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Abstract

Feature hashing, also known as the hashing trick, introduced by Weinberger et
al. (2009), is one of the key techniques used in scaling-up machine learning
algorithms. Loosely speaking, feature hashing uses a random sparse projection
matrix A : Rn → Rm (where m� n) in order to reduce the dimension of the data
from n to m while approximately preserving the Euclidean norm. Every column
of A contains exactly one non-zero entry, equals to either −1 or 1.
Weinberger et al. showed tail bounds on ‖Ax‖22. Specifically they showed that for
every ε, δ, if ‖x‖∞/‖x‖2 is sufficiently small, and m is sufficiently large, then

Pr[ | ‖Ax‖22 − ‖x‖22 | < ε‖x‖22 ] ≥ 1− δ .
These bounds were later extended by Dasgupta et al. (2010) and most recently
refined by Dahlgaard et al. (2017), however, the true nature of the performance
of this key technique, and specifically the correct tradeoff between the pivotal
parameters ‖x‖∞/‖x‖2,m, ε, δ remained an open question.
We settle this question by giving tight asymptotic bounds on the exact tradeoff
between the central parameters, thus providing a complete understanding of the
performance of feature hashing. We complement the asymptotic bound with
empirical data, which shows that the constants “hiding” in the asymptotic notation
are, in fact, very close to 1, thus further illustrating the tightness of the presented
bounds in practice.

1 Introduction

Dimensionality reduction that approximately preserves Euclidean distances is a key tool used as a
preprocessing step in many geometric, algebraic and classification algorithms, whose performance
heavily depends on the dimension of the input. Loosely speaking, a distance-preserving dimensional-
ity reduction is an (often random) embedding of a high-dimensional Euclidean space into a space
of low dimension, such that pairwise distances are approximately preserved (with high probability).
Its applications range upon nearest neighbor search [AC09, HIM12, AIL+15], classification and
regression [RR08, MM09, PBMID14], manifold learning [HWB08] sparse recovery [CT06] and
numerical linear algebra [CW09, MM13, Sár06]. For more applications see, e.g. [Vem05].

One of the most fundamental results in the field was presented in the seminal paper by Johnson and
Lindenstrauss [JL84].
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Lemma 1 (Distributional JL Lemma). For every n ∈ N and ε, δ ∈ (0, 1), there exists a random
m× n projection matrix A, where m = Θ(ε−2 lg 1

δ ) such that for every x ∈ Rn

Pr[ | ‖Ax‖22 − ‖x‖22 | < ε‖x‖22 ] ≥ 1− δ (1)

The target dimension m in the lemma is known to be optimal [JW13, LN17].

Running Time Performances. Perhaps the most common proof of the lemma (see, e.g. [DG03,
Mat08]) samples a projection matrix by independently sampling each entry from a standard Gaussian
(or Rademacher) distribution. Such matrices are by nature very dense, and thus a naïve embedding
runs in O(m‖x‖0) time, where ‖x‖0 is the number of non-zero entries of x.

Due to the algorithmic significance of the lemma, much effort was invested in finding techniques to
accelerate the embedding time. One fruitful approach for accomplishing this goal is to consider a
distribution over sparse projection matrices. This line of work was initiated by Achlioptas [Ach03],
who constructed a distribution over matrices, in which the expected fraction of non-zero entries is
at most one third, while maintaining the target dimension. The best result to date in constructing a
sparse Johnson-Lindenstrauss matrix is due to Kane and Nelson [KN14], who presented a distribution
over matrices satisfying (1) in which every column has at most s = O(ε−1 lg(1/δ)) non-zero entries.
Conversely Nelson and Nguyễn [NN13] showed that this is almost asymptotically optimal. That is,
every distribution over n×m matrices satisfying (1) with m = Θ(ε−2 lg(1/δ)), and such that every
column has at most s non-zero entries must satisfy s = Ω((ε lg(1/ε))−1 lg(1/δ)).

While the bound presented by Nelson and Nguyễn is theoretically tight, we can provably still do
much better in practice. Specifically, the lower bound is attained on vectors x ∈ Rn for which,
loosely speaking, the “mass” of x is concentrated in few entries. Formally, the ratio ‖x‖∞/‖x‖2
is large. However, in practical scenarios, such as the term frequency - inverse document frequency
representation of a document, we may often assume that the mass of x is “well-distributed” over
many entries (That is, ‖x‖∞/‖x‖2 is small). In these common scenarios projection matrices which
are significantly sparser turn out to be very effective.

Feature Hashing. In the pursuit for sparse projection matrices, Weinberger et al. [WDL+09]
introduced dimensionality reduction via Feature Hashing, in which the projection matrix A is, in a
sense, as sparse as possible. That is, every column ofA contains exactly one non-zero entry, randomly
chosen from {−1, 1}. This techniqueis one of the most influencial mathematical tools in the study
of scaling-up machine learning algorithms, mainly due to its simplicity and good performance in
practice [Dal13, Sut15]. More formally, for n,m ∈ N+, the projection matrix A is sampled as
follows. Sample h ∈R [n] → [m], and σ = 〈σj〉j∈[n] ∈R {−1, 1}n independently. For every
i ∈ [m], j ∈ [n], let aij = aij(h, σ) := σj · 1h(j)=i (that is, aij = σj iff h(j) = i and 0 otherwise).
Weinberger et al. additionally showed exponential tail bounds on ‖Ax‖22 when the ratio ‖x‖∞/‖x‖2
is sufficiently small, and m is sufficiently large. These bounds were later improved by Dasgupta
et al. [DKS10] and most recently by Dahlgaard, Knudsen and Thorup [DKT17a] improved these
concentration bounds. Conversely, a result by Kane and Nelson [KN14] implies that if we allow
‖x‖∞/‖x‖2 to be too large, then there exist vectors for which (1) does not holds.

Finding the correct tradeoffs between ‖x‖∞/‖x‖2, and m, ε, δ in which feature hashing performs
well remained an open problem. Our main contribution is settling this problem, and providing a
complete and comprehensive understanding of the performance of feature hashing.

1.1 Main results

The main result of this paper is a tight tradeoff between the target dimension m, the approximation
ratio ε, the error probability δ and ‖x‖∞/‖x‖2. More formally, let ε, δ > 0 and m ∈ N+. Let
ν(m, ε, δ) be the maximum ν ∈ [0, 1] such that for every x ∈ Rn, if ‖x‖∞ ≤ ν‖x‖2 then (1) holds.
Our main result is the following theorem, which gives tight asymptotic bounds for the performance
of feature hashing, thus closing the long-standing gap.
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Theorem 2. There exist constants C ≥ D > 0 such that for every ε, δ ∈ (0, 1) and m ∈ N+ the
following holds. If C lg 1

δ

ε2 ≤ m < 2
ε2δ then

ν(m, ε, δ) = Θ



√
ε ·min





lg εm
lg 1
δ

lg 1
δ

,

√√√√ lg ε2m
lg 1
δ

lg 1
δ






 .

Otherwise, if m ≥ 2
ε2δ then ν(m, ε, δ) = 1. Moreover if m <

D lg 1
δ

ε2 then ν(m, ε, δ) = 0.

While the bound presented in the theorem may strike as surprising, due to the intricacy of the
expressions involved, the tightness of the result shows that this is, in fact, the correct and “true”
bound. Moreover, the proof of the theorem demonstrates how both branches in the min expression
are required in order to give a tight bound.

Experimental Results. Our theoretical bounds are accompanied by empirical results that shed
light on the nature of the constants in Theorem 2. Our empirical results show that in practice the
constants inside the Θ-notation are significantly tighter than the theoretical proof might suggest,
and in fact feature hashing performs well for a larger scope of vectors. Specifically, for a synthetic
set of generated bit-vectors, we show that whenever 4 lg 1

δ

ε2 ≤ m < 2
ε2δ the constant hidden by the

Θ-notation is at least 0.75 (except for very sparse vectors, i.e. ‖x‖0 ≤ 7). That is

ν(m, ε, δ) ≥ 0.725
√
ε ·min





lg εm
lg 1
δ

lg 1
δ

,

√√√√ lg ε2m
lg 1
δ

lg 1
δ





.

For a bag-of-words representation of 1500 NIPS papers with stopwords removed [DKT17b, New08]
our experiments show that the constant is even larger, whereas the theoretical proof provides a
much smaller constant of 2−6 in front of

√
ε. Since feature hashing satisfies (1) whenever ‖x‖∞ ≤

ν(m, ε, δ)‖x‖2, this implies that feature hashing works with a better constant than the theory suggests.

Proof Technique As a fundamental step in the proof of Theorem 2 we prove tight asymptotic
bounds for high-order norms of the approximation factor.2 More formally, for every x ∈ Rn \ {0} let
X(x) = |‖Ax‖22 − ‖x‖22|. The technical crux of our results is tight bounds on high-order moments
of X(x). Note that by rescaling we may restrict our focus without loss of generality to unit vectors.

Notation 1. For every m, r, k > 0 denote

Λ(m, r, k) =





√
r
m , k ≥ mr

max

{√
r
m ,

r2

k ln2( emrk )

}
, mr > k ≥ √mr

max

{√
r
m ,

r2

k ln2( emrk )
, r

k ln( emr
k2

)

}
,

√
mr > k

.

In these notations our main technical lemmas are the following.

Lemma 3. For every even r ≤ m/4 and everyunit vector x ∈ Rn, ‖X(x)‖r = O(Λ(m, r, ‖x‖−2∞ )).

Lemma 4. For every k ≤ n and even r ≤ min{m/4, k}, ‖X(x(k))‖r = Ω (Λ(m, r, k)), where
x(k) ∈ Rn is the unit vector whose first k entries equal 1√

k
.

While it might seem at a glance that bounding the high-order moments of X(x) is merely a technical
issue, known tools and techniques could not be used to prove Lemmas 3, 4. Particularly, earlier
work by Kane and Nelson [KN14, CJN18] and Freksen and Larsen [FL17] used high-order moments
bounds as a step in proving probability tail bounds of random variables. The existing techniques,
however, can not be adopted to bound high-order moments of X(x) (see also Section 1.2), and novel
approaches were needed. Specifically, our proof incorporates a novel combinatorial scheme for
counting edge-labeled Eulerian graphs.

2Given a random variable X and r > 0, the rth norm of X (if exists) is defined as ‖X‖r := r
√

E(|X|r).
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Previous Results. Weinberger et al. [WDL+09] showed that wheneverm = Ω(ε−2 lg(1/δ)), then
ν(m, ε, δ) = Ω(ε · (lg(1/δ) lg(m/δ))−1/2). Dasgupta et al. [DKS10] showed that under similar
conditions ν(m, ε, δ) = Ω(

√
ε · (lg(1/δ) lg2(m/δ))−1/2). These bounds were recently improved by

Dahlgaard et al. [DKT17a] who showed that ν(m, ε, δ) = Ω
(√

ε ·
√

lg(1/ε)
lg(1/δ) lg(m/δ)

)
. Conversely,

Kane and Nelson [KN14] showed that for the restricted case of m = Θ(ε−2 lg(1/δ)), ν(m, ε, δ) =

O
(√

ε · lg(1/ε)lg(1/δ)

)
, which matches the bound in Theorem 2 if, in addition, lg(1/ε) ≤

√
lg(1/δ).

1.2 Related Work

The CountSketch scheme, presented by Charikar et al. [CCF04], was shown to satisfy (1) by Thorup
and Zhang [TZ12]. The scheme essentially samples O(lg(1/δ)) independent copies of a feature
hashing matrix with m = O(ε−2) rows, and applies them all to x. The estimator for ‖x‖22 is then
given by computing the median norm over all projected vectors. The CountSketch scheme thus
constructs a sketching matrix A such that every column has O(lg(1/δ)) non-zero entries. However,
this construction does not provide a norm-preserving embedding into a Euclidean space (that is, the
estimator of ‖x‖22 cannot be represented as a norm of Ax), which is essential for some applications
such as nearest-neighbor search [HIM12].

Kane and Nelson [KN14] presented a simple construction for the so-called sparse Johnson Linden-
strauss transform. This is a distribution of m× n matrices, for m = Θ(ε−2 lg(1/δ)), where every
column has s non-zero entries, randomly chosen from {−1, 1}. Note that if s = 1, this distribution
yields the feature hashing one. Kane and Nelson showed that for s = Θ(εm) this construction
satisfies (1). Recently, Cohen et al. [CJN18] presented two simple proofs for this result. While their
proof methods give (simple) bounds for high-order moments similar to those in Lemmas 3 and 4,
they rely heavily on the fact that s is relatively large. Specifically, for s = 1 the bounds their method
or an extension thereof give are trivial.

2 Bounding ν(m, ε, δ)

In this section we prove the principal part of Theorem 2, assuming Lemmas 3 and 4, whose proof is
deferred to the full version of the paper. Formally we prove the following.

Theorem 5 (Main Part of Theorem 2). There exist constants Ĉ > 0 such that for every ε, δ ∈ (0, 1)

and m ∈ N+, if Ĉ lg 1
δ

ε2 ≤ m < 2
ε2δ then

ν(m, ε, δ) = Θ



√
ε ·min





lg εm
lg 1
δ

lg 1
δ

,

√√√√ lg ε2m
lg 1
δ

lg 1
δ






 .

Fix ε, δ ∈ (0, 1) and an integer m. From Lemmas 3 and 4 there exist C1, C2 > 0 such that for every
r, k, if r ≤ m/4 then for every unit vector x, ‖X(x)‖r ≤ 2C2Λ(m, r, k). Moreover, if r ≤ k then

2−C1Λ(m, r, k) ≤ ‖X(x(k))‖r ≤ 2C2Λ(m, r, k) .

Note that in addition Λ(m, 2r, k) ≤ 4Λ(m, r, k). Denote Ĉ = 2C2+2, and C = 2C1 + 2C2 + 5.

For the rest of the proof we assume that Ĉ log 1
δ

ε2 ≤ m < 2
ε2δ , and we start by proving a lower bound

on ν.

Lemma 6. ν(m, ε, δ) = Ω


min




√
ε

lg 1
δ

lg εm
lg 1
δ

,

√
ε lg ε

2m

lg 1
δ

lg 1
δ






.

Proof. Let r = lg 1
δ , let x ∈ Rn be a unit vector such that ‖x‖∞ ≤ min

{√
ε ln eεm

r√
2C2er

,

√
ε lg eε

2m
r

2C2er

}
,

and let k := 1
‖x‖2∞

≥ max

{
2C2er2

ε ln2 eεm
r
, 2C2er

ε lg eε
2m
r

}
. If k ≤ mr, then since r2

k ln2 emr
k

is convex as a
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function of k ∈
[

2C2er2

ε ln2 eεm
r
,mr

]
then

2C2
r2

k ln2 emr
k

≤ max

{
r

m
,

(
ε ln2 eεm

r

e ln2 eεm ln2 eεm
r

r

)}
< ε/2 .

Moreover, if k ≤ √mr then since r
k ln emr

k2
is convex as a function of k ∈

[
2C2er

ε ln eε2m
r

,
√
mr

]
, then

2C2
r

k ln emr
k2
≤ max





√
r

m
,


 ε ln eε2m

r

e ln
ε2m ln2 eε2m

r

r





 ≤ ε/2 .

Since clearly,
√

22C2r
m ≤ ε/2, then by Lemma 3 we have ‖X(x)‖rr ≤ (ε/2)r, and thus

Pr
[ ∣∣‖Ax‖22 − 1

∣∣ > ε
]

= Pr [ (X(x))r > εr ] ≤ 2−r = δ . (2)

Hence ν(m, ε, δ) ≥ min

{√
ε ln eεm

r√
2C2er

,

√
ε lg eε

2m
r

2C2er

}
= Ω


min




√
ε

lg 1
δ

lg εm
lg 1
δ

,

√
ε lg ε

2m

lg 1
δ

lg 1
δ






.

Lemma 7. ν(m, ε, δ) = O


min




√
ε

lg 1
δ

lg εm
lg 1
δ

,

√
ε lg ε

2m

lg 1
δ

lg 1
δ






.

To this end, let r = 1
C lg 1

δ , and denote

t = min





√
eε

r
ln
eεm

r
,

√
eε ln eε2m

r

r



 = O


min





√
ε

lg 1
δ

lg
εm

lg 1
δ

,

√√√√ε lg ε2m
lg 1
δ

lg 1
δ






 .

Assume first that t ≤ 1√
r

, and let k = 1
t2 . We will show that E

[(
X(x(k))

)r] ≥ 2εr. Since t ≤ 1√
r

,

then k ≥ r. If
√
eε
r ln eεm

r ≤
√

eε ln eε2m
r

r , then k = r2

e ln2 eεm
r

. Since eεm
r > e, then k ≤ mr.

Therefore

E
[(
X(x(k))

)r]
= ‖X(x(k))‖rr ≥

(
r2

k ln2 emr
k

)r
=

(
eε ln2 eεm

r

ln2 e2εm ln2 eεm
r

r

)r
≥ 2εr .

Otherwise, k = r

eε ln eε2m
r

. Moreover, since ε2m
r > 1, then k ≤ r/ε ≤ √mr. Therefore

E
[(
X(x(k))

)r]
= ‖X(x(k))‖rr ≥

(
r

k ln emr
k2

)r
=


 eε ln eε2m

r

ln
e3ε2m ln2 eε2m

r

r



r

≥ 2εr .

Applying the Paley-Zygmund inequality we get that

Pr
[ ∣∣∣‖Ax(k)‖22 − 1

∣∣∣ > ε
]
≥ Pr

[(
X(x(k))

)r
>

1

2
E[X(x(k))r]

]
≥ 1

4

(
2−C1Λ(m, r, k)

2C2Λ(m, 2r, k)

)2r

≥ δ .

Therefore ν(m, ε, δ) ≤ ‖x(k)‖∞ = t.

Assume next that 1√
r
< t <

√
ε
4 , and note that since

√
eε
r ln eεm

r ≥ 1√
r

, then m > e
√
r/(eε), and

since
√

eε ln eε2m
r

r ≥ 1√
r

then m > e1/(eε). Let k = 1
t2 , and consider independent h ∈R [n]→ [m],

and σ = (σ1, . . . , σm) ∈R {−1, 1}m. Let y ∈ Rn be defined as follows. For every j ∈ [n], yj = x
(k)
j

if and only if h(j) = 1, and yj = 0 otherwise. Denote z = x(k) − y. Then ‖x(k)‖22 = ‖y‖22 + ‖z‖22,
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and moreover, ‖Ax(k)‖22 = ‖Ay‖22 + ‖Az‖22, where A = A(h, σ). Let Efirst denote the event that
|h−1({1})| = 2

√
εk, and that for all j ∈ [n], if h(j) = 1 then σj = 1, and let Erest denote the event

that
∣∣‖Az‖22 − ‖z‖22

∣∣ < ε‖z‖22. By Chebyshev’s inequality, Pr[Erest | Efirst] = Ω(1). Note that if
k = r2

eε ln2 eεm
r

, then since m > max{e1/eε, e
√
r} we get

2
√
εk ≤ lg 1

δ

C
√
e ln eεm

r

≤ lg 1
δ

C
√
e(ln em− ln 1

ε − ln r)
≤ lg 1

δ

C
√
e(lnm− 3 ln lnm)

≤ lg 1
δ

2 lnm
,

and otherwise, k = r

eε ln eε2m
r

, and

2
√
εk ≤ εk =

lg 1
δ

eC ln eε2m
r

=
lg 1

δ

eC(ln em− 2 ln 1
ε − ln r)

≤ lg 1
δ

eC(ln em− 4 ln lnm)
≤ lg 1

δ

2 lnm
.

Therefore for small enough ε,

Pr[Efirst] =

(
k

2
√
εk

)
·
(

1

m

)2
√
εk

·
(

1− 1

m

)k−2√εk
· 2−2

√
εk

≥
(

1

m

)2
√
εk

·
(

1− 1

m

)r
· 2−r ≥

(
1

m

)2
√
εk

· 2− 2
C lg 1

δ ≥ δ3/4 .

Thus for small enough δ, Pr[Efirst ∧ Erest] ≥ δ. Conditioned on Efirst ∧ Erest we get that

‖Ax(k)‖22 = ‖Ay‖22+‖Az‖2 ≥
4εk

k
+(1−ε)‖z‖22 = 4ε+(1−ε)·k − 2

√
εk

k
≥ 4ε+(1−ε)2 > 1+ε ,

where the inequality before last is due to the fact that k ≥ 4
ε . Therefore ν(m, ε, δ) ≤ ‖x(k)‖∞ = t.

Finally, assume t >
√

ε
4 . Since

√
eε ln eε2m

r

r ≥ t >
√

ε
4 , we get that m ≥ r

eε2 e
r/(4e) ≥ r

eε2δ1/(4eC) .
Let k = 2

ε . Consider independent h ∈R [n] → [m], and σ = (σ1, . . . , σm) ∈R {−1, 1}m, and let
A = A(h, σ). Let Ecol denote the event that there are j 6= ` ∈ [k] such that for every p 6= q ∈ [k],
h(p) = h(q) if and only if {p, q} = {j, `}. Then for small enough ε, δ,

Pr[Ecol] =

(
k

2

)
· 1

m
·
∏

j∈[k−1]

(
1− j

m

)
≥ k2

2m
· (1− ε/2) ·

(
1− k

m

)k

≥ k2

2m
· (1− ε/2) ·

(
1− k2

m

)
≥ 2δ · (1− ε/2) ·

(
1− 4eδ1/(4Ce)

)
≥ δ .

Conditioned on Ecol we get that
∣∣‖Ax(k)‖22 − 1

∣∣ = 2
k = ε. Therefore ν(m, ε, δ) ≤

√
ε
2 ≤ O(t).

This completes the proof of Lemma 7, and thus of Theorem 5.

3 Empirical Analysis

We complement our theoretical bounds with experimental results on both real and synthetic data.
The goal of the experiments is to give bounds on some of the constants hidden in the main theorem.
Our synthetic-data experiments show that for 4 lg 1

δ

ε2 ≤ m < 2
ε2δ the constant inside the Θ-notation in

Theorem 2 is at least 0.725 except for very sparse vectors (‖x‖0 ≤ 7), where the constant is at least
0.6. Furthermore, we confirm that ν(m, ε, δ) = 1 when m ≥ 2

ε2δ and that there exists data points
where ν(m, ε, δ) < 1 while m = 2−γ

ε2δ , for some small γ. In addition, for the real-world data we
tested feature hashing on, the constant is at least 1.1 or 0.8, based on the data set.

3.1 Experiment Setup and Analysis

To arrive at the results, we ran experiments and analysed the data in several phases. In the first
phase we varied the target dimension m over exponentially spaced values in the range [24, 214], and a
parameter k which controls the ratio between the `∞ and the `2 norm. The values of k varied over
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1 2 3 4 5

lg 1/ε

0.4

0.6

0.8
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ν̂

m
in
{
√
ε

lg
1
/δ

lg
εm

lg
1
/δ
,√

ε
lg

ε2
m

lg
1
/δ

lg
1
/δ

}

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

lg 1/δ

0.4

0.6

0.8

1.0

1.2

Figure 1: The plot shows the ratio between ν̂ values and the theoretical bound, abbreviated here as
min{left, right}. This ratio corresponds to the constant in the Θ-notation in Theorem 2. The points
are marked with blue circles if left < right, and with green ×’s otherwise. The horizontal line at
0.725 is there to ease comparisons with Figure 2, while the line at 1.1 helps in comparing against real
world data (Figure 4 and Figure 5).

exponentially spaced values in the range [21, 213]. Then for all m and k, we generated 224 vectors
x with entries in {0, 1} such that ‖x‖2 =

√
k‖x‖∞, and for any given m and k the supports of the

vectors were pairwise disjoint. We then hashed the generated vectors using feature hashing, and
recorded the `2 norm of the embedded vectors.

The second phase then calculated the distortion between the original and the embedded vectors, and
computed the error probability δ̂. Loosely speaking, δ̂(m, k, ε) is the ratio of the 224 vectors for
a given m and k that have distortion greater than ε. Formally, δ̂ is calculated using the following
formula

δ̂(m, k, ε) =

∣∣∣
{
x : ‖x‖2 =

√
k‖x‖∞,

∣∣‖Amx‖22 − ‖x‖22
∣∣ ≥ ε‖x‖22

}∣∣∣
∣∣{x : ‖x‖2 =

√
k‖x‖∞}

∣∣ ,

where ε was varied over exponentially spaced values in the range [2−10, 2−1]. Note that δ̂ tends to
the true error probability as the number of vectors tends to infinity. Computing δ̂ yielded a series
of 4-tuples (m, k, ε, δ̂) which can be interpreted as given target dimension m, `∞/`2 ratio 1/

√
k,

distortion ε, we have measured that the failure probability is at most δ̂.

In the third phase, we varied δ over exponentially spaced values in the range [2−20, 20], and calculated
a value ν̂. Intuitively, ν̂(m, ε, δ) is the largest `∞/`2 ratio such that for all vectors having at most
this `∞/`2 ratio the measured error probability δ̂ is at most δ. Formally,

ν̂(m, ε, δ) = max
{ 1√

k
: ∀k′ ≥ k, δ̂(m, k′, ε) ≤ δ

}
.

Note once more that ν̂ tends to the true ν value as the number of vectors tends to infinity. To find a
bound on the constant of the Θ-notation in Theorem 2, we truncated data points that did not satisfy
4 lg 1

δ

ε2 ≤ m < 2
ε2δ , and for the remaining points we plotted ν̂ over the theoretical bound in Figure 1.

From this plot we conclude that the constant is at least 0.6 on the large range on parameters we tested.
However, the smallest values seem to be outliers and come from a combination of very sparse vectors
(k = 7) and high target dimension (m = 214). For the rest of the data points the constant is at least
0.725. While there are data points where the constant is larger (i.e. feature hashing performs better),
there are data points close to 0.725 over the entire range of ε and δ.

In Figure 2 we show that we indeed need both terms in the minimum in Theorem 2, by plotting the
measured ν̂ values over both terms in the minimum in the theoretical bound separately. For both
terms there are points whose value is significantly below 0.725.

To find a bound on m where ν̂(m, ε, δ) = 1 we took the untruncated data and recorded the maximal
δ̂ for each m and ε. We then plotted mε2δ̂ in Figure 3. From Figure 3 it is clear that ν̂(m, ε, δ) = 1
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Figure 2: This plot shows the measured ν̂ values over each of the two terms in the minimum in the
theoretical bound (abbreviated here): min{left, right}. In the left subfigure the y-axis of the blue
circles is ν̂

left , while the y-axis of the green ×’s in the right subfigure is ν̂
right . Note that the x-axis

(values of lg(1/δ) ) is the same in both subfigures, and the same as in the right subfigure of Figure 1.
As in Figure 1, the horizontal line at 0.725 is there to ease comparison between the figures.
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Figure 3: This plot shows the constant where ν̂(m, ε, δ) becomes 1. The theory states that if
2 ≤ mε2δ then ν̂(m, ε, δ) = 1. The distinct curves in the left plot correspond to distinct values of m.

when m ≥ 2
ε2δ . Furthermore, the figure also shows that there are data points where ν̂(m, ε, δ) < 1

while m = 2−γ
ε2δ , for some small γ. Therefore we conclude the bound m ≥ 2

ε2δ is tight.

3.2 Real-World Data

We also ran experiments on real-world data, namely bag-of-words representations of 1500 NIPS
papers with stopwords removed [DKT17b, New08]. We ran experiments on this data set both with and
without preprocessing with the common logarithmic term frequency - inverse document frequency (tf-
idf). These experiments were executed and analysed similarly to the synthetic experiments described
above, except for a few changes. First, in order to explore any meaningful δ values we hashed each
vector 220 times. In this way, iterating over the original vectors in the real world experiments plays a
similar role to iterating over the k values in the synthetic experiments. Secondly, in these experiments
m ranged over values in [24, 212].

The results of these experiments can be seen in Figure 4 and Figure 5, from which we conclude
that feature hashing performs even better on the real-world data we tested compared to the synthetic
data, as the Theorem 2 constant is always above 1.1 and 0.8 with and without tf-idf, respectively.
Furthermore, for the vast majority of data points have a constant around or above 1.2.
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Figure 4: This plot has a similar structure to Figure 1, but is based on the NIPS dataset preprocessed
with tf-idf. This plot shows the measured ν̂ values over the theoretical bound (abbreviated here):
min{left, right}. This ratio corresponds to the constant in the Θ-notation in Theorem 2. The points
are marked with blue circles if left < right, otherwise they are marked with green×’s. The horizontal
lines at 0.725 and 1.1 are there to ease comparisons with Figure 1.
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Figure 5: This plot has a similar structure to Figure 1, but is based on the NIPS dataset without
tf-idf preprocessing. This plot shows the measured ν̂ values over the theoretical bound (abbreviated
here): min{left, right}. This ratio corresponds to the constant in the Θ-notation in Theorem 2. The
points are marked with blue circles if left < right, otherwise they are marked with green ×’s. The
horizontal lines at 0.725 and 1.1 are there to ease comparisons with Figure 1.

3.3 Implementation Details

As random number generators, we used degree 20 polynomials modulo the Mersenne prime 261 − 1,
where the coefficients were random data from random.org. The random data was independent
between experiments with diffent values of m, between synthetic and real world experiments, and
between the random number generator used for vector generation and hashing.

Feature hashing was done using double tabulation hashing [Tho14] on 64 bit numbers. The tables in
our implementation of double tabulation hashing were filled with numbers from the aforementioned
random number generator. Double tabulation hashing has been proven to behave fully randomly with
high probability [DKRT15].

In order to efficiently do the 220 hashings per vector for the real world data, we utilised the high
independence of double tabulation hashing. Let d be the original dimension of the vectors. We blew
up the source dimension to 220d, and at the ith rehash we shifted the coordinates of the original
vector i · d places to the right.
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