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Abstract

What policy should be employed in a Markov decision process with uncertain
parameters? Robust optimization’s answer to this question is to use rectangular
uncertainty sets, which independently reflect available knowledge about each state,
and then to obtain a decision policy that maximizes the expected reward for the
worst-case decision process parameters from these uncertainty sets. While this
rectangularity is convenient computationally and leads to tractable solutions, it
often produces policies that are too conservative in practice, and does not facilitate
knowledge transfer between portions of the state space or across related decision
processes. In this work, we propose non-rectangular uncertainty sets that bound
marginal moments of state-action features defined over entire trajectories through
a decision process. This enables generalization to different portions of the state
space while retaining appropriate uncertainty of the decision process. We develop
algorithms for solving the resulting robust decision problems, which reduce to
finding an optimal policy for a mixture of decision processes, and demonstrate the
benefits of our approach experimentally.

1 Introduction

Policies with high expected reward are often desired for uncertain decision processes with which little
experience exists. Specifically, we consider the setting in which only a limited number of trajectories
from a sub-optimal control policy through a decision process are available. Robust control approaches
for this task [1, 2, 3, 4] define uncertainty sets for the decision process based on the limited outcome
samples and seek the policy that maximizes this expected reward for the worst possible choice of
decision process parameters in these sets.

When the uncertainty sets relating to different decision process states are jointly constrained in
seemingly natural ways, the robust control problem becomes NP-hard (e.g., [5, 6]). To avoid these
computationally intractable robust control problems, uncertainty sets have often been independently
constructed for parameters associated with a particular state-action pair or particular state—s, a-
rectangularity or s-rectangularity [7, 8, 4], respectively. Unfortunately, independently assuming the
worst-case in every encountered state is often too conservative in practice to be useful [9].

Leveraging ideas from distributionally robust optimization [10, 11, 12], we construct policy-
conditioned marginal uncertainty sets for robustly learning a decision policy that optimizes the
reward given trajectory samples produced by a sub-optimal policy. State transition dynamics under
our formulation are estimated based on two competing objectives. First, the estimated dynamics must
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(approximately) match measured properties observed under the sub-optimal reference policy. Second,
the estimated dynamics must be the worst case for the simultaneously-hypothesized optimal policy.

This formulation has three main benefits: (1) Non-rectangularity: Our uncertainty sets are defined
by feature-based statistics of distributions over entire trajectories, enabling generalization across
states; (2) Off-policy robustness: We define our performance objective using the desired control
policy and the uncertainty set using the sub-optimal data generation policy; and (3) Convex parameter
optimization: We avoid the nonconvex parameter optimization pitfalls of other nonrectangular
formulations by shifting the main computational difficulties to parameterized prediction/control
problems (which can be efficiently approximated). Together, these properties aid in addressing a
number of existing concerns for robust control, including settings in which the state definition violates
the Markov assumption [13] or the transition probabilities are derived from limited data sets [3, 9].

In the remainder of this paper, we review existing robust control methods and directed information
theory concepts in Section 2. Using these concepts, we formulate the robust control task using
feature-based marginal constraints in Section 3. We reformulate this problem and present algorithms
for solving it using a combination of convex optimization and dynamic programming to optimize a
non-Markovian mixed decision process optimal control problem that arises from the formulation. We
evaluate our approach in Section 4 to demonstrate its comparative benefits over rectangular robust
control methods. Lastly, we provide concluding thoughts and discuss future work in Section 5.

2 Background and Related Work

2.1 Robust control

The Markov Decision Process (MDP) with state set S and action setA povides a common formulation
of discrete control problems. In the MDP, the transition probabilities are given by τ(st+1 | st, at) and
the reward is R(st, at, st+1). Though consideration is often restricted to deterministic Markovian
policies, π : S → A, the generalization to randomized Markovian policies ΠM = {π : S → ∆A}
provides stochastic mappings from the current state to actions. Even more generally, we will consider
non-Markovian, history-dependent, randomized policies ΠH = {π : St ×At → ∆A} in this work.

The expected sum of rewards or return ρ of a policy π applied to an MDP with dynamics τ and
reward function R is: ρR(π, τ) = Eτ,π[

∑T−1
t=1 R(St, At, St+1)]. For decision problems, the standard

objective is to choose a policy that maximizes the expected sum of rewards: maxπ ρR(π, τ). Since
a Markovian and deterministic policy always exists that maximizes this quantity, one with those
characteristics is typically sought when solving this optimization problem by many well-known
algorithms, such as value iteration or policy iteration [14].

Unfortunately, in many settings the dynamics τ are not entirely known. Control policies are needed
that can perform well despite this uncertainty about the decision process. One option is to formally
define the uncertainty as a set of possibilities and assume the worst case (Definiton 1).
Definition 1. The robust control problem is to find a control policy π ∈ Π that performs best for the
worst-case choice of state transition dynamics, τ ∈ Ξ:

max
π∈Π

min
τ∈Ξ

ρ(π, τ) = max
π∈Π

min
τ∈Ξ

Eτ,π

[
T−1∑
t=1

R(St, At, St+1)

]
. (1)

The specification of the uncertainty set(s), Ξ, has significant implications for the tractability of this
problem. Robust MDPs [7] are typically used to represent uncertainty in transition probabilities
and rewards in regular MDPs. When the state-transition probabilities for different states are jointly
constrained in arbitrary ways, the robust control problem becomes NP-hard [5, 6]. Two common
forms of constraints that enable efficient solutions are s,a-rectangular and s-rectangular [4] constraint
sets. This form arises when transition probabilities are not known precisely, but are known to be
bounded in terms of an L1 norm. A corresponding robust MDP has uncertain transition probabilities:

Ξ = {τ : ∀s, a ∈ S ×A, ‖τ(·|s, a)− p(· | s, a)‖1 ≤ c}.
This is an s, a-rectangular set. It employs independent constraints for each state-action pair or state
(s-rectangular set). A convenient way to model a robust MDP is to introduce a set of outcomes B
to represent the uncertainty in transitions and rewards. The transition probabilities are then defined
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as p(st+1 | st, at, bt) and rewards become r(st, at, bt, st+1), while ξ(bt|st, at) denotes the nature’s
policy, i.e., a distribution over outcomes.

The optimal value function v? in a robust MDP with s-rectangular and s, a-rectangular uncertainty
sets (and discount factor γ) satisfies the Bellman optimality equation for each s ∈ S as follows:

v?(s) = max
π∈Π

min
ξ∈Ξ

∑

a∈A

∑

b∈B

π(a|s)ξ(b|s, a)
(
r(s, a, b, s′) + γ

∑

s′∈S
p(s′ | s, a, b)v?(s′)

)
. (2)

In our formulation, we consider state-action feature-based constraints over the marginals of state-
action sequences to define our uncertainty sets. When the sum of rewards and the constraints are
defined in terms of different policies, this naturally induces a “belief state” that is similar to the
augmenting set of outcomes B previously described. In our case, this augmenting information tracks
the relative significance of the policies for providing robustness based on the sum of rewards versus
matching feature-based measurements from training trajectories.

2.2 Directed information theory for processes

We make extensive use of ideas and notation from directed information theory [15, 16, 17, 18, 19].
Under this theory, processes—the products of T conditional probabilities over a sequence of T
variables—are treated as first-order objects. The causally conditioned probability distribution [20],
p(y1:T ||x1:T ) ,

∏T
t=1 p(yt|y1:t−1,x1:t), illustrates the notation for this process of generating the

sequence of y1:T variables given the sequence of x1:T variables. It differs from the conditional prob-
ability distribution, p(y1:T |x1:T ) =

∏T
t=1 p(yt|x1:T ,y1:t−1), in the limited history of x variables

each yt variable is conditioned upon.

Both (stochastic) control policies, π(a1:T ||s1:T ) ,
∏T
t=1 π(at|a1:t−1, s1:t), and (stochastic) state

transition dynamics, τ(s1:T ||a1:T−1) ,
∏T
t=1 τ(st|s1:t−1,a1:t−1), can be expressed using this

notation. The joint probability distribution over states and actions is then p(a1:T , s1:T ) =
π(a1:T ||s1:T )τ(s1:T ||a1:T−1), and the expected reward can be expressed as an affine combination of
bilinear functions of these processes:

ρR(π, τ) =
∑

a1:T

∑

s1:T

π(a1:T ||s1:T )τ(s1:T ||a1:T−1)

T−1∑

t=1

R(st, at, st+1). (3)

Additionally, the uncertainty of state sequence outcomes can be quantified using the causally condi-
tioned entropy:

Hτ,π(S1:T ||A1:T−1) = −
∑

a1:T ,s1:T

π(a1:T ||s1:T )τ(s1:T ||a1:T−1) log τ(s1:T ||a1:T−1). (4)

Of crucial importance for optimization purposes, the set of causally conditioned probability distribu-
tions is convex and the causal entropy is a convex function of those probabilities [21].

3 Marginally-Constrained Robust Control Processes

We define constraints on uncertainties about a decision process based on its interactions with a
reference policy. In other words, state-action trajectories through the decision process are available
that were produced from a policy that may be quite different from the optimal one. Similarly to
previous works [5, 22], we propose practical algorithms for this problem by augmenting the state
space.

3.1 Defining Uncertainty Sets with Marginal Features

We consider a feature function φ : S ×A× S → Rd characterizing the relationships between states
and actions to restrict the set of possible realizations of uncertain MDP parameters. We denote the
first moment of the occupancy frequencies with respect to φ (also known as feature expectations in
the inverse reinforcement learning literature [23, 24]) as κφ(π, τ) := Eτ,π

[∑T−1
t=1 φ(St, At, St+1)

]
,

while we denote the empirical sample statistics, which are measured from N sample trajectories,
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as κ̂ = 1
N

∑N
i=1

∑T−1
t=1 φ(s

(i)
t , a

(i)
t , s

(i)
t+1). Based on these quantities, we can now define the robust

control problem with constraints using marginal statistics of the state-action sequence to define the
uncertainty set Ξ.
Definition 2. The marginally-constrained robust control problem given reference policy π̃ is:

max
π∈Π

min
τ∈Ξ

ρ(π, τ)− 1

λ
Hτ,π̄(S1:T ||A1:T−1), (5)

where Ξ is the set of all transition probabilities whose feature expectations match the empirical sample
statistics, i.e., Ξ = {τ | κφ(π̃, τ) = κ̂}. In general, and of practical significance, slack can also be
added to the constraints, leading to a relaxed uncertainty set Ξ̃ = {τ | ||κφ(π̃, τ)− κ̂|| ≤ β}1. We
include an optional causal entropy (Equation 4) regularization penalty term, 1

λHτ,π̄(S1:T ||A1:T−1),
where λ ∈ (0,∞) is a provided parameter and π̄(a1:T ||s1:T ) is an arbitrary distribution.

Intuitively, our formulation allows constraints for whole trajectories rather single state-action pairs, as
with rectangular constraints. Furthermore, features φ allow us to specify properties of the unknown
transition dynamics that generalize globally across the state-action space, which is not possible using
local constraints, such as rectangular ones. When limited data is available and generalization is
therefore required to achieve good performance, this constitutes a significant advantage. Finally, our
optional entropy regularization term leads to smoother solutions, where the smoothness is controlled
by parameter λ. Many previous works have shown the benefits of having entropy-based smoothing
[2, 25].

In practice, the design of the feature function φ is fundamental for properly constraining the estimated
transition probabilities. Although a specific choice is highly application dependent, the features
should in general encode known properties of the underlying MDP. Since our solution reduces
to finding dynamics that induce a behavior on the reference policy, specified through κφ, that
approximately matches the one observed from the given trajectories, many analogies exist with
feature design in the IRL literature (see, e.g., chapter 6 of [26]). Common choices thus include
indicator functions over important properties/events, such as reaching certain goal states, entering
dangerous zones, taking very likely (or unlikely) transitions, and so on. The key consequence of
adding these kinds of features is that the probability of these events occurring under the estimated
dynamics will be (approximately) the same as the one observed in the given trajectories. Consider, for
instance, an MDP where s, a, s′ triples with some known property P(s, a, s′) have zero probability
(e.g., in a gridworld or a chain-walk domain, a transition is impossible if s and s′ are not adjacent).
Then, using a feature φ(s, a, s′) = 1[P(s, a, s′)], i.e., an indicator function over P , will constrain
the estimated transition probabilities to be zero for all triples where such property holds. In fact,
κφ(τ, π̃) = 0 and κ̂φ = 0 for any reference policy. More generally, most MDPs of practical interest
have properties that couple the transition probabilities of several state-action pairs. Capturing these
global properties using moment-based constraints is typically much better than focusing on single
states or state-action pairs, which is more prone to overfitting the given trajectories. In the limiting
case, one could consider a separate feature (e.g., an indicator) over each s, a, s′ triple. However,
similarly to rectangular solutions, having separate constraints for different state-action pairs is likely
to lead to very conservative solutions in the presence of limited data. Finally, notice that using an
indicator function over each s, a, s′ triple is equivalent to matching the (empirical) joint distribution
p(St, At, St+1) induced by the reference policy and the true dynamics. Thus, even when we consider
a different constraint for each triple, our solution implicitly couples the transition probabilities of
different state-action pairs and differs from a rectangular formulation which focuses on matching the
conditional distribution p(St+1|St, At).

A key characteristic of this formulation is the difference in control policies: the expected reward
is defined in terms of π, while the constraints are defined in terms of π̃. Unfortunately, treating
the marginally-constrained robust control problem (Definition 1) as an optimization problem over
the individual state transition probabilities, τ(st+1|st, at), appears daunting. This is because the
constraints in Equation (5) are not convex functions of those transition probabilities. We instead con-
sider optimizing the control policy and state transition dynamics as causally conditioned probability
distributions in the following section. Though the solution for this formulation does not naturally
have a Markovian property, our process estimation leads to an augmented-Markovian representation
in Section 3.3.

1Notice that τ must also belong to the set of valid probability distributions. We omit the corresponding
constraints for the sake of clarity.
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3.2 Reformulation as Process Estimation

We re-express the optimization problem of Definition 2 using processes—the causally conditioned
probabilities of Section 2.2—for the control policy π(a1:T−1||s1:T−1) and state transition dynamics
τ(s1:T ||a1:T−1), which conveniently combine the individual conditional probabilities over the state-
action sequence. Notice that we consider stochastic processes ending with a state at time T and an
action at time T − 1. Using this new notation, we now reformulate our main optimization problem in
a more convenient manner.
Theorem 1. The marginally-constrained robust control problem of Definition 2 can be solved by
posing it as an unconstrained zero-sum game parameterized by a vector of Lagrange multipliers, ω:

max
ω∈Rd

max
π∈Π

softmin
τ∈Ξ

(
Eτ,π

[
T−1∑

t=1

R(St, At, St+1)

]
+ Eτ,π̃

[
T−1∑

t=1

ω · φ(St, At, St+1)

])
−ω·κ̂, (6)

where softminx∈X f(x) = − 1
λ log

∑
x∈X e

−λf(x) and · denotes the dot product.

The proof is given in Appendix A. Notice that Theorem 1 holds for the slack-free uncertainty set Ξ
of Definition 2. Using the slack-based version leads to regularization of the dual parameters ω. As
shown by [27], adding l1 regularization −β||ω||1 to the dual objective is equivalent to a constraint
||κφ(π̃, τ) − κ̂||1 ≤ β in the primal, while adding l22 regularization −α2 ||ω||22 is equivalent to an
l22 potential on the constraint values in the primal. In practice, it is important to add l1 and/or l22
regularization to ensure proper convergence of the algorithm. Both types of regularization enjoy
similar theoretical guarantees [28].

We now address the inner minimax game for choosing τ and π in Section 3.3 and the outer optimiza-
tion of ω from Equation (6) in Section 3.4.

3.3 Mixed Objective Minimax Optimal Control

Choosing state transition dynamics to optimize a mixture of expected returns under different control
policies, π and π̃ (Definition 3)2 is an important subproblem arising from our formulation of robust
control as a process estimation task with robustness properties and uncertainty sets defined by different
control policies. To the best of our knowledge, this problem has not been previously investigated in
the literature.
Definition 3. Given two control policies π and π̃, and two reward functions R and R̃, the mixed
objective optimization problem seeks state transition dynamics τ that minimizes a mixture of these
weighted by θ ≥ 0 : minτ {θρR(π, τ) + (1− θ)ρR̃(π̃, τ)}.

Notice that the inner minimization of Equation (6) is an entropy-regularized instance of this problem.
In fact, we can set R̃(st, at, st+1) ← ω · φ(st, at, st+1) and θ = 1

2 (provided that rewards are
properly rescaled). As we already know from Theorem 1, the entropy leads to a softmin solution
and does not pose any additional complication in solving the optimization problem of Definition 3.
Furthermore, in the inner zero-sum game of Equation (6), π is chosen as the maximizer of ρ(π, τ).
Thus, we can see Definition 3 as a special case where π is fixed rather than chosen dynamically.

An important observation for this problem is that the optimal transition dynamics are not Markovian.
Indeed, the influence of ρR and ρR̃ on choosing the next-state distribution at some decision point
depends on how probable it is for that decision point to be realized under π and under π̃. This, in turn,
depends on the entire history of states and actions leading to the current decision point. However,
we establish that this non-Markovian problem can be Markovianized by augmenting the current
state-action pair with a continuous “belief state” as follows:

b(a1:t||s1:t) ,

∏t
i=1 π(ai|a1:i−1, s1:i)∏t

i=1 π(ai|a1:i−1, s1:i) +
∏t
i=1 π̃(ai|a1:i−1, s1:i)

=
π(a1:t||s1:t)

π(a1:t||s1:t) + π̃(a1:t||s1:t)
. (7)

The belief state tracks the relative probability of the decision point under π and π̃. Defining it in this
manner is convenient because it limits the domain for b to [0, 1]. It can also be updated to incorporate

2Without any loss of generality, this problem could be equivalently posed as finding the control policy π
that maximizes a mixture of rewards θρR(π, τ) + (1− θ)ρR̃(π, τ̃) for two different decision processes with
dynamics/reward (τ,R) and (τ̃ , R̃).
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a new action at+1 in state st+1 as:

b(a1:t+1||s1:t+1) =
b(a1:t||s1:t)π(at+1|a1:t, s1:t+1)

b(a1:t||s1:t)π(at+1|a1:t, s1:t+1) + (1− b(a1:t||s1:t))π̃(at+1|a1:t, s1:t+1)
. (8)

Augmenting with the belief state of Equation (7), we prove that it is possible to compute a Markovian
solution to the inner zero-sum game of Equation (6) and, thus, to the optimization problem of
Definition 3.
Theorem 2. Let π̃ be a given randomized Markovian policy and Z(st, at, bt−1) = bt−1 + (1 −
bt−1)π̃(at|st), where bt is the belief state defined in Equation (7). Then, a solution (π∗, τ∗) to the
inner zero-sum game of Equation (6) is:

τ∗(st+1|st, at, bt) =
e−λQ(st,at,bt,st+1)∑
s′ e
−λQ(st,at,bt,s′)

; π∗(st, bt−1) = argmax
at

QR

(
st, at,

bt−1

Z(st, at, bt−1)

)
, (9)

with Q as the value of a transition to state st+1, V as the value of state st and belief state bt−1, and
QR as the expected return from R obtained by taking action at in state st and belief state bt:
Q(st, at, bt, st+1) = btR(st, at, st+1) + (1− bt)R̃(st, at, st+1) + V (st+1, bt), (10)

V (st, bt−1) = Z′(st, bt−1) softmin
st+1

Q

(
st, π

∗(st, bt−1),
bt−1

Z′(st, bt−1)
, st+1

)
, (11)

QR(st, at, bt) =
∑
st+1

τ∗(st+1|st, at, bt)

(
R(st, at, st+1) +QR

(
st+1, π

∗(st+1, bt),
bt

Z′(st+1, bt)

))
(12)

where Z ′(st, bt−1) = Z(st, π
∗(st, bt−1), bt−1).

The proof is given in Appendix A.

Since we have a maximum causal entropy estimation problem, τ∗ (Equation 9) takes the form of a
Boltzmann distribution with temperature λ−1 and energy given by Q(st, at, bt, st+1). Function Q
(Equation 10) specifies the value of a transition from st, at, bt to state st+1. Intuitively, it is a sum
of (i) the immediate return, which in turn is a mixture of rewards from R and R̃ weighted by the
current belief state, and (ii) the value of the next state st+1 given that the current belief is bt. We have
the additional complication that π is chosen dynamically as the maximizer of ρR(π, τ) rather than
statically. Given τ∗, the optimal policy π∗ (Equation 9) aims at maximizing the expected future return
from R defined in (12). Notice that since the optimal policy π∗ is deterministic and π̃ is Markovian,
the belief state update rule of (8) can be written in the more concise form: bt+1 = bt

Z′(st+1,bt)
. Finally,

given τ∗ and π∗, we can compute the optimal value V obtained from state st and belief state bt−1 as
defined in (11). Algorithm 1 summarizes our Markovian dynamic program.

Algorithm 1 Min-max Dynamic Programming
Require: Reference policy π̃, reward function
R(st, at, st+1), feature function φ(st, at, st+1),
Lagrange multiplier ω, entropy regularization weight λ

Ensure: Robust dynamics τ∗, optimal policy π∗

V (sT , bT−1)←0; R̃(st, at, st+1)←ω ·φ(st, at, st+1)
for t = T − 1 to 1 do

Set Q(st, at, bt, st+1) from V using (10)
Set τ∗(·|st, at, bt) ∝ e−λQ(st,at,bt,·)

Set QR(st, at, bt) from τ∗ and QR using (12)
Set π∗(st, bt−1) = argmaxat QR(st, at, bt)
Set V (st, bt−1) from Q and π∗ using (11)

end for

In contrast to typical value iteration in
discrete MDPs, the belief states are con-
tinuous variables in Algorithm 1. In prac-
tice, we discretize them by considering a
set B of values in the range [0, 1] and then
interpolate between these points. Notice
that since π∗ is deterministic, values in
(0, 0.5) are not possible and can be safely
neglected. This discretization allows for
a compact tabular representation of all
functions defined in Theorem 2. The
asymptotic complexity of this procedure
(Algorithm 1) is then O(|S|2|A| |B| T ).

The robust policy π∗ returned by Algo-
rithm 1 is, for each time-step t, a function
π∗t : S × B → A mapping state-belief
state couples to actions. For the sake of completeness, we show how such a policy can be used in a
regular MDP with dynamics τ . Notice that, since belief states are updated according to Equation
(8), we need to keep track of the reference policy π̃. At the first time-step, state s1 is drawn from
the MDP’s initial state distribution, while the initial belief state b0 is set to 0.5, as can be seen
from Equation (7). Then, action a1 = π∗1(s1, b0) is taken, and the system transitions to the next
state s2 ∼ τ(·|s1, a1). Finally, the belief state is updated to account for the choice of action a1:
b1 = b0 / N(s1, b0). Then, this process is repeated until the maximum time-step is reached.
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3.4 Parameter Optimization

Standard gradient-based methods can be used to optimize the choice of model parameters ω, since
the unconstrained dual objective function is a concave function of ω. Any such method is required
to repeatedly solve the inner minimax problem of Equation (6) as specified in the previous section,
obtaining (π∗, τ∗), compute the feature expectations of the reference policy π̃ under τ∗, and use these
to update ω. Conceptually, model parameters ω are chosen to motivate the adversary’s dynamics to
satisfy the constraints from the reference policy—(approximately) matching the state-action feature
statistics of the training trajectories. Hence, under the assumption that matching features is feasible,
following the gradient update rule, ωi+1 ← ωi + ηi(κφ(π̃, τ∗)− κ̂), converges when the statistics
match, i.e., when κφ(π̃, τ∗) = κ̂3.

Computing the expected features under the adversary’s non-Markovian dynamics, τ∗, requires an
extension of the dynamic programming algorithm used to obtain τ∗ itself. The next result follows
almost straightforwardly from Theorem 2. For the sake of completeness, we include a proof in
Appendix A.

Corollary 1. Let (π∗, τ∗) be the belief-augmented solution of Theorem 2, p(s1) be the initial state
distribution of the given MDP, and π̃ be a randomized Markovian policy. Then:

κφ(π̃, τ∗) =
∑

s1

p(s1)Ψ(s1, b0), (13)

where Ψ is defined recursively for t = 1, . . . , T − 1 as:

Ψ(st, bt−1) =
∑

at

π̃(at|st)
∑

st+1

τ∗(st+1|st, at, bt) [φ(st, at, st+1) + Ψ(st+1, bt)] , (14)

with Ψ(sT , bT−1) = 0 and bt = bt−1

Z(st,at,bt−1)1 [at = π∗(st, bt−1)].

Notice that the computation of κφ(π̃, τ∗), as given by Corollary 1, can be efficiently included in the
dynamic program of Algorithm 1 by updating Ψ as the last step of each iteration according to (14).

4 Experiments

In this section, we empirically evaluate our robust approach for control using uncertainty sets defined
by marginal state-action statistics. We consider two different experiments. The first one is a classic
grid navigation problem and the second one is a more challenging domain in which the goal is to
control the population change of an invasive species. In all experiments, we compare our marginally-
constrained approach (MC) to three other methods for estimating the state-transition dynamics: (1) a
supervised approach using logistic regression (LR); (2) a robust MDP with s,a-rectangular uncertainty
sets (RECT); and (3) a simple maximum likelihood estimation (MLE) of the conditional transition
probabilities for all state-action pairs. Furthermore, due to the similarity between our settings and
batch reinforcement learning, we also compare to fitted Q-iteration (FQI) [29].

4.1 Gridworld

We consider an agent navigating through an N ×N grid in order to reach a goal position. The agent’s
location is described by its horizontal and vertical coordinates (x, y). At each time-step, the agent
can attempt to move in each of the four cardinal directions. With probability p = 0.3, the action fails
and the agent moves in a random direction instead. Attempts to move off the grid have no effect.
The agent’s initial position is (1, 1), while the goal is to reach state (N,N). The horizon is set to
T = 2N , while the reward function is the negative l1 distance between the next state and the goal.

In this experiment, we prove the generalization capabilities of our approach. We consider a sequence
of gridworlds with increasing size. For each of them, we collect 50 trajectories under a uniform
reference policy and we run all algorithms on such data. Intuitively, for small grids, such trajectories
provide enough exploration to allow all methods to accurately approximate the state-transition

3When l1 or l22 regularization of ω is used, this procedure converges when the feature expectations are close
to the sample statistics, where the closeness depends on the amount of regularization used (see Section 3.2).
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Figure 1: Results of the gridworld experiments, each with 95% confidence intervals. (a) Expected
return under the true dynamics as a function of the grid size. (b) Expected return under the estimated
(robust) dynamics as function of the grid size. (c) Approximation error incurred by our algorithm due
to the discretization of the belief space.

dynamics. However, as the grid grows larger, only a small portion of the state-space is observed in
the training data. Thus, generalization is required to achieve good performance. Additional details on
the adopted parameters are given in Appendix C.1.

Figure 1a shows the expected return achieved by all algorithms as a function of the grid size N .
Results are averaged over 20 runs. As expected, for small grids (e.g., N ≤ 7) all approaches obtain
nearly-optimal performance. However, as the grid size increases, only our method is able to estimate
dynamics that generalize across unseen regions of the state-space, thus maintaining nearly-optimal
performance. FQI is also able to generalize and achieves a significant improvement over the other
alternatives, but is not able to compete with our method due to the small number of trajectories
available. LR is likely to estimate very optimistic dynamics, thus leading to worse performance.
Finally, RECT obtains results comparable to LR even without generalizing. However, rectangular
uncertainty sets are too conservative to compete with our method. To better demonstrate this fact,
Figure 1b shows the performance achieved by the optimal policy computed by each algorithm under
their own estimated dynamics (except for FQI, which is model-free). We clearly notice that the
worst-case expected return obtained by the rectangular solution is, as claimed, very conservative.
Our approach, on the other hand, shows robust performance comparable to the true ones of the other
methods. Due to their optimistic estimates, both LR and MLE obtain an expected return even larger
than the optimal one.

Finally, we analyze the approximation error incurred from discretizing the belief states in our approach.
We consider a 5× 5 gridworld with the same parameters as before and run the dynamic program of
Algorithm 1 for 50 random values ofw using two different reference policies: the uniform one and a
random one. Figure 1c shows the average absolute deviation of the objective function from its true
value as a function of the number of discrete belief states Nb. Since, as we can observe from (7), the
total number of belief states that are reachable in a finite horizon depends on the number of different
probability values assigned by π̃, the uniform reference policy achieves a very small approximation
error even with few belief states. Interestingly, the approximation error for a random reference policy,
which can be regarded as a ’worst-case’ scenario, can also be reduced using a relatively small number
of belief states.

4.2 Invasive Species

We next consider modeling the population change of an invasive species in an ecosystem with a
single action available for mitigating its spread (e.g., introducing a predator). Our starting point is a
state-space model with exponential dynamics adapted from Chapter 5 of [30]. Each state captures the
current abundance of the invasive species, which we denote as Nt at time t. The population evolves
according to exponential dynamics, so that Nt+1 = min{νtNt,K}, where K is the maximum
carrying capacity. The growth rate ν depends on (i) whether the control action at has been applied,
(ii) the current population level Nt, and (iii) random noise. When the control action is not applied
(at = 0), the growth rate is: νt = max{0, ν̄ + N (0, σ2

ν)}, where ν̄ is the mean growth rate. In
this case, the growth rate is independent of the current population level. When the control action is
applied (at = 1), the growth rate is: νt = ν̄ − β1Nt − β2 max{0, Nt − N̂}2 +N (0, σ2

ν), where

8



Table 1: Negative expected return for different numbers of trajectories M and reference policy’s
control probabilities p in the invasive species experiment. Each value is the average of 20 independent
runs. 95% confidence intervals are shown. The best algorithms are highlighted in bold.

Alg. M p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5

MLE 50 121.74± 0.82 128.34± 2.06 140.36± 1.28 147.189± 1.78 149.82± 2.12
LR 50 152.95± 13.5 106.77± 2.21 117.43± 5.09 122.756± 5.94 123.28± 4.82
MC 50 99.37± 0.96 102.38± 1.82 98.36± 0.78 107.39± 3.44 124.47± 1.81
RECT 50 111.91± 5.33 107.71± 4.13 117.15± 6.76 123.55± 7.95 142.26± 8.28
FQI 50 140.85± 6.11 133.08± 5.36 133.77± 4.70 134.05± 6.22 140.25± 5.04

MLE 100 120.91± 0.63 125.21± 1.25 134.23± 1.33 140.96± 1.76 145.42± 1.72
LR 100 169.27± 8.72 104.70± 3.43 110.09± 2.57 114.23± 2.49 124.53± 4.98
MC 100 98.25± 0.88 103.66± 1.05 96.20± 0.95 105.17± 1.95 115.04± 6.18
RECT 100 100.98± 3.33 103.80± 3.22 108.69± 4.95 106.18± 4.02 136.24± 8.41
FQI 100 126.66± 5.84 121.93± 6.27 119.85± 4.30 125.65± 5.08 131.51± 4.92

β1 and β2 are the coefficients of effectiveness and N̂ is the population at which the effectiveness
peaks. That is, the effectiveness of the control method may increase or decrease depending on the
population of the invasive species. This dependence is modeled using a simplified quadratic spline.
The precise population Nt of the species cannot be directly observed. Instead, one can observe a
noisy estimate yt = Nt +N (0, σ2

y). The exact values of the parameters used in this experiment are
K = 500, T = 100, K̂ = 300, ν̄ = 1.02, β1 = 0.001, β2 = −0.0000021, σ2

ν = 0.02, σ2
y = 20.

Notice that due to its highly unstable dynamics and noisy observations, this domain represents a very
challenging control problem.

In this experiment, we analyze the behavior of all algorithms when given different amounts of trajec-
tories collected under different reference policies. In particular, we consider five reference policies,
where each chooses to apply the control action with a fixed probability p ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.
For each reference policy, we generate two datasets of M1 = 50 trajectories and M2 = 100 trajecto-
ries, respectively. Additional details are given in Appendix C.2.

Results of our experiments in these settings are reported in Table 1. Each datapoint is obtained as
the result of an average over 20 runs, We notice that MC outperforms all alternatives when p < 0.5
and M = 50. As before, this is due to its generalization capabilities. When considering M = 100
trajectories, all other approaches significantly improve their performance. However, MC is still able
to achieve better results for most values of p. The rectangular solution (RECT) also achieves good
performance, but shows a much higher variability. Finally, we note that all algorithms suffer from the
very limited exploration provided by a reference policy with p = 0.5. In such cases, the performance
of the feature-based approaches are superior.

5 Conclusion & Future Work

In this paper, we have proposed a new approach to robust control based on causally conditioned
probability distribution estimation that defines uncertainty sets using features of the interaction with
the decision process with a different policy. Though the solution to the corresponding robust control
problem is non-Markovian, we show that it can be closely approximated by augmenting the typical
Markovian robust MDP formulation [31, 5] with a continuous-valued “belief state” that can then be
discretized. We have empirically tested our approach on a synthetic experiment and a real-world
control problem, highlighting its advantages over methods that form rectangular uncertainty sets.

We plan to extend our formulation to incorporate constraints that are obtained from multiple separate
reference control policies. This could also allow episodic reinforcement learning [32] where the
robust optimal control policy is employed and then updated based on the trajectories that are observed
from its application. Incorporating more sophisticated ideas for solving POMDPs using belief state
compression will likely be required, since discretizing the belief space scales poorly with the number
of different reference policies.
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