Supplementary Material: Multi-objective Maximization of
Monotone Submodular Functions with Cardinality Constraint

1 Some More Notation and Preliminaries
Let 3(n) =1 — 2 €[0,1 —1/¢] forn € [0,1]. Note that 3(1) = (1 — 1/e). Further, for k" < k,

Bk Jk)=(1—e"F/*/e) > (1 —1/e)k [k. (1)

This function appears naturally in our analysis and will be useful for expressing approximation
guarantees. Next, the lemma below formalizes Stage 2 of the algorithm in [CVZ10].

Lemma 8. ([CVZI10] Lemma 7.3) Given submodular functions f; and values V;, cardinality k, the
continuous greedy algorithm finds a point x € [0, 1] such that F;(x(k)) > (1 — 1/e — €")V; Vi with
€ = 1/Q(k), or outputs a certificate of infeasibility.

2 Missing Proofs from Section 3.1

Corollary 9. Given a point x € [0, 1]™ with |x| = k and a multilinear extension F of a monotone
submodular function, for every k1 < k,

F(%x) > %F(x)

Proof. Note that the statement is true for concave F'. The proof now follows directly from the
concavity of multilinear extensions in positive directions (Section 2.1 of [CCPV 11]). L]

Lemma 10. F,(x(k1)[xs,) > (B(1) = €)E2(V; = £,(S1)) for every .

Proof. Recall that Sj, denotes a feasible solution with cardinality k, and let xg, denote its char-
acteristic vector. Clearly, [xg,\s,| < k and Fj(xg,\s,[Xs,) = fi(Sk|S1) > (Vi — fi(S1)) for
very i. And now from Corollary [9] we have that there exists a point x’ with [x’| = k; such that
Fi(x'|xs,) > %Fi(xsk\gl |xs,) for every 7. Finally, using Lemmawe have F;(x(k1)|xs,) >

(B(1) — €')F;(x’|S1), which gives the desired bound. O

3 Missing Proofs from Section 3.2

Lemma 3. ¢‘(X?) > %a S, ALV,

7

Proof. Consider the optimal set Sy, and note that . A\ ﬁ(Sk) > 3. AL Vi, Now the function

'L
g"(:) = >, AL fi(.), being a convex combination of monotone submodular functions, is also monotone

submodular. We would like to show that there exists a set S’ of size k; such that g(S") > & 37 AL
Then the claim follows from the fact that A is an « approximation for monotone submodular
maximization with cardinality constraint.

To see the existence of such a set S’, greedily index the elements of S, using g*(.). Suppose that the

resulting order is {s1, ..., s}, where s; is such that g*(s;|{s1,...,s:-1}) > g*(sj/{s1,- .., 81
for every j > 4. Then the truncated set {sy,...,5,_|s,|} has the desired property, and we are
done. O
Lemma 4. B
(X k
% > ?1(1 —1/e) — 6, Vi.

Proof. Suppose we have,

Zt JE??(Xt) - 1 )‘f 7oyt :
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Then assuming o = (1 — 1/e), the RHS above simplifies to,

)
TZgX (1-1/e) (1—1/@)(ﬁ—1) (using Lemma [3)

And we have for every 1,

> filXH) — (1 —1/e)
T

T R VTl

thi(Xt) kl
=7 > z(l—l/e)_

Now, the proof for (2) closely resembles the analysis in Theorem 3.3 and 2.1 in (author?) AHKI12.
We will use the potential function ®* = >~ AL, Let p! = Al /®" and M* = Y, plm!. Then we have,

oL = N1 - omi)

i
=3 — 5! Zpﬁmt
= '(1 - IM?) < ple™*M
After T rounds, 7 < dle—? .M Further, for every 1,
o7 > ol = LT],(1 - om))
In(®le 02 M) > 5™ In(1 — dmt) — Inm
83, M <Inm+ Y, In(1—dm!)

UsingIn(12) < e+e?andIn(1+€) > e — e fore < 0.5, and with 7 = 218™ and § < (1 —1/e)
(for a posmve approximation guarantee), we have,
Do M Sy,
E <5+ =L
T e

O

Lemma 5. Given monotone submodular function f, its multilinear extension F, sets X* for t €
{1,...,T}, and a point x =Y, X' /T, we have,

F(x) > (1-1/e) 1Zf

Proof. Consider the concave closure of a submodular function f,

frH(x *maX{ZaXf |ZOL)(X—X Zax<laX>OVXCN}

X X

Clearly, f;"(x) > M So it suffices to show F;(x) > (1 — 1/e) f;¥ (x), which in fact, follows
from Lemmas 4 and 5 in [CCPVO07].

Alternatively, we now give a novel and direct proof for the statement. We abuse notation and use x x
and X' interchangeably. Let x = 5, X*/T and w.l.0.g., assume that sets X* are indexed such
that f(X7) > f(X7*!) forevery j > 1. Further, let f(X')/T =a'and ), a* = A.

Recall that F'(x) can be viewed as the expected function value of the set obtained by independently
sampling element j with probability x;. Instead, consider the alternative random process where
starting with £ = 1, one samples each element in set X independently with probability 1/7". The
random process runs in 7" steps and the probability of an element j being chosen at the end of the
process is exactly p; = 1 — (1 — 1/T)T%i, independent of all other elements. Let p = (p1, ..., Pn),
it follows that the expected value of the set sampled using this process is given by F'(p). Observe
that for every j, p; < x; and therefore, F'(p) < F'(x). Now in step ¢, suppose the newly sampled



f&xhH

subset of X! adds marginal value A’. From submodularity we have, E[Al] > 7 = a and in
t—1

general, E[A!] > w >at - L E[A].

To see that >, E[A'] > (1 —1/e) A, consider a LP where the objective is to minimize >, 7" subject

tob! >b?--- > >0; 3 b = Aand ' > b' — £ Z;ll ~3 with 4% = 0. Here A is a parameter
and everything else is a variable. Observe that the extreme points are characterized by j such that,
S bt = Aand b' = b forall t < j and b+ = 0. For all such points, it is not difficult to see that the
objective is at least (1 — 1/¢) A. Therefore, we have Fi(p) > (1—1/e)A= (1—-1/e) Y, f(X")/T,
as desired.

O

4 Missing Proofs from Section 3.3

Lemma 7. Given that there exists a set Sy such that f;(Sx) > V;,Vi and ¢ <
k' € [m/e3, k), there exists Sy, C Sy, of size k', such that,

Ji(S) > (1— e)(m)w,w.

For every

SInm

Proof. We restrict our ground set of elements to Sy and let S; be a subset of size at most m/e3
such that f;(e|S1) < €3V;, Ve € Si\S1 and Vi (recall, we discussed the existence of such a set in
Section 2.1, Stage 1). The rest of the proof is similar to the proof of Lemma Consider the

point x = ]Z,:‘lgfl‘ Xg,\s,- Clearly, [x| = &' — [S], and from Corollarylgl we have F;(x|xg,) >

];c_l‘g ||F(xsk\sl\xsl) = k_l‘sslllf,(Sk\SﬂSl) > ’Z_llgll (Vi — fi(S1)), Vi. Finally, using swap

rounding Lemma 1, there exists a set Sy of size k' —|.S1|, such that f;(S1US3) > (1— ) - ‘lgl“ Vi, Vi.
O

Theorem 8. For k' = &4, choosing k'-tuples greedily w.r.t. h(.) = min; f;(.) yields approximation
guarantee (1 — 1/6)(1 — 2¢) for k — oo, while making n™™ m/<* queries.

Proof. The analysis generalizes that of the standard greedy algorithm ([NW78,INWFE78]]). Let .S
denote the set at the end of iteration j. Sy = () and let the final set be S |k/k’|- Then from Theoremi
we have that at step j + 1, there is some set X € Sk\Sj of size k' such that

RXIS,) 2 (1= 05 =S (Vi = fi(s). v

m/e

To simplify presentation let ) = (1 — €) 5= i /e and note that < 1. Further, 1 /m — oo as k — 00
for fixed m and k" = o(k). Now, we have for every 4, f;(S;11) — (1 —n)fi(S;) > nV;. Call this
inequality j + 1. Observe that inequality [k/k'] states f;(S|x/x/)) — (1 — )fl(SLk/k |—1) = nV;, Vi.
Therefore, multiplying inequality |k/k’| — j by (1 — 7)7 and telescoping over j we get for every 1,
|k/K' ] -1
Ji(S|kyw) > Z (1 —n)nV;
3=0
> (1- -y
> (1- (-l
Blk/E' Vi = (1—1/e)(nlk/K |)V;
Where we used (EI) for the last inequality. Let € = {/77, then we have,

1—m/k’e3<1_k7’)>(1_\4/g)2( k’)

nlk/E] = (1=

_ 3 1
1—m/ke k 1- 44/ B k
2
As k — oo we get the asymptotic guarantee (1 — 1/e) (1 - #/%) =(1-1/e)(1 —¢). O
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