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Abstract

We develop two new non-ergodic alternating proximal augmented Lagrangian algorithms
(NEAPAL) to solve a class of nonsmooth constrained convex optimization problems. Our
approach relies on a novel combination of the augmented Lagrangian framework, alter-
nating/linearization scheme, Nesterov’s acceleration techniques, and adaptive strategy for
parameters. Our algorithms have several new features compared to existing methods. Firstly,
they have a Nesterov’s acceleration step on the primal variables compared to the dual one in
several methods in the literature. Secondly, they achieve non-ergodic optimal convergence
rates under standard assumptions, i.e. an O (%) rate without any smoothness or strong
convexity-type assumption, or an O (k%) rate under only semi-strong convexity, where k is
the iteration counter. Thirdly, they preserve or have better per-iteration complexity compared
to existing algorithms. Fourthly, they can be implemented in a parallel fashion. Finally, all
the parameters are adaptively updated without heuristic tuning. We verify our algorithms on
different numerical examples and compare them with some state-of-the-art methods.

1 Introduction
Problem statement: We consider the following nonsmooth constrained convex problem:

* L : — , -
F* .= z:=(Iarcl,1/I)1€RP {F(z) = f(z) + ;gz(yl) s.t. Az + i:ZlBlyz = c}, (1)
where f : R — R U {400} and g; : RP* — R U {+o0} are proper, closed, and convex functions;
p:=p+pwithp :=>" p;Ae R, B € R"™Pi and ¢ € R" are given. Here, we also
define y := [y1,- -+ ,ym) as a column vector, g(y) := > ., g:(v;), and By := >.", Biy;. We
often assume that we do not explicitly form matrices A and B;, but we can only compute Az, B;y;
and their adjoints AT\ and B, \ for any given z, y;, and A fori = 1,--- ,m.

Problem is sufficiently general to cope with many applications in different fields including
machine learning, statistics, image/signal processing, and model predictive control. In particular,
covers convex empirical risk minimization, support vector machine, LASSO-type, matrix completion,
compressive sensing problems as representative examples.

Our approach: Our approach relies on a novel combination of the augmented Lagrangian (AL)
function and other classical and new techniques. First, we use AL as a merit function. Next, we
incorporate an acceleration step (either Nesterov’s momentum [[17]] or Tseng’s accelerated variant
[25])) into the primal steps. Then, we alternate the augmented Lagrangian primal subproblem into x
and y. We also linearize the y;-subproblems and parallelize them to reduce per-iteration complexity.
Finally, we incorporate with an adaptive strategy proposed in [23]] to derive explicit update rules for
algorithmic parameters. Our approach shares some similarities with the alternating direction method
of multipliers (ADMM) and alternating minimization algorithm (AMA) but is essentially different
from several aspects as will be discussed below.

Qur contribution: Our contribution can be summarized as follows:

(a) We propose a novel algorithm called NEAPAL, Algorithm [1, to solve (I) under only
convexity and strong duality assumptions. This algorithm can be viewed as a Nesterov’s
accelerated, alternating, linearizing, and parallel proximal AL method which alternates
between x and y;, and linearizes and parallelizes the y;-subproblems.
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(b) We prove an optimal O (1 )-rate of this algorithm in terms of |F(z*) — F*| and || Az* +
By* — ¢||. Our rate achieves at the last iterate (i.e. in a non-ergodic sense), while our
per-iteration complexity is the same or even better than existing methods.

(c) When the problem is semi-strongly convex, i.e. f is non-strongly convex and g is
strongly convex, we develop a new NEAPAL variant, Algorithm [2] that achieves an optimal
@) (k%)-rate. This rate is either in a semi-ergodic (i.e. non-ergodic in = and ergodic in y)
sense or a non-ergodic sense. The non-ergodic rate just requires one more proximal operator
of g. This variant also possesses the same parallel computation feature as in Algorithm [I]

From a practical point of view, Algorithm|[T|has better per-iteration complexity than ADMM and AMA
since the y;-subproblems are linearized and parallelized. This per-iteration complexity is essentially
the same as in primal-dual methods [3] when applying to solve composite convex problems with
linear operators. When f = 0, we obtain fully parallel variants of Algorithms|1/and[2 which only
require the proximal operators of g; and solve all the y;-subproblems in parallel.

In terms of theory, AlgorithmlI achieves an optimal O (%)—rate in a non-ergodic sense. Moreover,
the dual step does not require averaging. Algorithm [2/only requires F' to be semi-strongly convex
to achieve an optimal O (k%)—rate on the last iterate, which is weaker than that of the accelerated
ADMM method in [11]. To our best knowledge, optimal rates at the last iterate have not been
known yet in primal-dual methods such as in [3] The O (kZ) -rate is also achieved in [29] for
accelerated ADMM, but Algorithm [2 remains essentially different from [29]]. First, it combines
different acceleration schemes for x and y. Second, the convergence rate can achieve in either a
non-ergodic or semi-ergodic sense. Third, the parameters are updated explicitly.

Related work: Our algorithms developed in this paper can be cast into the framework of augmented
Lagrangian-type methods. In this context, we briefly review some notable and recent works which
are most related to our methods. The augmented Lagrangian method was dated back from the work
of Powell and Hessenberg in nonlinear programming in early 1970s. It soon became a powerful
method to solve nonlinear optimization and constrained convex optimization problems. Alternatively,
alternating methods were dated back from Von Neumann’s work. Among these algorithms, AMA
and ADMM are the most popular ones. ADMM can be viewed either as the dual variant of Douglas-
Rachford’s method [8,[15]] or as an alternating variant of AL methods [1]. ADMM is widely used in
practice, especially in signal and image processing. [2] provides a comprehensive survey of ADMM
using in statistical learning. While the asymptotic convergence of ADMM has been long known, see,
e.g., [8], its O (4 )-convergence rate seems to be first proved in [131[16]. However, such a rate in [13]
is achieved through a gap function in the framework of variational inequality and in an ergodic sense.
The same O (%) -non-ergodic rate was then proved in [12], but still on the sequence of differences
{|lw** — w*||*} combining both the primal and dual variables in w. Many other works also focus
on theoretical aspects of ADMM by showing its O (%)—convergence rate in the objective residual
|F(2%)—F*| and feasibility gap || Az*+ By"* —c||. Notable works include [6, 11} 20} 22]. Extensions
to stochastic settings as well as multi-blocks formulations have also been intensively studied in the
literature such as [4, [7]. Other researchers have attempted to optimize the rate of convergence in
certain cases such as quadratic problems or using the theory of feedback control [10,[19].

In terms of algorithms, the main steps of ADMM remain the same in most of the existing research
papers. Some modifications have been made for ADMM such as relaxation [6, 20} 22]], or dual
acceleration [11}120]]. Other extensions to Bregman distances and proximal settings remain essentially
the same as the original version, see, e.g., [26]]. Note that our algorithms can be cast into a primal-dual
method such as [3, 23] rather than ADMM when solving composite problems with linear operators.

In terms of theory, most of existing results have shown an ergodic convergence rate of O (%) in either
gap function or in both objective residual and constraint violation [5, |6} [11} 113} 204 122} 27]. This rate
has been shown to be optimal for ADMM-type methods under only convexity and strong duality in
recent work [14}28]. When one function f or g is strongly convex, one can achieve O (k%) rate as
shown in [29]] but it is still on an averaging sequence. A recent work in [14] proposed a linearized
ADMM variant using Nesterov’s acceleration step and showed O (%)-non—ergodic rate. This scheme
is very similar to a special case of Algorithm[I. However, our scheme has a better per-iteration

*In [14], a non-ergodic rate is obtained, but the algorithm is essentially different. However, a non-ergodic
optimal rate of first-order methods for solving (1) was perhaps first proved in [24].



complexity than [14] since it updates y; in parallel instead of alternating as in [14]. Besides, our
analysis is much simpler than [[14] which is extremely long and involves various parameters.

Paper organization: The rest of this paper is organized as follows. Section | 2|recalls the dual
problem of (1) and optimality condition. It also provides a key lemma for convergence analysis.
Section [ 3] presents two new NEAPAL algorithms and analyzes their convergence rate. It also
considers an extension. Section[4]provides some representative numerical examples.

Notations: We work on finite dimensional spaces R” and R", equipped with a standard inner
product {-,-) and norm || - ||. Given a proper, closed, and convex function f, dom(f) denotes its
domain, Of(-) is its subdifferential, f*(y) := sup, {(y,z) — f(z)} is its Fenchel conjugate, and
prox ;(z) := argmuin {f(u) + % |lu — x||*} is its proximal operator, where v > 0. We say that

prox, ¢ is tractably proximal if it can be computed efficiently in a closed form or by a polynomial
algorithm. Several tractable proximity functions can be found from the literature. We say that f
has L ¢-Lipschitz gradient if it is differentiable, and its gradient V f is Lipschitz continuous with
the Lipschitz constant Ly € [0, 400), f is fs-strongly convex if f(-) — 4| - ||? is convex, where
wr > 0is its strong convexity parameter. For a given convex set X', ri (X') denotes its relative interior.
For a given matrix A, we denote || A|| its operator (or spectral) norm.

2 Duality theory, fundamental assumption, and optimality conditions

The Lagrange function associated with (I)) is £(z,y, ) := f(z) + g(y) — (Az + By — ¢, \), where
A is the vector of Lagrange multipliers. The dual function is defined as
) = max LAzt By - e, X) = f(2) = g(y) | = AT + g7 (BTA) = (e, ),
(z,y)Edom(F)
where dom(F") := dom(f) x dom(g), and f* and g* are the Fenchel conjugates of f and g,
respectively. The dual problem of (IJ) is
@ = min {d()\) = (ATN) + g (BTN — (¢, A)}. 2)
E n

We say that a point (z*, y*, A*) € dom(F') x R"™ is a saddle point of the Lagrange function L if for
all (z,y) € dom(F), and A € R"™, one has

Lz, y", A) < L(x7, 9", N) < Lz, y, 7). )

We denote by S* := {(z*, y*, \*)} the set of saddle points of £, by Z* := {(z*,y*)} the set of
primal components of saddle points, and by A* := {\*} the set of corresponding multipliers.

In this paper, we rely on the following general assumption used in any primal-dual-type method.
Assumption 2.1. Both functions f and g are proper, closed, and convex. The set of saddle points
S* of the Lagrange function £ is nonempty, and the optimal value F™* is finite and is attainable at
some (z*,y*) € Z*.
We assume that Assumption|2.1]holds throughout this paper without recalling it in the sequel.
The optimality condition (or the KKT condition) of (1) can be written as

0cdf(z*)—ATN*, 0€dg(y*) —BTA*, and Az* + By* =c. (4)
Let us assume that the following Slater condition holds:

ri (dom(F)) N{(z,y) | Az + By = ¢} # 0.

Then, the optimality condition (4} is necessary and sufficient for the strong duality of (1]) and (2)) to
hold, i.e., F* + D* = 0, and the dual solution is attainable and A* is bounded, see, e.g., [1]].
In practice, we can only find an approximation z* := (Z*, §*) to z* of (I)) in the following sense:
Definition 2.1. Given a tolerance € := (g,,&4) > 0, we say that 2* := (Z*,¢*) € dom(F') is an
e-solution of () if |F'(2*) — F*| < e, and ||AZ* + By* — ¢|| < 4.

Let us define an augmented Lagrangian function £, associated with the constrained problem (I) as

L,(2,) = f(x) +g(y) — (\, Az + By — ¢) + £ | Az + By — ¢|?, (5)

where z := (x,y), A is the corresponding multiplier, and p > 0 is a penalty parameter. The following
lemma characterizes approximate solutions of (I)) whose proof is in Supplementary Document [A.



Lemma 2.1. Let S,(z,\) := L,(z,\) — F* for L, defined by (5). Then, for any z = (z,y) €
dom(F) and \* € A*, we have

|F(2) — F*| gmax{sp(z,A)Jr%,%HA*HRGZ} and |Az+By—c| <% (6)

where Rq = [|A — X + /[]A = X2+ 2pS, (2, A) and | A — X*||> 4+ 2pS,(z, A) > 0.

Using Lemma 2.1L our goal is to generate a sequence { (z*, py,) } such that S, (2, A%) converges to
zero. In this case, we obtain z* as an approximate solution of (I)) in the sense of Deﬁnition

3 Non-Ergodic Alternating Proximal Augmented Lagrangian Algorithms
We first propose a new primal-dual algorithm to solve nonsmooth and nonstrongly convex problems
in (I). Then, we present another variant for the semi-strongly convex case. Finally, we extend our
methods to the sum of smooth and nonsmooth objectives.

3.1 NEAPAL for nonstrongly convex case

The classical augmented Lagrangian method minimizes the augmented Lagrangian function £, in
over x and y altogether, which is often difficult. Our methods alternate between x and y to break
the non-separability of the augmented term £ || Az + By — c||?. Therefore, at each iteration k, given

2k = (&%, 9%) € dom(F), \F € R™, pr > 0, and 75, > 0, we define the 2-subproblem as

S (N pe) =g min {£(2) = (3, Aa)+ | 4w+ B —cl + o317} )
If v > 0, then (7) is well-defined and has unique solution. If v;, = 0, then we need to assume that
has optimal solution but not necessarily unique. For the y-subproblem, we linearize the augmented
term to make use of proximal operators of g. We also incorporate Nesterov’s accelerated steps [[18]]
into these primal subproblems. In summary, our algorithm is presented in Algorithm [I] which we call
a Non-Ergodic Alternating Proximal Augmented Lagrangian (NEAPAL) method.

Algorithm 1 (Non-Ergodic Alternating Proximal Augmented Lagrangian Algorithm (NEAPAL))

. Initialization: Choose 2° := (2°,4°) € dom(F), M0 € R7, po > 0, and v > 0. Set 20 := 2°.
: For k := 0 to k. perform
(Parameter update) 1y, := % pr = po(k+1), Br:=2poLp(k+1),andn := 2.
1 —73)2F + 728 with z = (2,9).
(z-update) zF+1 = S, (2%, \F: pp.) by solving (@) and r* := AzF+! 4+ Byk — .

(Parallel y-update) For i = 1 to m update "1 := PIOX s. (g% — B%BZT (prr® — ;\k))

i

1
2
3 %
4 (Acceleration step) 2% = (
5
6

. skl . zk o 1 ( k+1 _ sk
7. (Momentum step) Z¥T = Z% + _-(z ZR).

(Dual step) \F+1 := \F — pp (AZH+1 4+ B+l — o).

: (v-update) Choose 0 < yp41 < (Z—ﬁ)yk if necessary.
10: End for
The parameter Lp in Algorithm [ can be chosen as Lp := ||B|?, or Lp :=

mmax {||B;|? | 1 <i < m}. Moreover, we have a flexibility to choose pg and . For exam-
ple, we can fix 7o > 0 to make sure (7) is well-defined. But if A = [, the identity operator, or A is
orthogonal, then we should choose vy = 0.

Combining Step @ and Step[7} we can show that the per-iteration complexity of Algorithm [I}is domi-
nated by the subproblem (7)) at Step[5] one proximal operator of g, one matrix vector-multiplication
(Ax, By), and one adjoint BT \. Hence, the per-iteration complexity of Algorithm E is better than
that of standard ADMM [2]]. We also observe the following additional features of Algorithm T}

* Firstly, the subproblem (7)) not only admits a unique solution, but it is also strongly convex.
Hence, if we use first-order methods to solve it, then we obtain a linear convergence rate. In
particular, if A =T or A is orthonormal, then we can choose vy = 0, and reduces to the
proximal operator of f, i.e.

So(2*, N p) 1= proxy . (AT (c— Bj* — Pglj\k))-



» Secondly, we directly incorporate Nesterov’s accelerated steps into the primal variables
instead of the dual one as in [11,20]. We can eliminate Z*, and update 2**+1 := Zk+1 4

s (2P — 2F). In this case, the dual variable A¥ can be updated as
AHL o M= I Akt 4 Byl — ¢ — (1 — 7,) (A2* + By —¢)) .

This dual update collapses to the one in classical AL methods such as AMA and ADMM,

and their variants when 7, = 1 is fixed in all iterations.

* Thirdly, the parameters py, and [, are increasingly updated with the same rate of O (k), and
7k can be increasing, decreasing, or fixed. Moreover, while the penalty parameter py is
updated at each iteration, the step-size 7, in the dual step remains fixed.

* Fourthly, we can use different parameters j3;, for each y;-subproblem fori =1,--- ,m. In
this case, we can update 3} based on Lp, := m/||B;||? for each component 4.

* Finally, if f = 0, then we can remove the z-subproblem in Algorithm|1|to obtain a parallel

variant of this algorithm. In this case, if we use different Bi, then they can be updated as
B: :=2Lp, (k + 1). The convergence analysis of this variant requires some slight changes.
The convergence of Algorithm [T is stated in the following theorem whose proof can be found in
Supplementary Document B}
Theorem 3.1. Let {zk} be the sequence generated by Algorithm Then, for any k > 1, we have

1 . R
F(z5) = F*) < o max {po RS + A2, 2R} and [ Ac* + By* — e < 5, @)
2p0k/’ pok

where R% := ~o|z® — 2*||2 + 2p0 La||y° — y*||? and Ry := ||]A° — A\*|| + \/||5\0 — X2 + po R3.

Consequently, the sequence of the last iterates {zk} globally converges to a solution z* of (1) at a
non-ergodic optimal O (1 )-rate, i.e., |F(zF) — F*| < O (1) and | Az* + By* — || < O (}).

3.2 NEAPAL for semi-strongly convex case

Now, we propose a new variant of Algorithm [T that can exploit the semi-strong convexity of F.
Without loss of generality, we assume that g; is strongly convex with the convexity parameter pg, > 0
foralli =1, ,m. In this case g(y) = > ., g;(y;) is also strongly convex with the parameter
pg :=min{ug, | 1 <i<m}>0.

To exploit the strong convexity of g, we apply Tseng’s accelerated scheme in [25]] to the y-subproblem,
while using Nesterov’s momentum idea [[17] for the z-subproblem to keep the non-ergodic conver-
gence on {z"}. The complete algorithm is described in Algorithm

Algorithm 2 (scvx-NEAPAL for solving (1) with strongly convex objective term g)

1: Initialization: Choose 20 := (z°,9°) € dom(F), X’ € R™, po € (O, 4&—95}, and 7o > 0.
Set 79 := 1 and 29 := 20.
: For k := 0 to k.« perform

(Parameter update) Set py, := f—g, Ve =0, Pr = 2Lppk, and n, 1= LTE

(z-update) zF+1 = S, (3%, \F; py.) by solving () and r* := Az*F+! 4+ Bjk — c.

2

3

4

5. (Accelerated step) 3% = (1 — 13,) 2% + 71,2F with z = (z, ).
6

7. (z-momentum step) T = TF 4 - (aMF — 3F).

8:  (Parallel §-update) For i = 1to m, update ¥+ := prox o, (gF — LB/ (per® — j\k))

EoNCIn Tk B

(Dual step) Ne+1 .= Nk — p (AZFHL 4+ Byh+! — o).
10:  (Parallel y-update) For i = 1 to m, update yf“ using one of the following two options:

yrtt = (1 — ) yk 4+ gt (Option 1: Averaging step)

k1. ok 1 pT(, .k _ 30 con 2 ;
yi = prox_g (9% — 1B (per™ — A))  (Option 2: Proximal step).

11:  (T-update) Tyq1 == 373 (/T2 + 4 — 7).
12: End for




The parameter Lp is chosen as in Algorithm 1, and py := min {4, | 1 <i < m} in Algorithm

E. We can replace the choice of p in Algorithm 2 by 0 < pg < min { 4’2“’; -|1<i < m}, where
Lp, = || B;||?. Before analyzing the convergence of Algorithm we make the following remarks:

(a) Firstly, Algorithm linearizes the y-subproblem to reduce the per-iteration complexity. This
step relies on Tseng’s accelerated variant in [25]] instead of Nesterov’s optimal scheme [[17]]
as in Algorithm Hence, it uses two different options at Step[10]to form y**+1.

(b) Secondly, if y**! is updated using Option 1, then one can take a weighted averaging step
on y* without incurring extra cost. The Option 2 at Step l&requires one additional prox,

but can avoid averaging on y* as in Option 1.

(c) Thirdly, we can eliminate all parameters 7y, Sk, and 7, in Algorithmg so that it has only
two parameters 75 and pg that need to be updated and initialized, respectively.

The following theorem proves convergence of Algorithm 2] (cf. Supplementary Document D).

Theorem 3.2. Assume that g; is /Jzi -strongly convex with 14, > 0 foralli =1,--- ,m, but f is not
necessarily strongly convex. Let {z } be generated by Algorithm Then, the following bounds hold:

P(4) = F*| < soeage { 0B+ 1A 2RV | b and ([ As* 4 By — ] < 5l )

where R3 := ~olle®—a* |12 + 2po Lislly"—y* |2 and Ry := | = X[ + /A0 = X2 + 200 R2.

Consequently, {zk} globally converges to z* at O (k%)-mte either in a semi-ergodic sense (i.e.
non-ergodic in x* and ergodic in y*) if Option 1 is chosen, or a non-ergodic sense if Option 2 is
chosen, i.e., |F(z*) — F*| < O () and | Az* + By* — c|| < O ().

3.3 Extension to the sum of smooth and nonsmooth objective functions

We can consider (1) with F(2) := f(z) + f(z) + S0, [9:(ys) + §i(ys)], where f and g, are
smooth with L ;- and L, -Lipschitz gradients, respectively. In this case, the z- and y;-subproblems in
Algorithm|I|can be replaced respectively by

1 = argmin { f(@) +(VF(#5)— ATAE, 2= 3%+ 8 || Aw By — |2+ o — ¥},
yrtt = argmin {gt(yi)ﬂvéi(ﬂfHB; (prr* — X’“),yrz}fH%llywz}fIF},

where 4 := v La + Lf and BA}C = BrLp, + Ly, fori =1,---,m. We can also modify Algorithm
and its convergence guarantee to handle this case, but we omit the details here.

4 Numerical experiments
We provide some numerical examples to illustrate our algorithms. More examples can be found in
Supplementary Document [E. All the experiments are implemented in Matlab R2014b, running on a
MacBook Pro. Retina, 2.7GHz Intel Core 15 with 16Gb RAM.

4.1 Square-root LASSO and Square-root Elastic-net
We consider the following square-root elastic-net problem as a modification of the model in [30]:

* . : R K 2
F* = min {F(y) =By~ el + 5 lyl13 + rallyl }. (10)

where B € R"*P_ ¢ € R™, and k1 > 0 and k5 > 0 are two regularization parameters. If k; = 0,
then reduces to the well-known square-root LASSO model which is fully nonsmooth.

Square-root LASSO Problem: We first compare our algorithms with state-of-the-art methods on
the square-root LASSO problem. Since this problem is fully nonsmooth and non-strongly convex,
we implement three candidates to compare: ASGARD [23]] and its restarting variant, and Chambolle-
Pock’s method [3]. For ASGARD, we use the same setting as in [23[], and for Chambolle-Pock’s (CP)
method, we use step-sizes o = 7 = || B||~* and # = 1. In Algorithm , we choose pg := %
as suggested by Theorem to trade-off the objective residual and feasibility gap, where (z*, \*) is
computed by MOSEK up to the best accuracy. In Algorithm we set pg 1= 4H“T§H2 as suggested by
our theory, where g := 0.1 X omin(B) as a guess for the restricted strong convexity parameter.



We generate B randomly using standard Gaussian distribution without or with 50% correlated
columns. Then, we normalize B to get unit norm columns. We generate c as ¢ := By® + N(0, o),
where yh is a s-sparse vector, and o = 0 (i.e. without noise) and ¢ = 1072 (i.e. with noise). In
square-root LASSO, we set #; = 0 and k3 = 0.055 which gives us reasonable results close to 3.

We run these algorithms on two problem instances, where (1, p, s) = (700, 2000, 100), and the results
are plotted in Figure[T] Here, NEAPAL is Algorithm[I] scvx-NEAPAL is Algorithm 2] NEAPAL-par is
the parallel variant of Algorithm [T]by setting f = 0 and g (y1) = || By — c||2 and g2(y2) = k2 ||y|1.
and ASGARD-rs is the restarting-ASGARD [23]], and avg-CP is the averaging sequence of CP.
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Figure 1: Convergence behavior on the relative objective residuals of 6 algorithms for the square-root LASSO
problem after 500 iterations. Left: Without noise; Right: With noise and 50% correlated columns.

We can observe from Figure|I]that Algorithm [T]and its parallel variant has similar performance and
are comparable with ASGARD. Algorithm 2]also performs well compared to other methods. It works
better than Chambolle-Pock’s method (CP) in early iterations, but becomes slower in late iterations.
ASGARD-rs does not perform well due to the lack of strong convexity. While the last iterate of CP
shows a great progress, its averaging sequence, where we have convergence rate guarantee is very
slow in both cases: standard case and the case where the stepsize 7 = 1.

Square-root Elastic-net Problems: Now, we consider the case k1 = 0.01 > 0 in , which is
called the square-root elastic-net problem. Our data is generated as in square-root LASSO. In this
case, Algorithm [2Jand Chambolle-Pock’s method with strong convexity are used. The results of these
algorithms and non-strongly convex variants are plotted in Figure 2]
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Figure 2: Convergence behavior on the relative objective residuals of 6 algorithms for the square-root elastic-net
problem after 500 iterations. Left: Without noise; Right: With noise and 50% correlated columns.
NEAPAL, NEAPAL-par, and scvx-NEAPAL all work well in this example. They are all comparable
with ASGARD. CP makes a slow progress in early iterations, but reaches better accuracy at the end.
ASGARD-rs is the best due to the strong convexity of the problem. However, it does not have a
theoretical guarantee. Again, the averaging sequence of CP is the slowest one.

4.2 Low-rank matrix recovery with square-root loss
We consider a low-rank matrix recovery problem with square-root loss, which can be considered as a
penalized formulation of the model in [21]:

Fri= min {F(Y):= [BY) = el + AVl }, (11
where || - || is a nuclear norm, B : R™*¢ — R™ is a linear operator, ¢ € R™ is a given observed

vector, and A > 0 is a penalty parameter. By letting z := (z,Y), F(z) := ||z]2 + A||Y« and
—z + B(Y) = ¢, we can reformulate into (T).



To avoid complex subproblems of ADMM, we reformulate into the following one:
min {22+ M|Z]. | ~z+BE¥)=c Y -Z=0}.

by introducing two auxiliary variables z := B(Y) — cand Z := Y. The main computation at each
iteration of ADMM includes prox ., B(Y"), B*(z), and the solution of (I + B*B)(Y) = ek, where

eF is a residual term computed at each iteration. Since B and B* are given in operators, we apply a

preconditioned conjugate gradient (PCG) method to solve it. We warm-start PCG and terminate it
with a tolerance of 10~ or a maximum of 30 iterations. We tune the penalty parameter p in ADMM
for our test and find that p = 0.25 works best. We call this variant “Tuned-ADMM”.

We test 3 algorithms: Algorithm ASGARD [23], and Tuned-ADMM on 5 logo images: IBM, EPFL,
MIT, TUM, and UNC. These images are pre-processed to get low-rank forms of 45, 59, 6, 7 and 56,
respectively. The measurement c is generated as ¢ := B(Y?) 4+ A/(0, 1073 max |Y£ ) with Gaussian
noise, where Y is the original image, and 3 is a linear operator formed by a subsampled-FFT with
25% of sampling rate. We run 3 algorithms with 200 iterations, and the results are given in Table

Table 1: The results and performance of 3 algorithms on 5 Logo images of size 256 x 256.

ASGARD [23] AlgorithmE](NEAPAL) Tuned-ADMM

Name ‘Time Error F(Y*) PSNR rank  Res ‘Time Error F(Y*) PSNR rank  Res ‘Time Error F(Y*) PSNR rank  Res

IBM | 8.0 0.0615 0.293 724 34 0.107| 8.5 0.0604 0297 72.4 34 0.107|12.7 0.0615 0293 724 34 0.107
EPFL | 8.2 0.0830 0414 69.8 56 0.108| 8.1 0.0803 0.426 69.8 56 0.108|17.2 0.0830 0.414 69.8 56 0.108
MIT | 7.9 0.0501 0.348 74.2 6 0.102| 7.5 0.0485 0349 742 6 0.102]15.9 0.0502 0.348 74.2 6 0.102
TUM | 7.5 0.0382 0.266 76.5 49 0.087| 7.6 0.0390 0.277 76.5 49 0.087|20.1 0.0384 0267 76.5 49 0.087
UNC | 8.3 0.0611 0.283 725 42 0.112| 7.7 0.0596 0.287 72.5 42 0.112]|14.7 0.0611 0283 725 42 0.112

The results in Table [T show that ASGARD and NEAPAL work well and are comparable with
Tuned-ADMM. However, NEAPAL and ASGARD are faster than ADMM due to the PCG loop
for solving the linear system. The recovered results of two images: TUM and MIT are shown in
Figure[3| Except for TUM, three algorithms produce low-rank solutions as expected, and their PSNR

lLlIJlLll

Original (rank=7) ASGARD (rank=49) NEAPAL (rank=49) Tuned-ADMM (rank=49)
Original (rank=6) ASGARD (rank=6) NEAPAL (rank=6) Tuned-ADMM (rank=6)

Figure 3: The low-rank recovery from three algorithms on two loge images: TUM and MIT.

(peak-signal-to-noise-ratio) is consistent. Moreover, Error:= w showing the relative error

between Y'* and the original image Y? is small in all cases.

5 Conclusion

We have proposed two novel primal-dual algorithms to solve a broad class of nonsmooth constrained
convex optimization problems that have the following features. They offer the same or better per-
iteration complexity as existing methods such as AMA or ADMM. They achieve optimal convergence
rates in non-ergodic sense (i.e., in the last iterates) on the objective residual and feasibility violation,
which are important in sparse and low-rank optimization as well as in image processing. They can be
implemented in both sequential and parallel manner. The dual update step in Algorithms|[Tjand[2]can
be viewed as the dual step in relaxed augmented Lagrangian-based methods, where the step-size is
different from the penalty parameter. Our future research is to develop new variants of Algorithms
[T and [2 such as coordinate descent, stochastic primal-dual, and asychronous parallel algorithms.
We also plan to investigate connection of our methods to primal-dual first-order methods such as
primal-dual hybrid gradient and projective and other splitting methods.
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