate « optimized by grid search (A and B: @ = 0.08; C: o = 0.02; D: o« = 0.04).
NGD parameters: o = 1, M = 1000.

were over-parameterized, our third network @) was an under-parameterized bottleneck with
steep fan-in and fan-out, with L = 12 layers of size 200(input), 80, 34, 20, 10, 5, 2, 5, . . ., 80, 200.
For each architecture, we generated a network with random parameters 6* and used it as the reference
mapping to be learned. We generated a training set of 10* examples, and a test set of 10% examples,
by propagating inputs drawn from a correlated Gaussian distribution ¢*(z) = N (z;0, X) through
the network, and sampling outputs from a Gaussian conditional distribution gy« (y|2) with covariance
Y = 10~51. We generated X to have random (orthogonal) eigenvectors and eigenvalues that decayed
exponentially as e 5%/,

We compared SGD (with minibatch size M = 20, and learning rate optimized via grid search) and
online natural gradient (with minibatch size M = 1000). For both tasks, SGD made fast initial
progress, but slowed down dramatically very soon. In contrast, as predicted by our theory, natural
gradient descent caused the test error to decrease exponentially and reach the minimum achievable

loss (limited by ) after only a few passes through the training set l A-C, top).

As a preliminary extension to the nonlinear case, we also trained a nonlinear network with eight
layers of size 784(input), 400, 200, 100, 50, 100, . . ., 784, to perform autoencoding of the MNIST
dataset (Fig. D). All layers had ¢;(z) = tanh(z), except for the final linear layer. We compared
standard SGD (with M = 20 and « optimized by grid search) to our proposed natural gradient
method with adaptive damping and no further modification). We set o = 1, M = 1000 and
K = 1. Despite our NGD steps only approximating the true natural gradient, it outperformed SGD
in terms of data efficiency (Fig. ID, top). Owing to the size of the input layer, our implementation of
NGD via direct inversion of the relevant covariance matrices outperformed SGD only modestly in
wall-clock time (Fig. I|D, bottom). We discuss alternative implementations below.




6 Related work

Diagonal approximations As reviewed in Martens|[2014]], some recent popular methods can be
interpreted as diagonal approximations to the Fisher matrix F', such as AdaGrad [Duchi et al., [2011],
AdaDelta [Zeiler, [2012]], and Adam [Kingma and Ba, |2014]]. Those methods are computationally
cheap, but do not capture pairwise dependencies between parameters. In theory, faster learning
could be obtained by leveraging full curvature information, which requires moving away from a
purely diagonal approximation of F'. However, this is computationally intensive for at least two
reasons: i) the Fisher matrix is large, often impossible to store, let alone to invert, and ii) even if
one could compute F'~!, the natural gradient would still require O(P?) operations (where P is
the number of parameters). Much of the recent literature has focused on ways of mitigating this
complexity. For example, in cases where it can be stored, F'~! can be estimated directly using the
Sherman-Morrison lemma [[Amari et al.,|2000]. When it cannot be stored, one can approximate the
natural gradient directly via conjugate gradients, exploiting fast methods for computing F'v products
(as in Hessian-free and Gauss-Newton optimization [Martens), 2010; |Pascanu and Bengio, 2013}
Martens and Grossel [2015; [Vinyals and Poveyl 2012]]). Often, however, many steps of conjugate
gradients must be performed at each training iteration to make good progress on the loss. Here, we
have obtained the surprising result that F~'v products can in fact be obtained directly (in linear
networks), at almost the same cost as F'v.

Block-diagonal approximations In order to obtain an expression for the natural gradient that
would be computationally cheap and feasible for practical applications, previous studies suggested a
block-diagonal approximation to the inverse Fisher information matrix, in the nonlinear case (K-FAC,
[Martens and Grosse, 2015} |Grosse and Martens, 20165 Ba et al., [2016]], see also [Heskes, [2000;
Povey et al.l 2014} Desjardins et al.,|2015])). In general, there is no formal justification for assuming
that the Fisher information matrix (or its inverse) is block diagonal. In our deep linear network
model, we show in the Supplementary Material (cf. that the (i, j)-block of the exact Fisher
information matrix (corresponding to the weight matrices of layers ¢ and j), is equal to

Fij = <£L‘1'_1ZL']T_1>p9 (24 <6¢€f>p9 (22)

There is no reason to expect that this expression is zero for ¢ # j, unless the outputs x; or the errors
e; are uncorrelated across all pairs of layers, and indeed [Eq. T9]in the Supplementary Material shows
that it is not zero. Nevertheless, if we choose to ignore this fact and set F;; = 0 for ¢ # j, then
inverting the Fisher matrix (by inverting separately each diagonal block F;;) generates an expression
proportional to the exact natural gradient of

In order to understand this puzzling observation, we recall that the exact Fisher is singular, and we
chose a specific form for the generalized inverse F' in order to derive [Eq. 10](while noting that the
dynamics of the loss is the same for all possible inverses). In the Supplementary Material (cf.[Eq. 36),
we note that the (¢, j)-block of this specific generalized inverse is equal to
(Fg),,_i@c, T\t TN 23

i = 72 ]—1‘ri—1>pe ® (eje; o (23)
Thus each block of the inverse Fisher is equal to the inverse of the corresponding block of the
(transposed) Fisher matrix (note that we assumed square and invertible blocks). However, the inverse
Fisher is not block-diagonal either, thus it remains unclear why the approximation works. The
solution to this puzzle is the following. In deriving the natural gradient update for layer 7, we must
multiply an entire row of blocks of the inverse Fisher by the gradient across all layers. Surprisingly,
each of these blocks makes exactly the same contribution to the natural gradient (Eq. 37]in the
Supplementary Material). Thus, we can get away with computing the single contribution of the
diagonal block for each row, and simply multiply that by the number of blocks in the row. This is of
course equivalent, though only fortuitously so, to making a block-diagonal approximation of F' in the
first place. Therefore, somewhat incidentally, a block-diagonal approximation is expected to perform
just as well as the full matrix inversion.

Whitening and biological algorithms Our expression for the natural gradient offers post-hoc
justifications for some recently proposed modifications of the standard gradient, whereby the forward
activation and backward errors are whitened prior to being multiplied to obtain the gradient at
each layer [Desjardins et al., 2015} |[Fujimoto and Ohiral [2018]]. In our method, these vectors are



also rescaled, albeit with their inverse covariances instead of the square root thereof (Eq. 10} see
also |Heskes| [2000]; [Martens and Grosse| [2015]]). Notably, this form of rescaling is equivalent
to backpropating the error through the (pseudo)-inverses of the weight matrices, rather than their
transpose (Eq. 16); interestingly, this strategy also tends to emerge in more biologically plausible
algorithms in which both forward and backward weights are free parameters [Lillicrap et al.,[2016;
Luo et al., [2017].

7 Conclusions

We computed the natural gradient exactly for a deep linear network with quadratic loss function. We
showed that the natural gradient is not unique in this case, because the Fisher information is singular
due to over-parameterization. Surprisingly, we found that the loss function has the same convergence
properties for all possible natural gradients, i.e. as obtained by any generalized inverse of the Fisher
matrix. Indeed, one of our main results is the first exact solution for the convergence rate of the
loss function under natural gradient descent, for a linear multilayer network: exponential decrease
towards the minimum loss. This result backs up empirical claims of the natural gradient efficiently
optimizing deep networks; in the deep linear case, we find that it solves the problem of pathological
curvature entirely [Pascanu and Bengio| [2013; Martens, 2014]]. Our results also consolidate deep
linear networks as a useful case study for advancing the theory of deep learning. While Saxe et al.
[2013]] used linear theory to propose new ways of initializing neural networks, we have used it to
propose a new, efficient optimization algorithm. We found that natural gradient updates afford an
unexpectedly cheap form, with similar computational requirements as plain SGD.

Compared with the size of deep neural networks currently used, our application concerned relatively
small networks of at most a few hundreds neurons per layer. Our current implementation based
on direct inversion of A and A in may scale poorly (in wall-clock time) as the layer sizes
increase. In this case, matrix pseudo-inversion in could be performed using randomized SVD
algorithms [Halko et al., 2011]]. Alternatively, direct estimation of those matrix inverses via the
Sherman-Morrison (SM) lemma should scale better [[Amari et al.,|2000], which we have confirmed in
preliminary simulations. As SM updates tend to be less cache-efficient than direct inversion (they
require many matrix-vector products instead of fewer matrix-matrix products), they may only benefit
performance for very large layers. Moreover, more work is needed to incorporate adaptive damping
into SM estimation of inverse covariances.

Our analytical results were derived for continuous time optimization dynamics. While we presented
numerical evidence showing that a discrete-time implementation of NGD performs well, and it indeed
shows the exponential decrease of the loss function predicted by our theory, further work is necessary
in order to derive principled methods for discretizing the parameter updates [Martens), 2014].

Our core results relied exclusively on linear activation functions. While we have had some success in
training nonlinear networks using[Eq. T0]as a drop-in replacement for SGD (Fig. TD), much remains
to be done to make our algorithm effective in general deep learning settings. Improvements could be
made to our adaptive damping scheme, for example through asymmetric damping of the covariance
matrices A; and A; inas proposed by Martens and Grosse|[2015]]. More generally, deeper links
need to be established between our linear NGD theory and systematic methods based on Kronecker
factorizations (K-FAC [Martens and Grosse, 2015} |Grosse and Martens, 2016; Ba et al.,[2016[]). A
key insight from our analysis is that there exist infinitely many ways of computing the NG in linear
deep networks (and probably also in nonlinear networks in which the Fisher matrix has been found
to be near-degenerate [Le Roux et al., [2008]]). While all of these different methods result in fast
learning with identical dynamics for the loss function, their computational complexity may differ
greatly. Moreover, there may be more than one computationally tractable method (such as the one
we have used here), and in turn, some of these may be more suitable than others for use as a drop-in
replacement to SGD in nonlinear networks. We suggest that further analysis of deep linear networks
will prove invaluable for deriving efficient new training algorithms.
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