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Abstract

Learning the minimum/maximum mean among a finite set of distributions is a
fundamental sub-task in planning, game tree search and reinforcement learning.
We formalize this learning task as the problem of sequentially testing how the
minimum mean among a finite set of distributions compares to a given threshold.
We develop refined non-asymptotic lower bounds, which show that optimality
mandates very different sampling behavior for a low vs high true minimum. We
show that Thompson Sampling and the intuitive Lower Confidence Bounds policy
each nail only one of these cases. We develop a novel approach that we call Murphy
Sampling. Even though it entertains exclusively low true minima, we prove that
MS is optimal for both possibilities. We then design advanced self-normalized
deviation inequalities, fueling more aggressive stopping rules. We complement our
theoretical guarantees by experiments showing that MS works best in practice.

1 Introduction

We consider a collection of core problems related to minimums of means. For a given finite collection
of probability distributions parameterized by their means µ1, . . . , µK , we are interested in learning
about µ∗ = mina µa from adaptive samples Xt ∼ µAt , where At indicates the distribution sampled
at time t. We shall refer to these distributions as arms in reference to a multi-armed bandit model
[28, 26]. Knowing about minima/maxima is crucial in reinforcement learning or game-playing, where
the value of a state for an agent is the maximum over actions of the (expected) successor state value
or the minimum over adversary moves of the next state value.

The problem of estimating µ∗ = mina µa was studied in [34] and subsequently [7, 31, 8]. It is
known that no unbiased estimator exists for µ∗, and that estimators face an intricate bias-variance
trade-off. Beyond estimation, the problem of constructing confidence intervals on minima/maxima
naturally arises in (Monte Carlo) planning in Markov Decision Processes [15] and games [25]. Such
confidence intervals are used hierarchically for Monte Carlo Tree Search (MCTS) in [32, 11, 17, 20].
The open problem of designing asymptotically optimal algorithms for MCTS led us to isolate one
core difficulty that we study here, namely the construction of confidence intervals and associated
sampling/stopping rules for learning minima (and, by symmetry, maxima).

Confidence intervals (that are uniform over time) can be naturally obtained from a (sequential)
test of {µ∗ < γ} versus {µ∗ > γ}, given a threshold γ. The main focus of the paper goes even
further and investigates the minimum number of samples required for adaptively testing whether
{µ∗ < γ} or {µ∗ > γ}, that is sequentially sampling the arms in order to decide for one hypothesis
as quickly as possible. Such a problem is interesting in its own right as it naturally arises in several
statistical certification applications. As an example we may consider quality control testing in
manufacturing, where we want to certify that in a batch of machines each has a guaranteed probability
of successfully producing a widget. In e-learning, we may want to certify that a given student has
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sufficient understanding of a range of subjects, asking as few questions as possible about the different
subjects. Then in anomaly detection, we may want to flag the presence of an anomaly faster the more
anomalies are present. Finally, in a crowdsourcing system, we may need to establish as quickly as
possible whether a cohort of workers contains at least one unacceptably careless worker. Our own
motivation for studying this problem is that it corresponds to an especially simple instance of the
depth-two game tree search problem, as illustrated in Figure 1.

max

min

µ1 µ2 . . . µK

γ

Figure 1: Game tree search problem of
“depth 11/2”. We consider the scenario
where it has been established that the
right subtree (grey) of the root has
value γ. Learning the optimal action
at the root (orange) is equivalent to de-
termining how the minimum (blue) of
the leaf means (green) compares to γ.

We thus study a particular example of sequential adaptive
hypothesis testing problem, as introduced by Chernoff [5],
in which multiple experiments (sampling from one arm)
are available to the experimenter, each of which allows
to gain different information about the hypotheses. The
experimenter sequentially selects which experiment to per-
form, when to stop and then which hypothesis to recommend.
Several recent works from the bandit literature fit into this
framework, with the twist that they consider continuous,
composite hypotheses and aim for δ-correct testing: the
probability of guessing a wrong hypothesis has to be smaller
than δ, while performing as few experiments as possible.
The fixed-confidence Best Arm Identification problem (con-
cerned with finding the arm with largest mean) is one such
example [9, 23], of which several variants have been studied
[19, 17, 12]. For example the Thresholding Bandit Problem
[27] aims at finding the set of arms above a threshold, which
is strictly harder than our testing problem. In the Ranking
and Selection literature (see e.g., [14] for a survey) the related problem of finding systems whose
expected performance is smaller than a known standard has been studied by [24], but if such system
exist, the goal was to additionnaly identify the one with smallest expectation, which is strictly harder
than our problem.

A full characterization of the asymptotic complexity of the BAI problem was recently given in
[11], highlighting the existence of an optimal allocation of samples across arms. The lower bound
technique introduced therein can be generalized to virtually any testing problem in a bandit model
(see, e.g. [20, 12]). Such an optimal allocation is also presented by [4] in the GENERAL-SAMP
framework, which is quite generic and in particular encompasses testing on which side of γ the
minimum falls. The proposed LPSample algorithm is thus a candidate to be applied to our testing
problem. However, this algorithm is only proved to be order-optimal, that is to attain the minimal
sample complexity up to a (large) multiplicative constant. Moreover, like other algorithms for special
cases (e.g. Track-and-Stop for BAI [11]), it relies on forced exploration, which may be harmful
in practice and leads to unavoidably asymptotic analysis.

Our first contribution is a tight lower bound on the sample complexity that provides an oracle sample
allocation, but also aims at reflecting the moderate-risk behavior of a δ-correct algorithm. Our second
contribution is a new sampling rule for the minimum testing problem, under which the empirical
fraction of selections converges to the optimal allocation without forced exploration. The algorithm
is a variant of Thompson Sampling [33, 1] that is conditioning on the “worst” outcome µ∗ < γ, hence
the name Murphy Sampling. This conditioning is inspired by the Top Two Thompson Sampling
recently proposed by [29] for Best Arm Identification. As we shall see, the optimal allocation is
very different whether µ∗ < γ or µ∗ > γ and yet Murphy Sampling automatically adopts the right
behavior in each case. Our third contribution is a new stopping rule, that by aggregating samples from
several arms that look small may lead to early stopping whenever µ∗ < γ. This stopping rule is based
on a new self-normalized deviation inequality for exponential families (Theorem 7) of independent
interest. It generalizes results obtained by [18, 23] in the Gaussian case and by [3] without the
uniformity in time, and also handles subsets of arms.

The rest of the paper is structured as follows. In Section 2 we introduce our notation and formally
define our objective. In Section 3, we present lower bounds on the sample complexity of sequential
tests for minima. In particular, we compute the optimal allocations for this problem and discuss
the limitation of naive benchmarks to attain them. In Section 4 we introduce Murphy sampling,
and prove its optimality in conjunction with a simple stopping rule. Improved stopping rules (and
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confidence intervals) are presented in Section 5. Finally, numerical experiments reported in Section 6
demonstrate the efficiency of Murphy Sampling paired with our new stopping rule.

2 Setup

We consider a family of K probability distributions that belong to a one-parameter canonical expo-
nential family, that we shall call arms in reference to a multi-armed bandit model. Such exponential
families include Gaussian with known variance, Bernoulli, Poisson, see [3] for details. For natural
parameter ν, the density of the distribution w.r.t. carrier measure ρ on R is given by exν−b(ν)ρ(dx),
where the cumulant generating function b(ν) = lnEρ[eXν] induces a bijection ν ↦ ḃ(ν) to the mean
parameterization. We write KL (ν, λ) and d(µ, θ) for the Kullback-Leibler divergence from natural
parameters ν to λ and from mean parameters µ to θ. Specifically, with convex conjugate b∗,

KL (ν, λ) = b(λ) − b(ν) + (ν − λ) ḃ(ν) and d(µ, θ) = b∗(µ) − b∗(θ) − (µ − θ)ḃ∗(θ).

We denote by µ = (µ1, . . . , µK) ∈ IK the vector of arm means, which fully characterizes the model.
In this paper, we are interested in the smallest mean (and the arm where it is attained)

µ∗ = min
a
µa and a∗ = a∗(µ) = arg min

a
µa.

Given a threshold γ ∈ I , our goal is to decide whether µ∗ < γ or µ∗ > γ. We introduce the hypotheses

H< = {µ ∈ IK ∣ µ∗ < γ} and H> = {µ ∈ IK ∣ µ∗ > γ}, and their union H = H< ∪H>.

We want to propose a sequential and adaptive testing procedure, that consists in a sampling rule
At, a stopping rule τ and a decision rule m̂ ∈ {<,>}. The algorithm samples Xt ∼ µAt while
t ≤ τ , and then outputs a decision m̂. We denote the information available after t rounds by
Ft = σ (A1,X1, . . . ,At,Xt). At is measurable with respect to Ft−1 an possibly some exogenous
random variable, τ is a stopping time with respect to this filtration and m̂ is Fτ -measurable.

Given a risk parameter δ ∈ (0,1], we aim for a δ-correct algorithm, that satisfies Pµ (µ ∈Hm̂) ≥ 1−δ
for all µ ∈H. Our goal is to build δ-correct algorithms that use a small number of samples τδ in order
to reach a decision. In particular, we want the sample complexity Eµ[τ] to be small.

Notation We letNa(t) = ∑ts=1 1(As=a) be the number of selections of arm a up to round t, Sa(t) =
∑ts=1Xs1(As=a) be the sum of the gathered observations from that arm and µ̂a(t) = Sa(t)/Na(t)
their empirical mean.

3 Lower Bounds

In this section we study information-theoretic sample complexity lower bounds, in particular to find
out what the problem tells us about the behavior of oracle algorithms. [10] prove that for any δ-correct
algorithm

Eµ[τ] ≥ T ∗(µ)kl(δ,1 − δ) where
1

T ∗(µ) = max
w∈△

min
λ∈Alt(µ)

∑
a

wad(µa, λa) (1)

kl(x, y) = x ln x
y
+ (1 − x) ln 1−x

1−y and Alt(µ) is the set of bandit models where the correct recom-
mendation differs from that on µ. The following result specialises the above to the case of testingH<
vsH>, and gives explicit expressions for the characteristic time T ∗(µ) and oracle weights w∗(µ).
Lemma 1. Any δ-correct strategy satisfies (1) with

T ∗(µ) =
⎧⎪⎪⎨⎪⎪⎩

1
d(µ∗,γ) µ∗ < γ,
∑a 1

d(µa,γ) µ∗ > γ, and w∗
a(µ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1a=a∗ µ∗ < γ,
1

d(µa,γ)

∑j 1
d(µj,γ)

µ∗ > γ.

Lemma 1 is proved in Appendix B. As explained by [10] the oracle weights correspond to the fraction
of samples that should be allocated to each arm under a strategy matching the lower bound. The
interesting feature here is that the lower bound indicates that an oracle algorithm should have very
different behavior on H< and H>. On H< it should sample a∗ (or all lowest means, if there are
several) exclusively, while onH> it should sample all arms with certain specific proportions.
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3.1 Boosting the Lower Bounds

Following [13] (see also [30] and references therein), Lemma 1 can be improved under very mild
assumptions on the strategies. We call a test symmetric if its sampling and stopping rules are invariant
by conjugation under the action of the group of permutations on the arms. In that case, if all the arms
are equal, then their expected numbers of draws are equal. For simplicity we assume µ1 ≤ . . . ≤ µK .

Proposition 2. Let k = maxa d(µa, γ) = max{d(µ1, γ), d(µK , γ)}. For any symmetric, δ-correct
test, for all arms a ∈ {1, . . . ,K}, the expected number of selections of arm a satisfies

Eµ[Na(τ)] ≥
2 (1 − 2δK3)

27K2k
.

Proposition 2 is proved in Appendix B. It is an open question to improve the dependency in K in this
bound; moreover, one may expect a bound decreasing with δ, maybe in ln(ln(1/δ)) (but certainly
not in ln(1/δ)). This result already has two important consequences: first, it shows that even an
optimal algorithm needs to draw all the arms a certain number of times, even onH< where Lemma 1
may suggest otherwise. Second, this lower bound on the number of draws of each arm can be used to
“boost” the lower bound on Eµ[τ]: the following result is also proved in Appendix B.
Theorem 3. When µ∗ < γ, for any symmetric, δ-correct strategy,

Eµ[τ] ≥
kl(δ,1 − δ)
d(µ1, γ)

+
2 (1 − 2δK3)

27K2k
∑
a

(1 −
d(µa, γ)1(µa≤γ)

d(µ1, γ)
) .

3.2 Lower Bound Inspired Matching Algorithms

In light of the lower bound in Lemma 1, we now investigate the design of optimal learning algorithms
(sampling rule At and stopping rule τ ). We start with the stopping rule. The first stopping rule that
comes to mind consists in comparing separately each arm to the threshold and stopping when either
one arm looks significantly below the threshold or all arms look significantly above. Introducing
d+(u, v) = d(u, v)1(u≤v) and d−(u, v) = d(u, v)1(u≥v), we let

τBox = τ< ∧ τ> where
τ< = inf {t ∈ N∗ ∶ ∃aNa(t)d+(µ̂a(t), γ) ≥ C<(δ,Na(t))} ,
τ> = inf {t ∈ N∗ ∶ ∀aNa(t)d−(µ̂a(t), γ) ≥ C>(δ,Na(t))} ,

(2)

and C<(δ, r) and C>(δ, r) are two threshold functions to be specified. Box refers to the fact that the
decision to stop relies on individual “box” confidence intervals for each arm, whose endpoints are

Ua(t) = max{q ∶ Na(t)d+(µ̂a(t), q) ≥ C<(δ,Na(t))},
La(t) = min{q ∶ Na(t)d−(µ̂a(t), q) ≥ C>(δ,Na(t))}.

Indeed, τBox = inf {t ∈ N∗ ∶ mina Ua(t) ≤ γ or mina La(t) ≥ γ}. In particular, if ∀a,∀t ∈ N∗, µa ∈
[La(t),Ua(t)], any algorithm that stops using τBox is guaranteed to output a correct decision. In
the Gaussian case, existing work [18, 23] permits to exhibit thresholds of the form C≶(δ, r) =
ln(1/δ) + a ln ln(1/δ) + b ln(1 + ln(r)) for which this sufficient correctness condition is satisfied
with probability larger than 1 − δ. Theorem 7 below generalizes this to exponential families.

Given that τBox can be proved to be δ-correct whatever the sampling rule, the next step is to propose
sampling rules that, coupled with τBox, would attain the lower bound presented in Section 3. We now
show that a simple algorithm, called LCB, can do that for all µ ∈H>. LCB selects at each round the
arm with smallest Lower Confidence Bound:

LCB: Play At = argmina La(t) , (3)

which is intuitively designed to attain the stopping condition mina La(t) ≥ γ faster. In Appendix E
we prove (Proposition 15) that LCB is optimal for µ ∈H> however we show (Proposition 16) that on
instances ofH< it draws all arms a ≠ a∗ too much and cannot match our lower bound.

For µ ∈ H<, the lower bound Lemma 1 can actually be a good guideline to design a matching
algorithm: under such an algorithm, the empirical proportion of draws of the arm a∗ with smallest
mean should converge to 1. The literature on regret minimization in bandit models (see [2] for a
survey) provides candidate algorithms that have this type of behavior, and we propose to use the
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Thompson Sampling (TS) algorithm [1, 22]. Given independent prior distribution on the mean of
each arm, this Bayesian algorithm selects an arm at random according to its posterior probability of
being optimal (in our case, the arm with smallest mean). Letting πta refer to the posterior distribution
of µa after t samples, this can be implemented as

TS: Sample ∀a ∈ {1, . . . ,K}, θa(t) ∼ πt−1
a , then play At = arg mina∈{1,...,K} θa(t).

It follows from Theorem 12 in Appendix 5 that if Thompson Sampling is run without stopping,
Na∗(t)/t converges almost surely to 1, for every µ. As TS is an anytime sampling strategy (i.e. that
does not depend on δ), Lemma 4 below permits to justify that on every instance ofH< with a unique
optimal arm, under this algorithm τBox ≃ (1/d(µ1, θ)) ln(1/δ). However, TS cannot be optimal for
µ ∈H>, as the empirical proportions of draws cannot converge to w∗(µ) ≠ 1a∗ .

To summarize, we presented a simple stopping rule, τBox, that can be asymptotically optimal for
every µ ∈ H< if it is used in combination with Thompson Sampling and for µ ∈ H> if it is used
in combination with LCB. But neither of these two sampling rules are good for the other type of
instances, which is a big limitation for a practical use of either of these. In the next section, we
propose a new Thompson Sampling like algorithm that ensures the right exploration under bothH<
andH>. In Section 5, we further present an improved stopping rule that may stop significantly earlier
than τBox on instances ofH<, by aggregating samples from multiple arms that look small.

We now argue that ensuring the sampling proportions converge to w∗ is sufficient for reaching the
optimal sample complexity, at least in an asymptotic sense. The proof can be found in Appendix C.

Lemma 4. Fix µ ∈ H. Fix an anytime sampling strategy (At) ensuring Nt

t
→ w∗(µ). Let τδ be a

stopping rule such that τδ ≤ τBox
δ , for a Box stopping rule (2) whose threshold functions C≶ satisfy

the following: they are non-decreasing in r and there exists a function f such that,

∀r ≥ r0, C≶(δ, r) ≤ f(δ) + ln r, where f(δ) = ln(1/δ) + o(ln(1/δ)).
Then lim supδ→0

τδ
ln 1
δ

≤ T ∗(µ) almost surely.

4 Murphy Sampling

In this section we denote by Πn = P (⋅∣Fn) the posterior distribution of the mean parameters after n
rounds. We introduce a new (randomised) sampling rule called Murphy Sampling after Murphy’s
Law, as it performs some conditionning to the “worst event” (µ ∈H<):

MS: Sample θt ∼ Πt−1 (⋅∣H<), then play At = a∗(θt) . (4)

As we will argue below, the subtle difference of sampling from Πn−1 (⋅∣H<) instead of Πn−1 (regular
Thompson Sampling) ensures the required split personality behavior (see Lemma 1). Note that
MS always conditions on H< (and never on H>) regardless of the position of µ w.r.t. γ. This is
different from the symmetric Top Two Thompson Sampling [29], which essentially conditions on
a∗(θ) ≠ a∗(µ) a fixed fraction 1 − β of the time, where β is a parameter that needs to be tuned with
knowledge of µ. MS on the other hand needs no parameters.

Also note that MS is an anytime sampling algorithm, being independent of the confidence level 1 − δ.
The confidence will manifest only in the stopping rule.

MS is technically an instance of Thompson Sampling with a joint prior Π supported only on H<.
This viewpoint is conceptually funky, as we will apply MS identically toH< and H>. To implement
MS, we use that independent conjugate per-arm priors induce likewise posteriors, admitting efficient
(unconditioned) posterior sampling. Rejection sampling then achieves the required conditioning. Its
computational cost is limited: the acceptance probability cannot be much smaller than the risk δ
provided to the algorithm. Indeed, the fact that the stopping rule (see Section 5) has not yet fired,
combined with the posterior concentration (Proposition 6) and the convergence of the sampling efforts
to track the sampling proportions (Theorem 5) reveals that the MS rejection sampling step accepts
with probability at least of order δ/(ln t)3. So for reasonable values of δ, this can be small and require
a few thousands of draws (not a big deal for today’s computers), but it cannot be prohibitively small.

The rest of this section is dedicated to the analysis of MS. First, we argue that the MS sampling
proportions converge to the oracle weights of Lemma 1.
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Assumption For purpose of analysis, we need to assume that the parameter space Θ ∋ µ (or the
support of the prior) is the interior of a bounded subset of RK . This ensures that supµ,θ∈Θ d(µ, θ) <∞
and supµ,θ∈Θ∥µ − θ∥ <∞. This assumption is common [16, Section 7.1], [29, Assumption 1]. We
also assume that the prior Π has a density π with bounded ratio supµ,θ∈Θ

π(θ)
π(µ) <∞.

Theorem 5. Under the above assumption, MS ensures Nt

t
→w∗(µ) a.s. for any µ ∈H.

We give a sketch of the proof below, the detailed argument can be found in Appendix D, Theorems 12
and 13. Given the convergence of the weights, the asymptotic optimality in terms of sample
complexity follows by Lemma 4, if MS is used with an appropriate stopping rule (Box (2) or the
improved Aggregate stopping rule discussed in Section 5).

Proof Sketch First, consider µ ∈ H<. In this case the conditioning in MS is asymptotically
immaterial as Πn(H<) → 1, and the algorithm behaves like regular Thompson Sampling. As
Thompson sampling has sublinear pseudo-regret [1], we must have E[N1(t)]/t→ 1. The crux of the
proof in the appendix is to show the convergence occurs almost surely.

Next, consider µ ∈ H>. Following [29], we denote the sampling probabilities in round n by
ψa(n) = Πn−1 (a = arg minj θj ∣H<), and abbreviate Ψa(n) = ∑nt=1 ψa(t) and ψ̄a(n) = Ψa(n)/n.
The main intuition is provided by

Proposition 6 ([29, Proposition 4]). For any open subset Θ̃ ⊆ Θ, the posterior concentrates at rate
Πn(Θ̃) ≐ exp (−nminλ∈Θ̃∑a ψ̄a(n)d(µa, λa)) a.s. where an ≐ bn means 1

n
ln an

bn
→ 0.

Let us use this to analyze ψa(n). As we are on H>, the posterior Πn(H<) → 0 vanishes. More-
over, Πn (a = arg minj θj ,H<) ∼ Πn(θa < γ) as the probability that multiple arms fall below γ is
negligible. Hence

ψa(n + 1) ∼ Πn(µa < γ)
∑j Πn(µj < γ)

≐
exp (−nψ̄a(n)d(µa, γ))
∑j exp (−nψ̄j(n)d(µj , γ))

.

To get a good sense for what this means, let’s analyse the version with equality. Using thatw∗
ad(µa, γ)

is constant (Lemma 1), we see

ψa(n + 1) ≤ e−n(ψ̄a(n)−w
∗
a)d(µa,γ).

Now this means that whenever ψ̄a(n) ≥ w∗
a + ε, we find that ψa(n + 1) ≤ e−nεda ≈ 0 is exponentially

small, and hence ψ̄a(n + 1) ≈ n
n+1

ψ̄a(n) decays hyperbolically (i.e. without lower bound). Hence
lim supn→∞ ψ̄a(n) ≤ w∗

a + ε. As this holds for all arms a and ε > 0, we must have limn ψa(n) = w∗
a.

5 Improved Stopping Rule and Confidence Intervals

Theorem 7 below provides a new self-normalized deviation inequality that given a subset of arms
controls uniformly over time how the aggregated mean of the samples obtained from those arms can
deviate from the smallest (resp. largest) mean in the subset. More formally for S ⊆ [K], we introduce

NS(t) = ∑
a∈S

Na(t) and µ̂S(t) = ∑a∈S Na(t)µ̂a(t)
NS(t)

and recall d+(u, v) = d(u, v)1(u≤v) and d−(u, v) = d(u, v)1(u≥v). We prove the following for
one-parameter exponential families.
Theorem 7. Let T ∶ R+ → R+ be the function defined by

T (x) = 2h−1 (1 + h
−1(1 + x) + ln ζ(2)

2
) (5)

where h(u) = u − ln(u) for u ≥ 1 and ζ(s) = ∑∞
n=1 n

−s. For every subset S of arms and x ≥ 0.04,

P(∃t ∈ N ∶ NS(t)d+ (µ̂S(t),min
a∈S

µa) ≥ 3 ln(1 + ln(NS(t))) + T (x)) ≤ e−x, (6)

P(∃t ∈ N ∶ NS(t)d− (µ̂S(t),max
a∈S

µa) ≥ 3 ln(1 + ln(NS(t))) + T (x)) ≤ e−x. (7)
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The proof of this theorem can be found in Section F and is sketched below. It generalizes in several
directions the type of results obtained by [18, 23] for Gaussian distributions and ∣S ∣ = 1. Going
beyond subsets of size 1 will be crucial here to obtain better confidence intervals on minimums, or
stop earlier in tests. Note that the threshold function T introduced in (5) does not depend on the
cardinality of the subset S to which the deviation inequality is applied. Tight upper bounds on T can
be given using Lemma 21 in Appendix F.3, which support the approximation T (x) ≃ x + 3 ln(x).

5.1 An Improved Stopping Rule

Fix a subset prior π ∶ ℘({1, . . . ,K})→ R+ such that∑S⊆{1,...,K} π(S) = 1 and let T be the threshold
function defined in Theorem 7. We define the stopping rule τπ ∶= τ> ∧ τπ< , where

τ> = inf {t ∈ N∗ ∶ ∀a ∈ {1, . . . ,K}Na(t)d− (µ̂a(t), γ) ≥ 3 ln(1 + ln(Na(t))) + T (ln(1/δ))} ,
τπ< = inf {t ∈ N∗ ∶ ∃S ∶ NS(t)d+ (µ̂S(t), γ) ≥ 3 ln(1 + ln(NS(t))) + T (ln(1/(δπ(S)))} .
The associated recommendation rule selects H> if τπ = τ> and H< if τπ = τπ< . For the practical
computation of τπ< , the search over subsets can be reduced to nested subsets including arms sorted by
increasing empirical mean and smaller than γ.
Lemma 8. Any algorithm using the stopping rule τπ and selecting m̂ = > iff τπ = τ>, is δ-correct.

From Lemma 8, proved in Appendix G, the prior π doesn’t impact the correctness of the algorithm.
However it may impact its sample complexity significantly. First it can be observed that picking π that
is uniform over subset of size 1, i.e. π(S) =K−11(∣S ∣ = 1), one obtain a δ-correct τBox stopping rule
with thresholds functions satisfying the assumptions of Lemma 4. However, in practice (especially
more moderate δ), it may be more interesting to include in the support of π subsets of larger sizes, for
which NS(t)d+ (µ̂S(t), γ) may be larger. We advocate the use of π(S) =K−1(K∣S∣)

−1
, that puts the

same weight on the set of subsets of each possible size.

Links with Generalized Likelihood Ratio Tests (GLRT). Assume we want to testH0 againstH1

for composite hypotheses. A GLRT test based on t observations whose distribution depends on some
parameter x rejectsH0 if the test statistic maxx∈H1 `(X1, . . . ,Xt;x)/maxx∈H0∪H1 `(X1, . . . ,Xt;x)
has large values (where `(⋅;x) denotes the likelihood of the observations under the model parameter-
ized by x). In our testing problem, the GLRT statistic for rejectingH< is minaNa(t)d−(µ̂a(t), γ)
hence τ> is very close to a sequential GLRT test. However, the GLRT statistic for rejecting H> is
∑Ka=1Na(t)d+(µ̂a(t), γ), which is quite different from the stopping statistic used by τπ< . Rather than
aggregating samples from arms, the GLRT statistic is summing evidence for exceeding the threshold.
Using similar martingale techniques as for proving Theorem 7, one can show that replacing τπ< by

τGLRT
< = inf

⎧⎪⎪⎨⎪⎪⎩
t ∈ N∗ ∶ ∑

a∶µ̂a(t)≤γ
[Na(t)d+ (µ̂a(t), γ) − 3 ln(1 + ln(Na(t)))]+ ≥KT ( ln(1/δ)

K
)
⎫⎪⎪⎬⎪⎪⎭

also yields a δ-correct algorithm (see [21])1. At first sight, τπ< and τGLRT
< are hard to compare: the

stopping statistic used by the latter can be larger than that used by the former, but it is compared to a
smaller threshold. In Section 6 we will provide empirical evidence in favor of aggregating samples.

5.2 A Confidence Intervals Interpretation

Inequality (6) (and a union bound over subsets) also permits building a tight upper confidence bound
on the minimum µ∗. Indeed, defining

Uπmin(t) ∶= max{q ∶ max
S⊆{1,...,K}

[NS(t)d+ (µ̂S(t), q) − 3 ln(1 + ln(1 +NS(t)))] ≤ T (ln
1

δπ(S))} ,

it is easy to show that P (∀t ∈ N, µ∗ ≤ Uπmin(t)) ≥ 1 − δ. For general choices of π, this upper
confidence bound may be much smaller than the naive bound mina Ua(t) which corresponds to
choosing π uniform over subset of size 1. We provide an illustration supporting this claim in Figure 2

1In fact, we can slightly sharpen the bound by observing that we are controlling the deviation of a single
composite arm, allowing us to replace (5) by T (x) = 2h−1 (1 + x+ln ζ(2)

2
), see [21, Appendix A.1]
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below. The two type of upper confidence bounds (Aggregate corresponding to π(S) =K−1(K∣S∣)
−1

and Box corresponding to π(S) =K−11(∣S∣=1)) are compared under uniform sampling in a Bernoulli
bandit model that has k arms with mean 0.1 plus 4 arms with means [0.2 0.3 0.4 0.5]. The larger the
number of arms close to minimum (here equal to it) is, the more UCB Aggregate beats UCB Box.
Observe that using inequality (7) in Theorem 7 similarly allows to derive tighter lower confidence
bounds on the maximum of several means.
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Figure 2: Illustration of the Box versus Aggregate Upper Confidence Bounds as a function of time on
Bernoulli instance for k = 1 (left), k = 3 (middle) and k = 10 (right) minimal arms.

5.3 Sketch of the Proof of Theorem 7

Fix η ∈ [0,1+e[. Introducing Xη(t) = [NS(t)d+ (µ̂S(t),mina∈S µa) − 2(1 + η) ln (1 + lnNS(t))],
the cornerstone of the proof (Lemma 17) consists in proving that for all λ ∈ [0, (1 + η)−1[, there
exists a martingale Mλ

t that “almost” upper bounds eλXη(t): there exists a function gη such that

E[Mλ
0 ] = 1 and ∀t ∈ N∗,Mλ

t ≥ eλXη(t)−gη(λ). (8)

From there, the proof easily follows from a combination of Chernoff method and Doob inequality:

P (∃t ∈ N∗ ∶Xη(t) > u) ≤ P (∃t ∈ N∗ ∶Mλ
t > eλu−gη(λ)) ≤ exp (− [λu − gη(λ)]) .

Inequality (6) is then obtained by optimizing over λ, carefully picking η and inverting the bound.

The interesting part of the proof is to actually build a martingale satisfying (8). First, using the so-
called method of mixtures [6] and some specific fact about exponential families already exploited by
[3], we can prove that there exists a martingale W̃ x

t such that for some function f (see Equation (14))

{Xη(t) − f(η) ≥ x} ⊆ {W̃ x
t ≥ e x

1+η } .

From there it follows that, for every λ and z > 1, {eλ(Xη(t)−f(η)) ≥ z} ⊆ {e−
ln(z)
λ(1+η) W̃

1
λ ln(z)
t ≥ 1} and

the trick is to introduce another mixture martingale,

M
λ

t = 1 + ∫
∞

1
e−

ln(z)
λ(1+η) W̃

1
λ ln(z)
t dz,

that is proved to satisfy M
λ

t ≥ eλ[Xη(t)−f(η)]. We let Mλ
t =Mλ

t /E[Mλ

t ].

6 Experiments

We discuss the results of numerical experiments performed on Gaussian bandits with variance 1,
using the threshold γ = 0. Thompson and Murphy sampling are run using a flat (improper) prior on
R, which leads to a conjugate Gaussian posterior. The experiments demonstrate the flexibility of our
MS sampling rule, which attains optimal performance on instances from bothH< andH>. Moreover,
they show the advantage of using a stopping rule aggregating samples from subsets of arms when
µ ∈H<. This aggregating stopping rule, that we refer to as τAgg is an instance of the τπ stopping rule
presented in Section 5 for π(S) =K−1(K∣S∣)

−1
. We investigate the combined use of three sampling

rules, MS, LCB and Thompson Sampling with three stopping rules, τAgg, τBox and τGLRT.
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We first study an instance µ ∈H< with K = 10 arms that are linearly spaced between −1 and 1. We
run the different algorithms (excluding the TS sampling rule, that essentially coincides with MS
onH<) for different values of δ and report the estimated sample complexity in Figure 3 (left). For
each sampling rule, it appears that E[τAgg] ≤ E[τBox] ≤ E[τGLRT]. Moreover, for each stopping rule
MS is outperforming LCB, with a sample complexity of order T ∗(µ) ln(1/δ) +C. Then we study
an instance µ ∈ H> with K = 5 arms that are linearly spaced between 0.5 and 1, with τAgg as the
sampling rule (which matters little as the algorithm mostly stops because of τ> onH>). Results are
reported in Figure 3 (right), in which we see that MS is performing very similarly to LCB (that is
also proved optimal onH>), while vanilla TS fails dramatically. On those experiments, the empirical
error was always zero, which shows that our theoretical thresholds are still quite conservative. More
experimental results can be found in Appendix A: an illustration of the convergence properties of the
MS sampling rule as well as a larger-scale comparison of stopping rules underH<.
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Figure 3: E[τδ] as a function of ln(1/δ) for several algorithms on an instance µ ∈ H< (left) and
µ ∈H> (right), estimated using N = 5000 (resp. 500) repetitions.

7 Discussion

We propose new sampling and stopping rules for sequentially testing the minimum of means. As
our guiding principle, we first prove sample complexity lower bounds, characterized the emerging
oracle sample allocationw∗, and develop the Murphy Sampling strategy to match it asymptotically.
We observe in the experiments that the asymptotic regime does not necessarily kick in at moderate
confidence δ (Figure 4, left) and that there is an important lower-order term to the practical sample
complexity (Figure 3). It is an intriguing open problem of theoretical and practical importance
to characterize and match optimal behavior at moderate confidence. We make first contributions
in both directions: we prove tighter sample complexity lower bounds for symmetric algorithms
(Proposition 2, Theorem 3) and we design aggregating confidence intervals which are tighter in
practice (Figure 2).

The importance of this perspective arises, as highlighted in the introduction, from the hierarchical
application of maxima/minima in learning applications. A better understanding of the moderate
confidence regime for learning minima will very likely translate into new insights and methods for
learning about hierarchical structures, where the benefits accumulate with depth.
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